JP3827958B2 - Thick plate single-sided welding method of titanium or titanium alloy - Google Patents

Thick plate single-sided welding method of titanium or titanium alloy Download PDF

Info

Publication number
JP3827958B2
JP3827958B2 JP2001031157A JP2001031157A JP3827958B2 JP 3827958 B2 JP3827958 B2 JP 3827958B2 JP 2001031157 A JP2001031157 A JP 2001031157A JP 2001031157 A JP2001031157 A JP 2001031157A JP 3827958 B2 JP3827958 B2 JP 3827958B2
Authority
JP
Japan
Prior art keywords
welding
titanium
bead
thick plate
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001031157A
Other languages
Japanese (ja)
Other versions
JP2002224836A (en
Inventor
佳章 武田
文彦 作野
辰美 芦野
基身 正木
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001031157A priority Critical patent/JP3827958B2/en
Publication of JP2002224836A publication Critical patent/JP2002224836A/en
Application granted granted Critical
Publication of JP3827958B2 publication Critical patent/JP3827958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、比較的厚板のチタン又はチタン合金の片面溶接方法に関する。
【0002】
【従来の技術】
従来、厚板のチタン溶接は一般的にはフィラーワイヤを使用するTIG溶接法が採用され、ルート面を小さくして初層ビードからフィラーワイヤを用いて多層盛り溶接する方法が主として行われている。この溶接方法で問題となるのは、
▲1▼厚板のため、図3に示す如く溶接継ぎ手部の開先形状が大断面積のV字形状となり、よって多層盛り溶接になるため溶接歪みが大きい。
▲2▼また、溶接パス数が多い、例えば、図3に示すように板厚20mm、開先角度50°、ルート部1.0mmの場合において総パス数19パスとなり溶接時間が非常に長くなり作業能率が極めて悪い。
【0003】
▲3▼図3に示す如く多層盛りビードが18パスにも達すると、チタンは比重が小さいため、溶融金属に侵入したガスが放出されにくく開先底部のビードにおいて発生した小さなブローホールは、パス数が増加するに従って多くなる傾向がある。 よって、比較的厚い板のチタン又はチタン合金の溶接において、パス数の少ない高能率の片面溶接法が望まれている。
【0004】
【発明が解決しようとする課題】
このような従来の溶接における課題とその目的は、▲1▼裏波ビードの垂れ下がりや余盛り不足の解消、▲2▼溶接歪みの低減、▲3▼ブローホール、融合不良などの溶接欠陥の低減ないし解消、▲5▼溶接コストの低減である。
本発明は、上記のような課題を解決することによって、チタン又はチタン合金の厚板片面溶接において、良好な裏波ビードが得られて、又パス数の少なくて溶接歪みが発生しにくい高能率の片面溶接方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、前述した従来技術の実状に鑑みてなしたものであって詳しくは、チタン又はチタン合金の厚板片面溶接方法において、開先形状をY字形開先とし、そのY字形開先のV形部の底部に仮付け溶接を施した後、プラズマアークを用いてシーリング溶接し、次にそのシーリング溶接ビード部にプラズマキーホール溶接を施してY字形開先のルート部を裏波溶接し、更にY字形開先のV形部にフィラーワイヤを用いて多層盛り溶接するチタン又はチタン合金の厚板片面溶接法であり、更にY字形開先のV形部はフィラーワイヤを用いてプラズマ溶接又はTIG溶接を用いて多層盛り溶接し、各溶接は不活性ガスでアフターシールドを施すチタン又はチタン合金の厚板片面溶接方法である。
【0006】
上記溶接方法において、仮付け溶接のビード長さは全溶接長の30〜70%が好ましく、溶接部にアフターシールドボックスを用いての溶接ビード表面の温度は400℃以下になるまで不活性ガスでシールドすること、多層盛りビード断面中央部の高さHが8mm以下であることを条件とし、これらの溶接方法を板厚が20mm以上であるチタン又はチタン合金の厚板片面溶接方法である。
【0007】
【発明の実施の形態】
以下に本発明について図面を用いて詳細に説明する。
本発明は厚板のチタン又はチタン合金の主溶接にプラズマキーホール溶接方法を採用したプラズマ片面溶接方法であり、溶接装置は溶接電源、トーチ、バックビードをシールドするガス収納裏当金、表ビードをシールドするアフターシールドボックス及びトーチを走行させる台車、制御装置などで構成される。
【0008】
図1(a)、(b)、(c)および(d)に本発明の溶接順序にそのビード断面を示す。図1(a)に示す如く被溶接材1、2の接合面を合わせたときにY字形になるように被溶接材の溶接面に開先加工を施す。Y字形開先(以下、Y開先という。)の開先はルート部4及びV字形の傾斜部3で構成し、各種の板厚に対応してルート部4は15〜20mmが好ましく、V形部3の角度は90〜60°が好ましい。
【0009】
まず、最初にTIG溶接あるいはプラズマ溶接を使用してV形部の底部を所望の間隔を設けて仮付け溶接を行い目的の隙間のないY開先とする。この仮付け溶接は間欠的でその長さは全溶接長の30〜70%の範囲に施すことが強度、ビード形成性からも好ましいのである。例えば、仮付け溶接が50%の場合、50mm溶接して50mm開けて次の50mmを溶接する。仮付け溶接部が30%未満では以降の溶接時の熱応力に対して強度不足で破断、他方、70%超えては仮付けとして不要である。
【0010】
次にプラズマ溶接を用いて図1(b)に示す開先ルート上部面全線にシーリングビード5を施す。これは後述する図2のA、A′断面である。このシーリングビード5によってY開先のルート部4の良好な片面溶接ができるように仮付け溶接の有無にかかわらずV形部の高さを均一にする。
次にシーリングビード5を貫通してルート部4を最下部へ全面貫通するプラズマキーホール溶接法にて裏波ビードを形成させてルート部4の片面溶接を完了する。このプラズマキーホール溶接を完了した断面を図1(c)に示し、その概要をビード断面接合部6であり、後述する図2のB、B′断面である。シーリングビードを施した後にプラズマキーホール溶接を行うことによって、キーホール効果による安定した裏波ビードの片面溶接が可能になり、仮付け溶接部の破断防止ができ、良好な溶接結果が得られる。
【0011】
次に、Y開先のV形部であるプラズマキーホール溶接面の上部にフィラーワイヤを用いたプラズマ溶接、又は同様にフィラーワイヤを用いるTIG溶接によって多層盛り溶接を行う。本発明における、仮付け溶接及び図1に示すシーリング溶接、キーホール溶接並びに多層盛り溶接は、各パスのビード表面温度が400℃以下となるまでビードを被うように設計されたガスシールドボックスを使用してビード表面を不活性ガスシールドによって包囲する。不活性ガスはアルゴンガス、又はヘリウムガスである。よって、ビード表面温度が400℃を超えている時は空気に触れないようにしてビード表面の酸化を防止する。裏ビードは予め不活性ガスシールドボックスを設けて溶接部用面の酸化を防止する。
【0012】
図3に不活性ガスシールドを収納するボックス(アフターシールドボックス)の概要を示し、プラズマ溶接トーチ11を中心にして溶接進行方向の矢印20の下流側にビード方向に長いガス収納ボックス21を具備する。その収納ボックス21にはガス導入管22をボックス21の上部に導き、ガス導入管22の先端部分にはガス放出口23が複数個設けてある。ガス導入管22の下部にはメッシュ24、さらにその下にパンチングメタル25がボックスの内部平面を被うように設置されている。被溶接材の裏面にもシールドボックスが設けて裏ビードも表ビードと同様に高温のビードが空気にさらされないようにする。鋼管のガス継ぎ手の場合は、管内部の空気を不活性ガスに置換して行うこともある。
【0013】
ガス導入管22によって導かれたガスは、一旦ボックス内に放出されてメッシュ24およびパンチングメタル25を通過してボックス21内では均一に下方に向けて放出され、均一に溶接ビードを被い、ビード表面および高温になったチタン母材の酸化を防ぐのである。溶接直後のビードを含む溶接部表面を不活性ガスによるシールドの目的は、ビード表面温度が400℃を超える温度で空気に触れた場合、表ビードおよび熱影響部が酸化し、その酸化皮膜を有する状態のまま次の溶接を重ねて多層盛り溶接を進行させると、酸化皮膜が溶接金属に残留して非金属介在物又はブローホール発生の原因になり、溶接欠陥となる。これらの溶接欠陥は疲労亀裂の起点にもなるから発生しないようにする。溶接金属の酸素吸収、酸化をより厳しく防ぐためには145℃以下まで空気との接触を防ぐのが好ましい。
【0014】
さらに、本発明は、図1(d)に示す如く多層盛り溶接の各ビード断面中央部の高さHを8mm以下にするのが好ましい。プラズマ溶接は比重の重いArガスをプラズマガスに使用しているため、チタン又はチタン合金の比重(4.5)は軽くて多層盛りビード断面の中央部の高さHが8mmを超えると溶融金属が深くてプラズマガスのArガスは表面まで浮上できず溶融金属内に残留しブローホールやトンネル状の空洞欠陥が発生する。本発明は、板厚が20mm以上のチタン又はチタン合金において効果が発揮でき、高能率で欠陥のない厚板片面溶接方法が実現できたのである。
【0015】
図2を用いてシーリングビード5を貫通して施すプラズマキーホール溶接について詳細に説明する。図2(a)はプラズマキーホール溶接工程の概要を示す断面図である。図1(b)は図2(a)のC、C′断面図である。図2においてプラズマキーホール溶接は矢印20方向に進行する。プラズマキーホール溶接のプラズマ溶接トーチ11は直流電源19を介して被溶接材1、2に接続されている。被溶接材1、2はシーリングビード5で一体になっており、プラズマアーク12は表面18からシーリングビードおよびルート部4を貫通してキーホール15を空けて被溶接材の下まで達していて良好な裏ビードを形成する。
【0016】
また、プラズマアーク12はシーリングビード5、被溶接材1、2を溶融して溶融池14を形成してプラズマキーホール溶接のビード6を形成する。
次に、プラズマキーホール溶接のビード6の上部であるV形部にフィラーワイヤを用いたプラズマ溶接、又は同様にフィラーワイヤを用いるTIG溶接によって多層盛り溶接を被溶接材1、2の表面まで、かつ所定の余盛りを施して溶接を完了する。
【0017】
【実施例】
次に本発明について実施例を用いて詳細に説明する。表1に各溶接工程のプラズマおよびTIG溶接パラメータ、表2および表3に本発明および比較例を実施した種々の条件及び溶接結果と評価を示す。
被溶接材は、JIS H4600に規定されている1種又は2種のチタン鋼板、および6Al−4Vチタン合金(一般溶接構造用のASTMB265)を幅150mm、長さ600mmに切断、それぞれの開先加工を施して使用した。仮付け溶接から最終溶接ビードまでアフターシールドガスはArガスを使用した。
【0018】
【表1】

Figure 0003827958
【0019】
本発明の実施例は、表2および表3におけるNo.1〜6に示し、被溶接材の板条件および溶接条件共に本発明条件を満足し、溶接結果において欠陥はなく、表面はJIS Z3805に規定されている合格判定の金色又は銀色でチタン、チタン合金として満足できる良好な結果が得られた。V形部の多層盛り溶接のパス数は2乃至6で済み、溶接歪みは殆ど発生しなかった。No.4においてはアフターガスシールド後のビード表面温度がわずかに高いが、被溶接材が純チタンでなく欠陥は発生しなかった。
【0020】
一方、比較例はNo.7〜15に示し、以下に示す如く板条件および溶接条件のいずれかが本発明の構成要件を満足していないことから溶接結果に問題点があり、総合評価は不良になった。
No.7は、シーリング溶接においてフィラーワイヤを使用していないのでシーリングビードの高さが不均一でキーホール溶接が不良となって多層盛り溶接までできなかった。No.8は、No.7と同一条件で被溶接材が6Al−4Vチタン合金の例であり、同様な結果であった。
No.9は、仮付け溶接にフィラーワイヤを使用しないので、シーリング溶接において、仮付けが破断した。
【0021】
No.10は、シーリング溶接がTIG溶接であってフィラーワイヤを使用していないので、キーホール溶接においてシーリングビードが破断した。
No.11は、開先形状がI字形でシーリング溶接がTIG溶接であってフィラーワイヤを使用していないので、キーホール溶接においてシーリングビードが破断した。No.12は、アフターシールドガスを使用しない例であり、ビード表面が酸化し、その上への多層盛り溶接によって溶接金属に非金属介在物が存在し、ブローホールが発生した。
【0022】
No.13は、V形部において多層盛り溶接においてフィラーワイヤ供給量を増加して2パスで終了した。そのためビード断面の高さHが10〜12mmとなってプラズマガスが浮上しきれずにガス溝が発生した。
No.14は、開先形状がV字形であるので、多層盛り溶接が18パスとなり、歪み変形量が8mmであった。
No.15は、I開先であり、シーリングビードの高さが不均一になってプラズマキーホール溶接において均一な裏ビードが得られなかった。
【0023】
【表2】
Figure 0003827958
【0024】
【表3】
Figure 0003827958
【0025】
【発明の効果】
チタン又はチタン合金の厚板片面溶接において、プラズマキーホール溶接は、仮付け溶接後にシーリングビードで開先底面が平坦化後に施すので、安定した裏波を有する溶接ビード断面、溶接ナゲット形状となり溶接欠陥が極めて少ないプラズマ溶接ビードが得られ、次いで安定したプラズマキーホール溶接金属の表面部にプラズマアーク溶接を用いて多層盛り溶接するため安定した均一な溶け込み深さが得られ、極めて溶接欠陥が少ない高能率溶接が実現できる。
【図面の簡単な説明】
【図1】本発明の開先形状および溶接手順を示す断面概要図、(a)は開先形状、(b)はシーリング溶接後、(c)はキーホール溶接後、(d)は多層盛り溶接後を示す。
【図2】本発明のプラズマキーホール溶接を示す(a)は断面概要図、(b)は平面概要図である。
【図3】本発明のアフターガスシールドの概要を示す概要図である。
【図4】従来溶接法を示す断面概要図、(a)は開先形状、(b)はシーリング溶接後の断面概要図である。
【符号の説明】
1、2 被溶接材
3 開先V形部
4 開先ルート部
5 シーリングビード
6 キーホール溶接部
7 多層盛り溶接ビード
11 プラズマ溶接トーチ
12 プラズマアーク
13 プラズマジェット
14 溶融金属
15 キーホール
16 フィラーワイヤトーチ
17 フィラーワイヤ
18 シーリングビード表面
19 プラズマ溶接電源
20 溶接進行方向
21 シールドガスボックス
22 ガス供給管
23 ガス放出口
24 メッシュ
25 パンチングメタル
26 バックシールドボックス
H ビード高さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for one-side welding of a relatively thick plate of titanium or a titanium alloy.
[0002]
[Prior art]
Conventionally, a TIG welding method using a filler wire is generally employed for titanium welding of a thick plate, and a method of mainly performing multi-layer welding using a filler wire from the first layer bead with a small root surface is mainly performed. . The problem with this welding method is that
{Circle around (1)} Because of the thick plate, the groove shape of the weld joint portion becomes a V-shape with a large cross-sectional area as shown in FIG.
(2) In addition, when the number of welding passes is large, for example, as shown in FIG. 3, when the plate thickness is 20 mm, the groove angle is 50 °, and the root portion is 1.0 mm, the total number of passes is 19 and the welding time becomes very long. Work efficiency is very bad.
[0003]
(3) When the multi-layered bead reaches 18 passes as shown in FIG. 3, since the specific gravity of titanium is small, the gas that has entered the molten metal is difficult to be released and There is a tendency to increase as the number increases. Therefore, a high-efficiency single-side welding method with a small number of passes is desired in welding of a relatively thick plate of titanium or titanium alloy.
[0004]
[Problems to be solved by the invention]
The problems and objectives of conventional welding are as follows: (1) elimination of backside bead sag and lack of surplus, (2) reduction of welding distortion, (3) reduction of welding defects such as blowholes and poor fusion. Or to eliminate (5) the welding cost.
In the present invention, by solving the above-described problems, high-efficiency back-beads can be obtained in single-sided welding of titanium or a titanium alloy thick plate, and the number of passes is small, so that it is difficult to generate welding distortion. It is in providing the one-side welding method of this.
[0005]
[Means for Solving the Problems]
The present invention has been made in view of the state of the prior art described above, and more specifically, in a thick plate single-side welding method of titanium or titanium alloy, the groove shape is a Y-shaped groove, and the Y-shaped groove After performing tack welding on the bottom of the V-shaped part, sealing welding is performed using a plasma arc, then plasma keyhole welding is performed on the sealing weld bead and the root part of the Y-shaped groove is welded backside. Furthermore, it is a titanium or titanium alloy thick plate single-sided welding method in which multi-layer welding is performed on the V-shaped portion of the Y-shaped groove using a filler wire, and the V-shaped portion of the Y-shaped groove is further plasma-welded using a filler wire. Alternatively, multilayer welding is performed using TIG welding, and each welding is a thick plate single-sided welding method of titanium or a titanium alloy that is subjected to after-shielding with an inert gas.
[0006]
In the above welding method, the bead length of tack welding is preferably 30 to 70% of the total weld length, and the temperature of the surface of the weld bead using an after-shield box at the welded portion is inert gas until it is 400 ° C. or less. These welding methods are thick plate single-sided welding methods of titanium or a titanium alloy having a plate thickness of 20 mm or more on the condition that shielding is performed and the height H of the central portion of the multi-layer bead cross section is 8 mm or less.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below with reference to the drawings.
The present invention is a plasma single-sided welding method that employs a plasma keyhole welding method for main welding of thick titanium or titanium alloy. The welding apparatus includes a welding power source, a torch, a gas storage backing metal that shields the back bead, and a front bead. It consists of an after-shield box that shields the vehicle, a carriage that drives the torch, and a control device.
[0008]
1 (a), (b), (c) and (d) show bead cross sections in the welding sequence of the present invention. As shown in FIG. 1 (a), a groove is formed on the welded surface of the welded material so that it becomes a Y shape when the joined surfaces of the welded materials 1 and 2 are joined. The groove of the Y-shaped groove (hereinafter referred to as Y groove) is composed of the root part 4 and the V-shaped inclined part 3, and the root part 4 is preferably 15 to 20 mm corresponding to various plate thicknesses. The angle of the shape part 3 is preferably 90 to 60 °.
[0009]
First, TIG welding or plasma welding is used, and the bottom of the V-shaped portion is tack-welded at a desired interval to obtain a Y groove without a target gap. This temporary welding is intermittent and the length is preferably 30 to 70% of the total welding length in view of strength and bead formation. For example, when the tack welding is 50%, 50 mm is welded, 50 mm is opened, and the next 50 mm is welded. If the tack welded portion is less than 30%, it breaks due to insufficient strength with respect to the thermal stress during the subsequent welding, whereas if it exceeds 70%, it is not necessary for tacking.
[0010]
Next, a sealing bead 5 is applied to the entire upper surface of the groove root shown in FIG. This is the A and A 'cross section of FIG. The height of the V-shaped portion is made uniform regardless of the presence or absence of tack welding so that the sealing bead 5 can perform good single-sided welding of the root portion 4 of the Y groove.
Next, a backside bead is formed by a plasma keyhole welding method that penetrates the sealing bead 5 and penetrates the entire route portion 4 to the lowermost portion, thereby completing one-side welding of the route portion 4. FIG. 1C shows a cross section after the plasma keyhole welding is completed, and the outline thereof is a bead cross-section joint portion 6, which is a B and B ′ cross section of FIG. 2 to be described later. By performing plasma keyhole welding after applying the sealing bead, stable single-sided welding of the back bead due to the keyhole effect is possible, the fracture of the temporary welded portion can be prevented, and good welding results can be obtained.
[0011]
Next, multi-layer welding is performed by plasma welding using a filler wire on the upper part of the plasma keyhole welding surface, which is the V-shaped portion of the Y groove, or by TIG welding using a filler wire in the same manner. In the present invention, tack welding and sealing welding, keyhole welding, and multi-layer welding shown in FIG. 1 are gas shield boxes designed to cover the beads until the bead surface temperature of each pass is 400 ° C. or lower. In use, the bead surface is surrounded by an inert gas shield. The inert gas is argon gas or helium gas. Therefore, when the bead surface temperature exceeds 400 ° C., oxidation of the bead surface is prevented by avoiding contact with air. The back bead is previously provided with an inert gas shield box to prevent oxidation of the weld surface.
[0012]
FIG. 3 shows an outline of a box (after-shield box) for storing an inert gas shield, and a gas storage box 21 that is long in the bead direction is provided downstream of the arrow 20 in the welding progress direction centering on the plasma welding torch 11. . In the storage box 21, a gas introduction pipe 22 is led to the upper part of the box 21, and a plurality of gas discharge ports 23 are provided at the tip of the gas introduction pipe 22. A mesh 24 is provided below the gas introduction pipe 22, and a punching metal 25 is provided below the mesh 24 so as to cover the inner plane of the box. A shield box is also provided on the back side of the material to be welded so that the back bead is not exposed to air as well as the front bead. In the case of a steel pipe gas joint, the air inside the pipe may be replaced with an inert gas.
[0013]
The gas introduced by the gas introduction pipe 22 is once released into the box, passes through the mesh 24 and the punching metal 25, and is uniformly released downward in the box 21, and uniformly covers the weld bead. It prevents oxidation of the surface and high temperature titanium matrix. The purpose of shielding the welded part surface including the bead immediately after welding with an inert gas is that when the bead surface temperature is exposed to air at a temperature exceeding 400 ° C., the surface bead and the heat-affected zone are oxidized and have an oxide film. If the next welding is repeated in the state and the multi-layer welding is advanced, the oxide film remains on the weld metal, causing non-metallic inclusions or blowholes, resulting in welding defects. These weld defects should be prevented from occurring because they become the starting point of fatigue cracks. In order to more strictly prevent oxygen absorption and oxidation of the weld metal, it is preferable to prevent contact with air up to 145 ° C. or less.
[0014]
Furthermore, in the present invention, as shown in FIG. 1 (d), it is preferable to set the height H of each bead cross-sectional center of the multi-layer welding to 8 mm or less. Since plasma welding uses Ar gas, which has a high specific gravity, as the plasma gas, the specific gravity (4.5) of titanium or titanium alloy is light, and if the height H of the central part of the multi-layer bead cross section exceeds 8 mm, the molten metal However, the Ar gas, which is a plasma gas, cannot float up to the surface and remains in the molten metal, resulting in blowholes or tunnel-like cavity defects. The present invention can achieve an effect in titanium or a titanium alloy having a plate thickness of 20 mm or more, and can realize a high-efficiency, thick plate single-side welding method.
[0015]
The plasma keyhole welding performed through the sealing bead 5 will be described in detail with reference to FIG. FIG. 2A is a sectional view showing an outline of the plasma keyhole welding process. FIG. 1B is a cross-sectional view taken along C and C ′ in FIG. In FIG. 2, plasma keyhole welding proceeds in the direction of arrow 20. A plasma welding torch 11 of plasma keyhole welding is connected to the workpieces 1 and 2 via a DC power source 19. The welded materials 1 and 2 are integrated with the sealing bead 5, and the plasma arc 12 penetrates the sealing bead and the root portion 4 from the surface 18 to open the keyhole 15 to reach the bottom of the welded material. A clear bead is formed.
[0016]
In addition, the plasma arc 12 melts the sealing bead 5 and the workpieces 1 and 2 to form a molten pool 14 to form a plasma keyhole weld bead 6.
Next, multi-layer welding is performed to the surfaces of the workpieces 1 and 2 by plasma welding using a filler wire on the V-shaped part, which is the upper part of the bead 6 of plasma keyhole welding, or by TIG welding using the filler wire similarly. And a predetermined surplus is given and welding is completed.
[0017]
【Example】
Next, the present invention will be described in detail with reference to examples. Table 1 shows plasma and TIG welding parameters for each welding process, and Tables 2 and 3 show various conditions, welding results, and evaluations for carrying out the present invention and comparative examples.
The materials to be welded are one or two types of titanium steel sheets specified in JIS H4600, and 6Al-4V titanium alloy (ASTMB265 for general welded structure) cut to a width of 150 mm and a length of 600 mm. Used. Ar gas was used as the aftershield gas from the tack welding to the final welding bead.
[0018]
[Table 1]
Figure 0003827958
[0019]
Examples of the present invention are shown in No. 2 in Table 2 and Table 3. 1-6, satisfying the conditions of the present invention for both the plate condition and the welding condition of the material to be welded, there is no defect in the welding result, and the surface is gold or silver with a pass judgment defined in JIS Z3805, titanium, titanium alloy As a result, satisfactory results were obtained. The number of passes for multi-pass welding of the V-shaped portion is 2 to 6, and welding distortion hardly occurred. No. In No. 4, the bead surface temperature after the after-gas shield was slightly high, but the welded material was not pure titanium and no defects occurred.
[0020]
On the other hand, the comparative example is No. As shown in 7 to 15, since either of the plate conditions and the welding conditions did not satisfy the constituent requirements of the present invention as shown below, there was a problem in the welding results, and the overall evaluation was poor.
No. In No. 7, since no filler wire was used in the sealing welding, the height of the sealing bead was not uniform, and the keyhole welding was poor, so that even the multi-layer welding could not be performed. No. 8 is No.8. 7 was an example in which the material to be welded was a 6Al-4V titanium alloy under the same conditions as in Example 7.
No. No. 9 does not use a filler wire for tack welding, so the tack was broken in sealing welding.
[0021]
No. In No. 10, since the sealing welding was TIG welding and no filler wire was used, the sealing bead broke in keyhole welding.
No. In No. 11, since the groove shape was I-shaped and the sealing welding was TIG welding and no filler wire was used, the sealing bead broke in keyhole welding. No. No. 12 was an example in which no after-shield gas was used. The bead surface was oxidized, and non-metallic inclusions were present in the weld metal due to multi-layer welding on the bead, and blow holes were generated.
[0022]
No. No. 13 was completed in two passes by increasing the filler wire supply amount in multi-layer welding at the V-shaped portion. Therefore, the height H of the bead cross section was 10 to 12 mm, and the plasma gas could not be lifted up and a gas groove was generated.
No. In No. 14, since the groove shape was V-shaped, multipass welding was 18 passes, and the amount of strain deformation was 8 mm.
No. No. 15 is an I groove, and the height of the sealing bead was not uniform, and a uniform back bead could not be obtained in plasma keyhole welding.
[0023]
[Table 2]
Figure 0003827958
[0024]
[Table 3]
Figure 0003827958
[0025]
【The invention's effect】
In titanium or titanium alloy thick plate single-sided welding, plasma keyhole welding is performed after sealing welding, after the groove bottom surface is flattened with a sealing bead, resulting in a weld bead cross-section with a stable back surface and a weld nugget shape. Plasma weld bead is obtained, and then the plasma keyhole weld metal surface is welded in multiple layers using plasma arc welding to obtain a stable and uniform penetration depth, resulting in extremely high weld defects Efficient welding can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a groove shape and a welding procedure of the present invention, (a) is a groove shape, (b) is after sealing welding, (c) is after keyhole welding, and (d) is a multi-layer pattern. Shown after welding.
2A is a schematic cross-sectional view and FIG. 2B is a schematic plan view showing plasma keyhole welding according to the present invention.
FIG. 3 is a schematic diagram showing an outline of the aftergas shield of the present invention.
FIG. 4 is a schematic cross-sectional view showing a conventional welding method, (a) is a groove shape, and (b) is a schematic cross-sectional view after sealing welding.
[Explanation of symbols]
1, 2 Workpiece 3 Groove V-shaped part 4 Groove root part 5 Sealing bead 6 Keyhole welded part 7 Multilayer weld bead 11 Plasma welding torch 12 Plasma arc 13 Plasma jet 14 Molten metal 15 Keyhole 16 Filler wire torch 17 Filler wire 18 Sealing bead surface 19 Plasma welding power source 20 Welding direction 21 Shield gas box 22 Gas supply pipe 23 Gas outlet 24 Mesh 25 Punching metal 26 Back shield box H Bead height

Claims (6)

チタン又はチタン合金の厚板片面溶接方法において、開先形状をY字形とし、該Y字形開先のV形部に仮付け溶接を行った後プラズマアークを用いてシーリング溶接し、次に該シーリング溶接ビード部をプラズマキーホール溶接によってY字形開先のルート部を裏波溶接し、更にY字形開先のV形部にフィラーワイヤを用いて多層盛り溶接することおよび前記各溶接は不活性ガスによるアフターシールドを施すことを特徴とするチタン又はチタン合金の厚板片面溶接方法。In a thick plate single-sided welding method of titanium or a titanium alloy, the groove shape is Y-shaped, and the V-shaped portion of the Y-shaped groove is tack welded and then sealed using a plasma arc, and then the sealing The weld bead portion is welded by plasma keyhole welding to the root portion of the Y-shaped groove, and further, multi-layer welding is performed on the V-shaped portion of the Y-shaped groove using a filler wire. A thick plate single-sided welding method of titanium or a titanium alloy, characterized in that after-shielding is performed. 仮付け溶接は、所望の間隔を開けて全溶接長の30〜70%を施すことを特徴とする請求項1記載のチタン又はチタン合金の厚板片面溶接方法。The thick plate single-sided welding method for titanium or titanium alloy according to claim 1, wherein the tack welding is performed with a desired interval of 30 to 70% of the total welding length. Y字形開先のV形部にフィラーワイヤを用いるプラズマ溶接にて多層盛り溶接することを特徴とする請求項1または2記載のチタン又はチタン合金の厚板片面溶接方法。The thick plate single-sided welding method for titanium or titanium alloy according to claim 1 or 2, wherein multilayer welding is performed by plasma welding using a filler wire on the V-shaped portion of the Y-shaped groove. Y字形開先のV形部にフィラーワイヤを用いてTIG溶接にて多層盛り溶接することを特徴とする請求項1または2記載のチタン又はチタン合金の厚板片面溶接方法。The thick plate single-sided welding method for titanium or titanium alloy according to claim 1 or 2, wherein multilayer welding is performed by TIG welding using a filler wire on the V-shaped portion of the Y-shaped groove. 溶接部にアフターシールドボックスを用いて溶接後の溶接ビード表面の温度が400℃以下になるまで不活性ガスでシールドすることを特徴とする請求項1ないし4のいずれかに記載のチタン又はチタン合金の厚板片面溶接方法。The titanium or titanium alloy according to any one of claims 1 to 4, wherein an after-shield box is used for the welded portion and shielding is performed with an inert gas until the temperature of the surface of the weld bead after welding becomes 400 ° C or lower. Thick plate single-sided welding method. 多層盛り溶接の各ビード断面中央部の高さHが8mm以下であることを特徴とする請求項1ないし5のいずれかに記載のチタン又はチタン合金の厚板片面溶接方法。The method for thick plate single-sided welding of titanium or titanium alloy according to any one of claims 1 to 5, wherein the height H of each bead cross-sectional center part of multi-layer welding is 8 mm or less.
JP2001031157A 2001-02-07 2001-02-07 Thick plate single-sided welding method of titanium or titanium alloy Expired - Lifetime JP3827958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031157A JP3827958B2 (en) 2001-02-07 2001-02-07 Thick plate single-sided welding method of titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031157A JP3827958B2 (en) 2001-02-07 2001-02-07 Thick plate single-sided welding method of titanium or titanium alloy

Publications (2)

Publication Number Publication Date
JP2002224836A JP2002224836A (en) 2002-08-13
JP3827958B2 true JP3827958B2 (en) 2006-09-27

Family

ID=18895283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031157A Expired - Lifetime JP3827958B2 (en) 2001-02-07 2001-02-07 Thick plate single-sided welding method of titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JP3827958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056492A (en) * 2011-07-26 2013-04-24 阿尔斯通技术有限公司 Method for welding thin-walled pipes using peak temperature welding

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942616B2 (en) * 2007-11-08 2012-05-30 三菱電機株式会社 Hermetic compressor and method for producing tubular shell for hermetic compressor
CN102873463A (en) * 2012-10-31 2013-01-16 鞍山东方钢构桥梁有限公司 Low-temperature welding technology of low alloy bridge steel
CN104874929B (en) * 2015-06-12 2017-01-11 南京宝色股份公司 Welding technique of industrial pure-Ti sheets with thickness of 11-30 mm
CN104942407B (en) * 2015-06-16 2016-11-30 哈尔滨工业大学 A kind of Tig Welding method of network structure titanium matrix composite
CN106825962A (en) * 2017-02-07 2017-06-13 宜兴华威封头有限公司 A kind of plasma arc welding (PAW) combined method of titanium alloy cut deal
JP7309369B2 (en) * 2019-01-21 2023-07-18 日鉄溶接工業株式会社 Welding equipment, welding method, and plasma/discharge welding converter
CN112959007B (en) * 2021-02-05 2022-11-08 湖南湘投金天钛金属股份有限公司 Preparation method of titanium steel composite plate profile
CN113458549B (en) * 2021-07-01 2023-01-24 陕西铁路工程职业技术学院 Preparation method of composite pipe based on spraying technology
KR102394755B1 (en) * 2022-01-25 2022-05-06 (주)창금코퍼레이션 Automatic welding machine of back bead optimization by round weaving injection of argon gas
JP7267475B1 (en) 2022-02-17 2023-05-01 株式会社新来島どっく Pipe joint welding method using plasma welding prior to CO2 welding and joint pipe welded by this method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056492A (en) * 2011-07-26 2013-04-24 阿尔斯通技术有限公司 Method for welding thin-walled pipes using peak temperature welding
CN103056492B (en) * 2011-07-26 2016-07-06 阿尔斯通技术有限公司 For the method welding light-wall pipe by means of peak temperature tempering
US9737948B2 (en) 2011-07-26 2017-08-22 General Electric Technology Gmbh Method for welding thin-walled tubes by means of peak temperature temper welding

Also Published As

Publication number Publication date
JP2002224836A (en) 2002-08-13

Similar Documents

Publication Publication Date Title
EP2010353B1 (en) Metal cored electrode for open root pass welding
JP3827958B2 (en) Thick plate single-sided welding method of titanium or titanium alloy
JP2004306084A (en) Composite welding method of laser welding and arc welding
US20090224530A1 (en) Welded butt joints on tubes having dissimilar end preparations
WO2023130732A1 (en) Welding material piece, conveying system, and welding device and method
US20100108655A1 (en) Method and device for permanently connecting components of heat- meltable, metallic materials
US20230256532A1 (en) Joining of lead and lead alloys
JP4978121B2 (en) Butt joining method of metal plates
JP2013056349A (en) Joining method of aluminum plate material
CN113547190A (en) Gas protection device and process method for welding TC4 titanium alloy plate
JP2001038472A (en) Welding method of stainless steel clad plate
JP2008155226A (en) Laser lap weld joint of steel plate, and method for laser lap welding
JPH0252586B2 (en)
JPH0623553A (en) Manufacture of welded steel tube
JP2704452B2 (en) Butt joining method of coated composite material, method of manufacturing long composite pipe by the joining method, and pipe for transporting metal scouring substance
JP3944561B2 (en) Thick plate joining method
JPH08276273A (en) Butt welding method for clad steel
JP3180257B2 (en) Inner surface seam welding method for clad steel pipe
JPS6393410A (en) High efficiency slab assembly method
JP2003001454A (en) Lap fillet welding method for metallic plates to each other
KR102269556B1 (en) Butt welding method for minimizing welding defect of high Mn-Annular plate
JP2002103035A (en) Seam welding method of uo steel pipe
JPH06142934A (en) Arc welding method for galvanized steel sheets
RU2794085C1 (en) Method for automatic fusion welding of heterogeneous nickel alloys
JP3741402B2 (en) Two-electrode electrogas welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3827958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term