JP3827397B2 - 実体顕微鏡 - Google Patents
実体顕微鏡 Download PDFInfo
- Publication number
- JP3827397B2 JP3827397B2 JP06829397A JP6829397A JP3827397B2 JP 3827397 B2 JP3827397 B2 JP 3827397B2 JP 06829397 A JP06829397 A JP 06829397A JP 6829397 A JP6829397 A JP 6829397A JP 3827397 B2 JP3827397 B2 JP 3827397B2
- Authority
- JP
- Japan
- Prior art keywords
- stereomicroscope
- pair
- roof prism
- optical axis
- roof
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 claims description 100
- 238000010586 diagram Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 101100498160 Mus musculus Dach1 gene Proteins 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011165 3D composite Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Microscoopes, Condenser (AREA)
Description
【発明の属する技術分野】
本発明は実体顕微鏡に関し、特に左右一対の対物レンズが一定の内向角をもって配置されているグリノー型の実体顕微鏡に関する。
【0002】
【従来の技術】
実体顕微鏡、特にグリノー型の実体顕微鏡は、物体を立体的に拡大観察しながら作業したり、物体の奥深い部分を観察したりするために用いられる。又、この種の実体顕微鏡は、他の装置に取り付けられて用いられることも多い。特に、半導体や精密機器の製造工程、バイオテクノロジー分野等で用いられる場合には、精密で高度な作業が必要とされるため、小型でしかも長時間の観察を行っても疲れにくい実体顕微鏡が要求されている。
【0003】
従来の実体顕微鏡の鏡筒部は、例えば実開平1−164410号公報に開示されているような像正立のための光学系を備えているものが多い。このような光学系の構成を図5に示す。尚、図5中、(a),(b),(c)は夫々光学系の側面図,平面図,正面図である。この像正立光学系の特徴は、ミラー41,42,43,44がポロ2型プリズムの反射面と同位置に配置されているものを対物レンズ45の光軸上に配置し、ミラー42,43,44の角度を変えることにより鏡筒部の角度が可変になっていることである。このような光学系は、廉価且つ構成,設計が容易なため、広く実体顕微鏡の鏡筒部に採用されている。しかし、一方で、図5(b),(c)に示すように、ミラー42,43が対物レンズ45と接眼レンズ(不図示)とを結ぶ直線上に配置されていないため、鏡筒部の小型化ができないという欠点がある。
【0004】
又、ダハプリズムも像正立のための光学系のひとつである。特に、稜線ダハプリズムと呼ばれるタイプのものを実体顕微鏡の鏡筒部に用いる場合には、ポロプリズムの欠点である対物レンズと接眼レンズとを結ぶ直線上から外れた位置に配置されるようなこともなく、鏡筒部をコンパクトに構成することができる。
【0005】
図6(a)は稜線ダハプリズムをグリノー型の実体顕微鏡の鏡筒部に用いた場合を想定したときの物体像の倒れの状態を説明するための図、同図(b)は前記鏡筒部内に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、同図(c)は前記鏡筒部に配置される稜線ダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。図6(b)に示すように、このグリノー型の実体顕微鏡の鏡筒部には、対物レンズ51,稜線ダハプリズム52からなる光学系が一対内向角θをもって対称に配置されている。そして、夫々内向角θをもって配置された一対の対物レンズ51を介した物体像は、夫々一対の稜線ダハプリズム52に入射され、ここで図6(c)に示すようにα°(図6に示された実体顕微鏡では45°)偏向されて正立した像53が形成される。又、同図(a)に示すように、物体面上奥向きに刻まれた矢印54は、像53の面上に矢印55として投影される。
このように、稜線ダハプリズムをグリノー型の実体顕微鏡の鏡筒部に用いた場合には、用いる部品点数も少なく稜線ダハプリズムの配置位置が対物レンズの光軸上から外れることはないため、非常にコンパクト且つ単純な構成となる。
【0006】
又、図7(a)は別の稜線ダハプリズムをグリノー型実体顕微鏡の鏡筒部に用いた場合を想定したときの鏡筒内に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、同図(b)は前記鏡筒部内に配置される稜線ダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。このグリノー型実体顕微鏡の構成は、偏向角αが90°である稜線ダハプリズム56が用いられている点以外は、図6に示されたものと同様である。
【0007】
しかし、このように稜線ダハプリズムはグリノー型の実体顕微鏡には好適ではあるが、実際に稜線ダハプリズムが用いられているグリノー型の実体顕微鏡はない。これは、グリノー型の実体顕微鏡において鏡筒部を傾斜させた場合に必然的に生じる左右の物体像の倒れを取り去れないことによる。元来実体顕微鏡で観察される左右の像は各々回転した状態で結像されるため、左右像の倒れがあまり大きいと観察者の頭の中で左右の像を立体的に合成できず、例え合成できたとしても疲労を助長する原因となる。
【0008】
これを図6及び図7に示した図を用いて説明する。左右の像53の面上に投影された矢印55がなす角β(即ち像の倒れ)は、ダハプリズム56の偏向角αが90°の場合には図7(a)に示すように内向角θと同じ大きさとなり、偏向角が90°よりも小さい場合にはβはsinαで変化する。従って、ダハプリズムの偏向角が大きくなる程、自然に発生する物体像の倒れは大きくなる。尚、左右の像の倒れは3°程度以内に抑えないと人間は頭の中で左右像を合成することができなくなる。内向角θは通常5〜6°に設定されるため、前記偏向角αが30°以上になった場合には、物体像を立体的な合成像として観察するためには何らかの対策が必要となる。このように、グリノー型の実体顕微鏡では、物体像の倒れを補正するための方法が必須となる。
【0009】
ダハプリズムと共に用いることが可能で物体像の倒れを補正できるものとしては、実開平1−164410号公報に開示されているような、2枚のミラーを用いて像の倒れがなくなるような角度にミラーを回転させる方法が適している。しかし、この方法は、像の倒れを補正するためのミラーの回転角を複雑なベクトル計算によって求めなければならないため、設計が難しい上、ミラーを回転させた状態で保持する保持具の設計,製作も困難になる。
【0010】
【発明が解決しようとする課題】
以上のように、物体像の倒れを補正する方法として、従来のグリノー型の実体顕微鏡の鏡筒部に備えられているポロプリズムを用いると、鏡筒部の小型化が困難になる。一方で、ダハプリズムを用いる方法は、前述のような設計,製作が難しく、採用しにくいという問題が残る。
【0011】
そこで、本発明は上記のような従来技術の有する問題点に鑑み、鏡筒部にダハプリズムを用いても、物体像の倒れがなく、廉価で設計も容易な小型のグリノー型実体顕微鏡を提供することを目的とする。又、長時間観察しても観察者が疲労を感じない実体顕微鏡を提供することも、本発明の目的である。
【0012】
上記目的を達成するため、本発明による実体顕微鏡は、鏡筒部に左右一対のダハプリズムと夫々内向角をもって配置された左右一対の対物レンズとが備えられたグリノー型の実体顕微鏡において、前記一対のダハプリズムの出射光軸が夫々前記各対物レンズの光軸に対して内側に向くように構成され、前記実体顕微鏡を正面側から見たときに前記各ダハプリズムの出射面が、頂点と底辺の中点とを結ぶ線に対して対称な屋根型形状となる位置を保ち、前記実体顕微鏡を正面側から見たときの、前記各対物レンズの内向角をθ、前記各ダハプリズムの前記出射面における頂点と底辺の中点とを結ぶ線の前記各対物レンズの光軸に対する傾斜角をγとしたとき、γをほぼθ/2となるようにしたことを特徴とする。
【0013】
また、本発明による実体顕微鏡は、鏡筒部に左右一対のダハプリズムと夫々内向角をもって配置された左右一対の対物レンズとが備えられたグリノー型の実体顕微鏡において、前記一対のダハプリズムの出射光軸が夫々前記各対物レンズの光軸に対して内側に向くように構成され、前記実体顕微鏡を正面側から見たときに前記各ダハプリズムの出射面が、頂点と底辺の中点とを結ぶ線に対して対称な屋根型形状となる位置を保ち、前記実体顕微鏡を正面側から見たときの、前記各対物レンズの内向角をθ、前記各ダハプリズムの前記出射面における頂点と底辺の中点とを結ぶ線の前記各対物レンズの光軸に対する傾斜角をγとしたとき、γが(θ/4)<γ<(3・θ/4)を満足する範囲にあることを特徴とする。
また、本発明の実体顕微鏡においては、前記ダハプリズムを対物レンズの光軸を軸として回転し得るように構成することにより、眼幅調整を可能にするのが好ましい。
また、本発明の実体顕微鏡においては、前記ダハプリズムの手前側に平行四辺形プリズムが一対配置されているのが好ましい。
また、本発明の実体顕微鏡においては、前記ダハプリズムからの出射光軸を夫々中心として回転する一対の第1反射ミラー及び該第1反射ミラーと夫々一体的に保持されている一対の第2反射ミラーとが配置されているのが好ましい。
【0014】
【発明の実施の形態】
本発明の実体顕微鏡の基本的な構成を図1に基づき説明する。図1(a)は本発明の実体顕微鏡における物体像の倒れの状態を説明するための図、同図(b)は本発明の実体顕微鏡の鏡筒部に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、同図(c)は前記鏡筒部に配置されるダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。
【0015】
図1(b)に示すように、本発明の実体顕微鏡の鏡筒部は、対物レンズ1と対物レンズ1の光軸上に配置されたダハプリズム2とからなる光学系が一対内向角θをもって対称に配置されて構成されている。又、観察光路は左右独立に形成されている。
この実体顕微鏡では、内向角θで傾けられて配置された夫々左右の対物レンズ1から出射された物体像は、図1(c)に示すような入射光をα°偏向して出射するダハプリズム2に入射される。一方、一対のダハプリズム2は図1(b)に示すように夫々内向するように対物光軸に対して傾斜角γをもって配置されている。そして、ダハプリズム2からの出射光は、ダハプリズムの特性により、入射光の傾きとは反対方向にダハプリズムの中心軸に対して傾斜角γ′(≒γ)をもつて出射され、正立した左右の像3が形成される。ここで、左右の像3を形成する夫々の光軸6は互いに略平行となっている。
【0016】
更に、物体面上に刻まれた奥向き方向の矢印4は、図1(a)に示すように、夫々像3の面上に矢印5として投影される。このとき、これら一対の矢印5は互いに平行になっている。これは、一対のダハプリズム2が夫々前述のように対物光軸に対し傾斜角γをもって配置されていることによる。このように、本発明の実体顕微鏡によれば、左右の像の倒れが補正されて結像されるため、左右像が乱れることはない。
【0017】
以上のように、本発明の実体顕微鏡では、鏡筒部内に配置される各光学部材は夫々左右の光路中に一列に配置されているため、鏡筒部が必要以上に大型化することはなくコンパクトな構成を達成できる。又、左右の観察像の倒れを良好に補正し得ることから、観察者に余計な疲労感を与えることもない。更に、かかる左右像の倒れの補正は、ダハプリズムの対物光軸に対する傾斜角度を適切に設定することのみによって行われ、他の余分な光学部材を必要としないことから、用いる部品点数が増加することもなく、廉価なものとなる。
【0018】
基本的には、前記傾斜角γを各対物レンズの内向角θの1/2にすることが最も好ましい。尚、種々の条件を考慮してγの値を修正する場合でも(θ/4)<γ<(3・θ/4)を満足する範囲内であれば、本発明の効果を得ることができる。
【0019】
以下、図示した実施例に基づき本発明を詳細に説明する。
【0020】
第1実施例
図2(a)は本実施例にかかる実体顕微鏡の鏡筒部に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、同図(b)は前記鏡筒部に配置されるダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。
【0021】
本実施例の実体顕微鏡の鏡筒部は、図2(a)に示すように、対物レンズ11と対物レンズ11の光軸上に配置されたダハプリズム12とからなる光学系が一対内向角6°をもって対称に配置されて構成されている。又、観察光路は左右独立に形成されている。
この実体顕微鏡では、内向角6°をもって互いに配置された一対の対物レンズ11から出射された物体像は、図2(b)に示すような入射光を90°偏向して出射するダハプリズム12に入射される。一方、一対のダハプリズム12は互いに内向するように対物光軸に対して傾斜角γをもって配置されている。尚、本実施例ではγ≒3゜である。一対のダハプリズム12からの出射光は、それへの入射光の傾きとは反対方向に傾斜角γと実質上同一の傾斜角γ′をもって出射され、正立した左右の像13が形成される。このとき、左右の像13を形成する光軸15は互いに略平行となっている。
【0022】
更に、物体面上に刻まれた奥向き方向の矢印は、夫々左右の像13の面上に矢印14として投影される。これら一対の矢印14は互いに平行になっている。これは、一対のダハプリズム12が夫々前述のように対物光軸に対し傾斜角γをもって配置されていることによる。
このように、本発明の実体顕微鏡によれば、左右の像の倒れが補正されて結像されるため、左右像が乱れることはない。
【0023】
尚、本実施例の実体顕微鏡では、一対のダハプリズム12を対物光軸を軸として回転し得るように構成することにより、眼幅調整を可能にしている。この眼幅調整のためのダハプリズムの回転に伴って像の倒れ量は変化するが、標準位置での倒れを除去しているため、倒れが変化しても実際観察上は問題にならないレベルに収まる。又、ダハプリズム12は、対物光軸に対して傾けて配置されているため、傾斜させないで用いる場合と比べてやや大きめのものを必要とするが、鏡筒部の小型化を阻むほどのものではない。
【0024】
以上のように、本実施例の実体顕微鏡によれば、ダハプリズムを用いたにもかかわらず、左右像の倒れは生じない。よって、観察者に余計な疲労感を与えることもない。又、用いられる部品点数は少なく、コンパクトに構成されるため、廉価で設計も容易である。
【0025】
第2実施例
図3(a)は本実施例にかかる実体顕微鏡の鏡筒部に備えられる光学部材の配置を示す鏡筒部の正面側から見た図、同図(b)は前記鏡筒部に配置されるダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。
【0026】
本実施例の実体顕微鏡の鏡筒部は、図3(a)に示すように、対物レンズ21と対物レンズ21の光軸上に配置されたダハプリズム22とからなる光学系が一対内向角6°をもって対称に配置されて構成されている。又、観察光路は左右独立に形成されている。そして、内向角6°をもって互いに配置された一対の対物レンズ21から出射された物体像は、図3(b)に示すような入射光を45°偏向して出射するダハプリズム22に入射される。又、これらダハプリズム22の手前側には、眼幅調整のための平行四辺形プリズム26が一対配置されている。一方、一対のダハプリズム22は互いに内向するように対物光軸に対して傾斜角γをもって配置されている。尚、本実施例ではγ≒3゜である。ダハプリズム22からの出射光は、それへの入射光の傾きとは反対方向に傾斜角γと実質上同一の傾斜γ′をもつて出射され、平行四辺形プリズム26に入射される。このとき、夫々平行四辺形プリズム26への入射光軸25は互いに略平行となっている。そして、平行四辺形プリズム26内において2回反射された後出射され、正立した左右の像23が形成される。
【0027】
更に、物体面上に刻まれた奥向き方向の矢印は、夫々左右の像23の面上に矢印24として投影される。これら一対の矢印24は互いに平行になっている。これは、一対のダハプリズム22が夫々前述のように対物光軸に対し傾斜角γをもって配置されていることによる。
このように、本実施例の実体顕微鏡によれば、左右の像の倒れが補正されて結像されるため、左右像が乱れることはない。
又、眼幅調整のための平行四辺形プリズム26は光軸25を中心に回転し得るようになっているが、平行四辺形プリズム26における入射光軸と出射光軸とは常に平行であるため、前記左右像の倒れは変化しない。
【0028】
尚、ダハプリズム22は、対物光軸に対して傾けて配置されているため、傾斜させないで用いる場合と比べてやや大きめのものを必要とするが、鏡筒部の小型化を阻むほどのものではない。
【0029】
以上のように、本実施例の実体顕微鏡によれば、ダハプリズムを用いたにもかかわらず、左右の像の倒れは生じない。よって、観察者に余計な疲労感を与えることもない。又、用いられる部品点数は少なく、コンパクトに構成されるため、廉価で設計も容易である。
又、本実施例の実体顕微鏡では、物体面に対する左右の像23の結像位置を下げており、これに伴いアイポイント位置も下げることができるため、観察者はより楽な姿勢で観察することができる。
【0030】
第3実施例
図4(a)は本実施例にかかる実体顕微鏡の鏡筒部に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、同図(b)は前記鏡筒部に配置されるダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。
【0031】
本実施例の実体顕微鏡の鏡筒部は、図4(a)に示すように、対物レンズ31と対物レンズ31の光軸上に配置されたダハプリズム32とからなる光学系が一対内向角6°をもって対称に配置されて構成されている。又、観察光路は左右独立に形成されている。そして、内向角6°をもって互いに配置された一対の対物レンズ31から出射された物体像は、図4(b)に示すように、入射光を45°偏向して出射するダハプリズム32に入射される。
一方、一対のダハプリズム32は互いに内向するように対物光軸に対して傾斜角γをもって配置されている。尚、本実施例ではγ≒3°である。ダハプリズム32からの出射光は、それへの入射光の傾きとは反対方向に傾斜角γと実質上同一の傾斜角γ′をもつて出射される。このとき、夫々左右のダハプリズム32からの出射光軸33は互いに略平行となっている。
【0032】
更に、これらダハプリズム32の手前側には、ダハプリズム32からの出射光軸33を夫々中心として回転する一対の第1反射ミラー34及びこの第1反射ミラー34と夫々一体的に保持されている一対の第2反射ミラー35とが配置されている。一対のダハプリズム32からの出射光は夫々一対の第1反射ミラー34及び一対の第2反射ミラー35により反射された後正立した左右の像36を形成することになるが、このとき第1反射ミラー34への入射光軸33と第2反射ミラー35からの出射光軸37とのなす角は5〜30°に設定されていることが好ましい。このようにすることで、長時間の観察においても疲労を少なくすることができる。
【0033】
更に、物体面上に刻まれた奥向き方向の矢印は、夫々左右の像36の面上に矢印38として投影される。これら一対の矢印38は互いに平行になっている。これは、一対のダハプリズム32が夫々前述のように対物光軸に対し傾斜角γをもって配置されていることによる。
このように、本発明の実体顕微鏡によれば、左右の像の倒れが補正されて結像されるため、左右像が乱れることはない。
【0034】
又、本実施例の実体顕微鏡では、第1反射ミラー34及び第2反射ミラー35が光軸33を中心に一体的に回転されることにより眼幅調整が行われるが、この回転に伴い像の倒れ量が変化する。然しながら、前述のように、第1反射ミラー34への入射光軸33と第2反射ミラー35からの出射光軸37とのなす角が5〜30°に設定されているので、この倒れ量の変化は問題とならないレベルである。
【0035】
尚、ダハプリズム32は、対物光軸に対して傾けて配置されているため、傾斜させないで用いる場合と比べてやや大きめのものを必要とするが、鏡筒部のコンパクト化を阻むほどのものではない。
【0036】
以上のように、本実施例の実体顕微鏡によれば、ダハプリズムを用いたにもかかわらず、左右の像の倒れは生じない。よって、観察者に余計な疲労感を与えることもない。又、用いられる部品点数は少なく、コンパクトに構成されるため、廉価で設計も容易である。
又、本実施例の実体顕微鏡においても、物体面に対する左右の像36の結像位置を下げており、第2実施例の実体顕微鏡と比べても更に浅い角度での観察を可能としているため、観察者は首を曲げることなくより楽な姿勢で観察することができる。
【0037】
更に、上記各実施例において、対物レンズをズームレンズで構成してもよく、各ダハプリズムの傾斜角を別の角度に設定しても差し支えない。又、各実施例に示されているプリズムに代えてミラー、ミラーに代えてプリズムを用いることもできる。又、本発明の実体顕微鏡では最も好ましい状態を得るために稜線ダハプリズムを用いているが、一般的なポロプリズムを用いても同様の効果を得ることはできる。
【0038】
以上、実施例からも明らかなように、ダハプリズム2の傾斜角γを各対物レンズの内向角θのほぼ1/2としたとき最も良好に像の倒れを除去することができる。但し、例えば第1実施例のようにダハプリズムを回転させて眼幅調整を行う場合は、ダハプリズムの回転に伴って像の倒れ量が変化する。又、第3実施例のような構成でも眼幅調整に伴って像の倒れが変化する。このような条件を考慮すると、最適な傾斜角γは必ずしも内向角θの1/2と等しくなるとは限らないが、その場合でも、θ/2に対してγが大きくずれることはない。
【0039】
このように傾斜角γの値は個々の実体顕微鏡の設計条件によって多少のずれはあるが、本発明の意図は、ダハプリズムからの出射光は入射光の傾きの反対向きに実質上同じ角度傾いて出射される、というダハプリズムの特性を利用し、対物レンズの光軸に対してダハプリズムを傾斜して配置してダハプリズムからの出射光を対物レンズの光軸に対して傾斜させることにより、像の倒れを除去するようにした点にある。実際上、γの値はθ/2に対して±(θ/4)の範囲内であれば、本発明の効果を得ることが出来るものと考えられる。
【0040】
以上説明したように、本発明による実体顕微鏡は特許請求の範囲に記載された特徴と併せ、以下の(1),(2)に記載の特徴も備えている。
【0041】
(1)入射光軸と略平行に光を出射し前記入射光軸を軸として回転可能な2つの反射面を有する反射部材が備えられていることを特徴とする請求項1に記載の実体顕微鏡。
この構成によれば、眼幅調整を行っても倒れの変化が生じない。
【0042】
(2)上記ダハプリズムの出射光軸に対する物体像を形成する光軸の角度を5〜30°の範囲で設定し得る2つの反射部材が備えられていることを特徴とする請求項1に記載の実体顕微鏡。
この構成によれば、長時間の観察でも疲労の少ない観察角度を実現することができる。
【0043】
(3)各対物レンズの内向角をθ、各ダハプリズムの各対物レンズの光軸に対する傾斜角をγとしたとき、γが(θ/4)<γ<(3・θ/4)を満たす範囲内にあることを特徴とする請求項1に記載の実体顕微鏡。
【0044】
【発明の効果】
上述のように、本発明によれば、部品点数が少なく単純な構成で良好な状態の物体像が得られる小型の実体顕微鏡を提供することができる。又、部品点数が少なく設計が容易であるため廉価でもある。更に、物体面に対するアイポイント位置を低くして観察角度を浅く設定することにより、観察者にとって観察し易く疲労の少ない実体顕微鏡を提供することができる。
【図面の簡単な説明】
【図1】(a)は本発明の実体顕微鏡における観察像の倒れの状態を説明するための図、(b)は本発明の実体顕微鏡の鏡筒部に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、(c)は前記鏡筒部に配置されるダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。
【図2】(a)は第1実施例にかかる実体顕微鏡の鏡筒部に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、(b)は前記鏡筒部に配置されるダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。
【図3】(a)は第2実施例にかかる実体顕微鏡の鏡筒部に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、(b)は前記鏡筒部に配置されるダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。
【図4】(a)は第3実施例にかかる実体顕微鏡の鏡筒部に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、(b)は前記鏡筒部に配置されるダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。
【図5】(a),(b)及び(c)は夫々従来の実体顕微鏡の鏡筒部に用いられる像正立のための各光学部材の配置を示す側面図,平面図及び正面図である。
【図6】(a)は稜線ダハプリズムをグリノー型の実体顕微鏡に用いた場合を想定したときの物体像の倒れの状態を説明するための図、(b)はその実体顕微鏡の鏡筒部に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、(c)は前記鏡筒部に配置される稜線ダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。
【図7】(a)は他の稜線ダハプリズムをグリノー型の実体顕微鏡に用いた場合を想定したときの物体像の倒れの状態を説明するための図、(b)はその実体顕微鏡の鏡筒部に備えられる各光学部材の配置を示す鏡筒部の正面側から見た図、(c)は前記鏡筒部に配置される稜線ダハプリズムへの入射光が偏向される様子を説明するための鏡筒部の側面側から見た光軸に沿う図である。
【符号の説明】
1,11,21,31,45,51 対物レンズ
2,12,22,32,52,56 ダハプリズム
3,13,23,36,53 像
4,5,14,24,38,54,55 矢印
6,15,25,33,37 光軸
26 平行四辺形プリズム
34,35,41,42,43,44 ミラー
Claims (7)
- 鏡筒部に左右一対のダハプリズムと夫々内向角をもって配置された左右一対の対物レンズとが備えられたグリノー型の実体顕微鏡において、
前記一対のダハプリズムの出射光軸が夫々前記各対物レンズの光軸に対して内側に向くように構成され、
前記実体顕微鏡を正面側から見たときに前記各ダハプリズムの出射面が、頂点と底辺の中点とを結ぶ線に対して対称な屋根型形状となる位置を保ち、
前記実体顕微鏡を正面側から見たときの、前記各対物レンズの内向角をθ、前記各ダハプリズムの前記出射面における頂点と底辺の中点とを結ぶ線の前記各対物レンズの光軸に対する傾斜角をγとしたとき、γをほぼθ/2となるようにしたことを特徴とする実体顕微鏡。 - 鏡筒部に左右一対のダハプリズムと夫々内向角をもって配置された左右一対の対物レンズとが備えられたグリノー型の実体顕微鏡において、
前記一対のダハプリズムの出射光軸が夫々前記各対物レンズの光軸に対して内側に向くように構成され、
前記実体顕微鏡を正面側から見たときに前記各ダハプリズムの出射面が、頂点と底辺の中点とを結ぶ線に対して対称な屋根型形状となる位置を保ち、
前記実体顕微鏡を正面側から見たときの、前記各対物レンズの内向角をθ、前記各ダハプリズムの前記出射面における頂点と底辺の中点とを結ぶ線の前記各対物レンズの光軸に対する傾斜角をγとしたとき、γが(θ/4)<γ<(3・θ/4)を満足する範囲にあることを特徴とする実体顕微鏡。 - 前記ダハプリズムを対物レンズの光軸を軸として回転し得るように構成することにより、眼幅調整を可能にしていることを特徴とする請求項1又は2に記載の実体顕微鏡。
- 前記ダハプリズムの手前側に平行四辺形プリズムが一対配置されていることを特徴とする請求項1又は2に記載の実体顕微鏡。
- 前記ダハプリズムからの出射光軸を夫々中心として回転する一対の第1反射ミラー及び該第1反射ミラーと夫々一体的に保持されている一対の第2反射ミラーとが配置されていることを特徴とする請求項1又は2に記載の実体顕微鏡。
- 前記第1反射ミラーへの入射光軸と前記第2反射ミラーからの出射光軸とのなす角が5〜30°に設定されていることを特徴とする請求項5に記載の実体顕微鏡。
- 前記対物レンズがズームレンズであることを特徴とする請求項1〜6のいずれかに記載の実体顕微鏡。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP06829397A JP3827397B2 (ja) | 1997-03-21 | 1997-03-21 | 実体顕微鏡 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP06829397A JP3827397B2 (ja) | 1997-03-21 | 1997-03-21 | 実体顕微鏡 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH10268207A JPH10268207A (ja) | 1998-10-09 |
| JP3827397B2 true JP3827397B2 (ja) | 2006-09-27 |
Family
ID=13369597
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP06829397A Expired - Fee Related JP3827397B2 (ja) | 1997-03-21 | 1997-03-21 | 実体顕微鏡 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3827397B2 (ja) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4217405B2 (ja) * | 2002-01-22 | 2009-02-04 | オリンパス株式会社 | 実体顕微鏡 |
| CN102749062B (zh) * | 2012-06-29 | 2014-11-12 | 宁波大学 | 一种体视显微镜体视角度的计算方法 |
-
1997
- 1997-03-21 JP JP06829397A patent/JP3827397B2/ja not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH10268207A (ja) | 1998-10-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6603608B2 (en) | Variable focal length optical element and optical system using the same | |
| US5331457A (en) | Stereomicroscope wherein the distance between a pair of beams remains unchanged when the magnification is changed | |
| JPS62287213A (ja) | 実体顕微鏡用可変傾斜角双眼鏡筒 | |
| JP2004510198A5 (ja) | ||
| JPH07218841A (ja) | 顕微鏡 | |
| US4704012A (en) | Stereoscopic microscope | |
| JPH10142473A (ja) | 顕微鏡用角度可変鏡筒 | |
| US6392811B1 (en) | Arrangement for a wearable optomechanical deflector for a display unit | |
| JP3827397B2 (ja) | 実体顕微鏡 | |
| JP3672350B2 (ja) | 実体顕微鏡の双眼鏡筒 | |
| JPS60641B2 (ja) | 斜視実体顕微鏡 | |
| JP3196613B2 (ja) | 双眼鏡 | |
| JP3386813B2 (ja) | コンパクトなケプラー望遠鏡 | |
| JPH0641208Y2 (ja) | 組合せプリズムおよびこの組合せプリズムを用いた双眼顕微鏡 | |
| JPH05107481A (ja) | 実体顕微鏡 | |
| JPH095903A (ja) | 双眼式立体ディスプレィ装置 | |
| JP2958096B2 (ja) | 実体顕微鏡 | |
| JPH0949971A (ja) | 顕微鏡 | |
| JPH08234113A (ja) | 実体顕微鏡の双眼鏡筒 | |
| JPH06250114A (ja) | 映像表示装置 | |
| JP2888408B2 (ja) | 実体顕微鏡 | |
| JP2000098237A (ja) | 顕微鏡用俯視角度可変鏡筒 | |
| JPH11231226A (ja) | 実体顕微鏡用傾斜角可変双眼鏡筒 | |
| JP4037334B2 (ja) | 実像式双眼拡大鏡、その調整方法、及び実像式双眼拡大鏡用プリズム | |
| JP3072930B2 (ja) | 実体顕微鏡 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040309 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060201 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060207 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060302 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060411 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060530 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060627 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060704 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130714 Year of fee payment: 7 |
|
| LAPS | Cancellation because of no payment of annual fees |