JP3825351B2 - Combustion control device and combustion control method for pyrolysis gasification melting furnace - Google Patents

Combustion control device and combustion control method for pyrolysis gasification melting furnace Download PDF

Info

Publication number
JP3825351B2
JP3825351B2 JP2002087335A JP2002087335A JP3825351B2 JP 3825351 B2 JP3825351 B2 JP 3825351B2 JP 2002087335 A JP2002087335 A JP 2002087335A JP 2002087335 A JP2002087335 A JP 2002087335A JP 3825351 B2 JP3825351 B2 JP 3825351B2
Authority
JP
Japan
Prior art keywords
melting furnace
ash melting
furnace
combustion chamber
secondary combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002087335A
Other languages
Japanese (ja)
Other versions
JP2003279022A (en
JP2003279022A5 (en
Inventor
成章 中村
良則 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002087335A priority Critical patent/JP3825351B2/en
Publication of JP2003279022A publication Critical patent/JP2003279022A/en
Publication of JP2003279022A5 publication Critical patent/JP2003279022A5/ja
Application granted granted Critical
Publication of JP3825351B2 publication Critical patent/JP3825351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみ等の廃棄物を熱分解してガス化し、このガス化したガスを高温燃焼して灰を溶融する熱分解ガス化溶融炉の燃焼制御装置及び燃焼制御方法に関するものである。
【0002】
【従来の技術】
従来の熱分解ガス化溶融炉は、廃棄物を熱分解してガス化する熱分解炉と、この熱分解炉の下流側に設けられ、灰を溶融する灰溶融炉と、この灰溶融炉の下流側に設けられ、当該灰溶融炉から排出される排ガスを燃焼する二次燃焼室とを備えており、その資源化、減容化及び無害化を図るために、灰溶融炉からスラグとして取り出すと共に、二次燃焼室から排ガスを排出して灰ガス処理設備に導き、排ガスの廃熱を回収して発電用の蒸気を発生させるように構成されている。
【0003】
ところで、このような熱分解ガス化溶融炉では、熱分解炉、灰溶融炉及び二次燃焼室からなる複数の燃焼室を備えていることから、各燃焼室の燃焼空気量のバランスが悪化すると、NOxが大量に発生したり、あるいは小規模のプラントで必要な灰溶融炉補助燃料の増大を招くことがあった。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の熱分解ガス化溶融炉においては、燃焼空気量のバランスを複数の燃焼室で行う必要があるので、物質収支及び熱収支よりプロセスバランスを計算した結果からしか求めることができず、その把握及び最適な操作を行うことが困難であった。したがって、NOxの大量発生を原因とする環境への悪影響をもたらし、補助燃料使用量の増大によるコスト高を招来するという問題を有していた。
【0005】
本発明はこのような実状に鑑みてなされたものであり、その目的は、空気比及び燃焼率の直接的な操作により灰溶融炉における還元燃焼の制御を行い、NOxの低減や補助燃料使用量の最小化により、良好な環境の維持とコストダウンを図ることが可能な熱分解ガス化溶融炉の燃焼制御装置及び燃焼制御方法を提供することにある。
【0006】
【課題を解決するための手段】
上記従来技術の有する課題を解決するために、本発明は、廃棄物を熱分解してガス化する熱分解炉と、該熱分解炉の下流側に設けられる灰溶融炉と、該灰溶融炉から排出される排ガスを燃焼する二次燃焼室とを備えた熱分解ガス化溶融炉の燃焼制御装置において、前記熱分解炉、前記灰溶融炉及び前記二次燃焼室の気比と前記灰溶融炉の燃焼率を演算する演算装置を設け、該演算装置の演算結果に基づいて前記灰溶融炉及び前記二次燃焼室の空気比を制御するように構成している。
また、本発明において、前記演算装置は、前記熱分解炉の砂層温度検出装置、フリーボード温度検出装置及び一次空気流量検出装置に接続され、前記灰溶融炉の温度検出装置及び燃焼空気流量検出装置に接続されていると共に、前記二次燃焼室の温度検出装置及び二次燃焼空気流量検出装置に接続されていることが好ましい。
【0007】
一方、他の本発明は、廃棄物を熱分解してガス化する熱分解炉と、該熱分解炉の下流側に設けられる灰溶融炉と、該灰溶融炉から排出される排ガスを燃焼する二次燃焼室と、これら灰溶融炉及び二次燃焼室に関連して設けられる燃焼制御装置とを備えた熱分解ガス化溶融炉の燃焼制御方法において、前記燃焼制御装置に付随して設けられた空気比及び燃焼率演算装置により、前記熱分解炉、前記灰溶融炉及び前記二次燃焼室の気比と前記灰溶融炉の燃焼率を演算する段階と、前記二次燃焼室の出口におけるNOx濃度の高低、前記灰溶融炉の燃焼率の高低、及び前記熱分解炉と前記灰溶融炉の空気比の大小をそれぞれ判定する段階と、それぞれの判定結果に応じて前記灰溶融炉及び前記二次燃焼室の空気比を前記燃焼制御装置により制御する段階とを含んでいる。
【0008】
また、本発明において、前記二次燃焼室の出口におけるNOx濃度が低く、前記灰溶融炉の燃焼率が低く、かつ前記熱分解炉と前記灰溶融炉の空気比が小さい場合は、前記灰溶融炉の空気比を大きくすると共に、前記二次燃焼室の空気比を小さくし、また、前記二次燃焼室の出口におけるNOx濃度が低く、前記灰溶融炉の燃焼率が低く、かつ前記熱分解炉と前記灰溶融炉の空気比が大きい場合または前記二次燃焼室の出口におけるNOx濃度が低く、前記灰溶融炉の燃焼率が高い場合は、前記灰溶融炉の空気比及び前記二次燃焼室の空気比を共に保持し、一方、前記二次燃焼室の出口におけるNOx濃度が高く、前記灰溶融炉の燃焼率が低く、かつ前記熱分解炉と前記灰溶融炉の空気比が小さい場合は、前記灰溶融炉の空気比及び前記二次燃焼室の空気比を共に保持し、また、前記二次燃焼室の出口におけるNOx濃度が高く、前記灰溶融炉の燃焼率が低く、かつ前記熱分解炉と前記灰溶融炉の空気比が大きい場合または前記二次燃焼室の出口におけるNOx濃度が高く、前記灰溶融炉の燃焼率が高い場合は、前記灰溶融炉の空気比を小さくすると共に、前記二次燃焼室の空気比を大きくすることが好ましい。
【0009】
【発明の実施の形態】
以下、本発明における熱分解ガス化溶融炉の燃焼制御装置及び燃焼制御方法を図示の実施の形態に基づいて詳細に説明する。ここで、図1は本発明の実施形態に係る熱分解ガス化溶融炉の燃焼制御装置の制御フロー図、図2は本実施形態の燃焼制御装置に設けた演算装置(プロセスシミュレータ)による各部の燃焼空気比及び燃焼率計算方法の説明図、図3は本発明の実施形態に係る熱分解ガス化溶融炉の燃焼制御方法の制御ブロックチャートである。
【0010】
本実施形態の熱分解ガス化溶融炉1は、図1に示す如く、ごみ等の廃棄物2を熱分解してガス化する熱分解炉3と、当該熱分解炉3の下流側に設けられる灰溶融炉4と、当該灰溶融炉4から排出される排ガス5を燃焼する二次燃焼室6とを備えており、これら灰溶融炉4及び二次燃焼室6には、燃焼制御装置7によって制御された灰溶融炉燃焼空気8及び二次燃焼室燃焼空気9が供給されるようになっている。
【0011】
上記熱分解炉3の側面には、所定量の廃棄物2を炉内に供給する廃棄物供給装置10が設けられている。このため、供給装置10は、廃棄物2を投入するホッパ11と、モータ12によって回転駆動され、廃棄物2を搬送するスクリュ13と、廃棄物2を熱分解炉3の投入口(図示せず)へ案内するシュート14を有している。また、熱分解炉3の炉内には、砂層の温度を検出する砂層温度検出装置15と、フリーボードの温度を検出するフリーボード温度検出装置16が設けられており、炉内上部は、供給ライン17を介して灰溶融炉4に連通されている。さらに、熱分解炉3の炉内底部には、図示しない空気供給源から送られ、廃棄物2の熱分解を行う際に用いられる熱分解炉一次空気18が供給されるように構成されており、炉底部と空気供給源との間には、一次空気18の流量を検出する一次空気流量検出装置19が設けられている。
【0012】
上記灰溶融炉4は、供給ライン17より送給された熱分解ガス、未分解残渣、チャー、灰等の混合物を高温燃焼して灰を溶融するものであり、炉底の出滓口20から取り出された溶融スラグ21は、図示しないスラグ冷却槽などを経て排出されるようになっている。また、灰溶融炉4の炉内には、内部の温度を検出する灰溶融炉温度検出装置22が設けられ、炉外には、灰溶融炉燃焼空気8の流量を検出する燃焼空気流量検出装置23が設けられている。
【0013】
上記二次燃焼室6は、排ガス5を再度燃焼するために設けられたものであり、灰溶融炉4の下流側の上方位置に連通して設けられている。また、二次燃焼室6の室内上部には、内部の温度を検出する二次燃焼室温度検出装置24が設けられている。さらに、二次燃焼室6の上下中間位置の外部には、二次燃焼室燃焼空気9の流量を検出する二次燃焼室空気流量検出装置25が設けられ、頂部出口には、排ガス5を下流側の排ガス処理設備(図示せず)に導く排ガスダクト26が接続されており、排ガスダクト26の途中には、二次燃焼室6の出口におけるO2濃度及びNOx濃度を検出する濃度検出装置27が設けられている。しかも、この濃度検出装置27は、燃焼制御装置7と電気的に接続されている。
【0014】
一方、本実施形態に係る熱分解ガス化溶融炉1の燃焼制御装置7には、熱分解炉砂層温度、熱分解炉フリーボード温度、灰溶融炉温度、二次燃焼室温度、二次燃焼室出口O2濃度、熱分解炉一次空気流量、灰溶融炉燃焼空気流量及び二次燃焼室空気流量よりプロセスバランスを計算し、熱分解炉3、灰溶融炉4及び二次燃焼室6の気比及び灰溶融炉4の燃焼率を演算する演算装置(プロセスシミュレータ)28が設けられており、燃焼制御装置7は、演算装置28の演算結果に基づいて灰溶融炉4及び二次燃焼室6の空気比を制御するように構成されている。
このため、演算装置28は、図1の点線で示す如く、熱分解炉3の砂層温度検出装置15、フリーボード温度検出装置16及び一次空気流量検出装置19と電気的に接続され、灰溶融炉4の温度検出装置22及び燃焼空気流量検出装置23と電気的に接続されていると共に、二次燃焼室6の温度検出装置24及び二次燃焼室空気流量検出装置25と電気的に接続されている。しかも、演算装置28は、図1の矢印で示す如く、燃焼制御装置7と電気的に接続されている。
【0015】
このような演算装置28による各部の燃焼空気比、燃焼率の計算方法の具体例は、図2を参照しながら以下に示す。なお、ここでは質量流量をG、体積流量をV、温度をT、比熱をCpで表わしている。
(1) 燃焼空気比の計算
▲1▼ 燃焼空気比のトータル
λ=21/(21−O2
ここで21は、空気中のO2の割合を表わしている。
▲2▼ 熱分解炉の空気比
λ1=V11/(V11+V31+V41)・λ
▲3▼ 熱分解炉〜灰溶融炉の空気比
λ12=(V11+V31)/(V11+V31+V41)・λ
【0016】
(2) 各部燃焼率の計算
[1] 熱分解炉砂層
物質収支:GR+G11=G12
熱収支:GRCpRTR+G11Cp11+η1・LHVR/GR=G12Cp12T12+Q1
η1:熱分解炉砂層燃焼率
LHVR:ごみ低位発熱量
Q1:熱分解炉砂層放熱
燃焼率:η 1 =(G 12 Cp 12 12 +Q 1- 11 p11 11 )/(LHV R ・G R )=G 11 /G 0 ・η l1
ηl1:熱分解炉砂層部燃焼空気に対する燃焼率(酸素消費率)
[2] 熱分解炉フリーボード
物質収支:G21=G22
熱収支:G21Cp21T21+η2・LHVR・GR=G22Cp22T22+Q2
η2:熱分解炉フリーボード燃焼率
Q2:熱分解炉フリーボード放熱
燃焼率:η2=(G22Cp22T22+Q2−G21Cp21T21)/(LHVR・GR)=(G21+(1−ηl1)G11)/G0・ηl2
ηl2:熱分解炉フリーボード部燃焼空気に対する燃焼率(酸素消費率)
[3] 灰溶融炉
物質収支:G22+G31=G32
熱収支:G22Cp22T22+G31Cp31T31+η3・LHVR・GR=G32
Cp32T32+Q3
η3:灰溶融炉燃焼率
Q3:灰溶融炉放熱
燃焼率:η3=(G32Cp32T32+Q3−(G22Cp22T22+G31Cp31T31
))/(LHVR・GR)=((1−ηl2)(G21+(1−
ηl1)G11)+G31)/G0・ηl3
ηl3:灰溶融炉燃焼空気に対する燃焼率(酸素消費率)
[4] 二次燃焼室
物質収支:G32+G41=G42
熱収支:G32Cp32T32+G41Cp41T41+η4・LHVR・GR=G42Cp42
T42+Q4
η4: 二次燃焼室燃焼率
Q4: 二次燃焼室放熱
燃焼率:η4=(G42Cp42T42+Q4−(G32Cp32T32+G41Cp41T41 ))/(LHVR・GR)=(1−η1−η2−η3)
【0017】
本発明の実施形態に係る熱分解ガス化溶融炉1においては、図1に示す如く、ごみ等の廃棄物2が供給装置10により熱分解炉3に供給されると、その廃棄物2は、一次空気18が送給された炉内で部分燃焼され、その熱で乾燥熱分解される。そして、熱分解炉3で発生した熱分解ガス、未分解残渣、チャー、灰等の混合物は、供給ライン17を介して図示しない投入口から灰溶融炉4に投入され、燃焼空気8が供給された炉内で高温燃焼され、灰が加熱溶融されることになる。また、灰溶融炉4から排出された排ガス5が上方の二次燃焼室6に流れ込むと、燃焼空気9が供給された室内で再度燃焼され、排ガスダクト26を経て下流側の排ガス処理設備(図示せず)に導かれることになる。
【0018】
次に、本発明の実施形態に係る熱分解ガス化溶融炉1の燃焼制御方法について説明する。
本実施形態の熱分解ガス化溶融炉1では、燃焼制御装置7及び演算装置28を用いた燃焼制御方法によって灰溶融炉4の還元燃焼の制御が行われている。すなわち、本実施形態の燃焼制御方法は、各部に設けられている検出装置から得た各部の温度やO2濃度や空気流量の数値と上述した各部の燃焼空気比及び燃焼率の計算方法を使用し、空気比及び燃焼率演算装置28によりプロセスバランスを計算し、熱分解炉3、灰溶融炉4及び二次燃焼室6の気比及び灰溶融炉4の燃焼率を演算する段階と、二次燃焼室6の出口におけるNOx濃度の高低、灰溶融炉4の燃焼率の高低、及び熱分解炉3と灰溶融炉4の空気比の大小をそれぞれ判定する段階と、それぞれの判定結果に応じて灰溶融炉4及び二次燃焼室6の空気比を燃焼制御装置7により制御する段階とを含んでいる。
【0019】
このような段階を含む燃焼制御方法においては、図3に示す如く、まず、演算装置28により、熱分解炉3、灰溶融炉4及び二次燃焼室6のそれぞれの空気比を計算すると共に、灰溶融炉4の燃焼率を計算しておく。次いで、濃度検出装置27により二次燃焼室6の出口におけるNOx濃度を検出し、このNOx濃度が低く、計算結果から灰溶融炉4の燃焼率が低く、かつ熱分解炉3と灰溶融炉4の空気比が小さい場合は、灰溶融炉4の空気比を大きくすると共に、二次燃焼室6の空気比を小さくする。また、濃度検出装置27で検出した二次燃焼室6の出口におけるNOx濃度が低く、計算結果から灰溶融炉4の燃焼率が低く、かつ熱分解炉3と灰溶融炉4の空気比が大きい場合または濃度検出装置27で検出した二次燃焼室6の出口におけるNOx濃度が低く、計算結果から灰溶融炉4の燃焼率が高い場合は、灰溶融炉4の空気比及び二次燃焼室6の空気比を共に保持する。
【0020】
一方、濃度検出装置27で検出した二次燃焼室6の出口におけるNOx濃度が高く、計算結果から灰溶融炉4の燃焼率が低く、かつ熱分解炉3と灰溶融炉4の空気比が小さい場合は、灰溶融炉4の空気比及び二次燃焼室6の空気比を共に保持する。また、濃度検出装置27で検出した二次燃焼室6の出口におけるNOx濃度が高く、計算結果から灰溶融炉4の燃焼率が低く、かつ熱分解炉3と灰溶融炉4の空気比が大きい場合または濃度検出装置27で検出した二次燃焼室6の出口におけるNOx濃度が高く、計算結果から灰溶融炉4の燃焼率が高い場合は、灰溶融炉4の空気比を小さくすると共に、二次燃焼室6の空気比を大きくする。
【0021】
本発明の実施形態に係る熱分解ガス化溶融炉1の燃焼制御装置7は、熱分解炉3、灰溶融炉4及び二次燃焼室6の気比及び灰溶融炉4の燃焼率を演算する演算装置28を設けており、この演算装置28の演算結果に基づいて灰溶融炉4及び二次燃焼室6の空気比を制御するようにしているため、灰溶融炉4及び二次燃焼室6の空気比及び灰溶融炉4の燃焼率を直接操作することが可能となり、その結果、灰溶融炉4における還元燃焼の制御を行うことができ、排ガス5のNOx濃度を低減できる。しかも、本実施形態の燃焼制御装置7を適用すれば、灰溶融炉4における燃焼効率を高めることが可能となり、灰溶融炉4に対する補助燃料の使用量を減らすことができ、コストダウンを図ることができる。
【0022】
以上、本発明の実施形態につき述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。
【0023】
【発明の効果】
上述の如く、本発明に係る熱分解ガス化溶融炉の燃焼制御装置は、廃棄物を熱分解してガス化する熱分解炉と、該熱分解炉の下流側に設けられる灰溶融炉と、該灰溶融炉から排出される排ガスを燃焼する二次燃焼室とを備えたものであって、前記熱分解炉、前記灰溶融炉及び前記二次燃焼室の気比と前記灰溶融炉の燃焼率を演算する演算装置を設け、該演算装置の演算結果に基づいて前記灰溶融炉及び前記二次燃焼室の空気比を制御するように構成しているので、各部の空気比及び燃焼率を演算し、空気比の直接的な操作により灰溶融炉における還元燃焼の制御を行うことができ、NOxの低減化や補助燃料使用量の最小化を図り、良好な環境を維持できると共に、生産コストを低減させることができる。
【0024】
本発明に係る熱分解ガス化溶融炉の燃焼制御方法は、廃棄物を熱分解してガス化する熱分解炉と、該熱分解炉の下流側に設けられる灰溶融炉と、該灰溶融炉から排出される排ガスを燃焼する二次燃焼室と、これら灰溶融炉及び二次燃焼室に関連して設けられる燃焼制御装置とを備えたものであって、前記燃焼制御装置に付随して設けられた空気比及び燃焼率演算装置により、前記熱分解炉、前記灰溶融炉及び前記二次燃焼室の気比と前記灰溶融炉の燃焼率を演算する段階と、前記二次燃焼室の出口におけるNOx濃度の高低、前記灰溶融炉の燃焼率の高低、及び前記熱分解炉と前記灰溶融炉の空気比の大小をそれぞれ判定する段階と、それぞれの判定結果に応じて前記灰溶融炉及び前記二次燃焼室の空気比を前記燃焼制御装置により制御する段階とを含んでいるので、上記発明と同様の効果が得られる上、各部の燃焼空気量のバランスを取りながら、最適な条件で熱分解ガス化溶融炉を運転操作することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る熱分解ガス化溶融炉の燃焼制御装置の制御フローを示す概念図である。
【図2】本発明の実施形態に係る燃焼制御装置に設けた演算装置による各部の燃焼空気比及び燃焼率計算方法を説明する概念図である。
【図3】本発明の実施形態に係る熱分解ガス化溶融炉の燃焼制御方法を示す制御ブロックチャートである。
【符号の説明】
1 熱分解ガス化溶融炉
2 廃棄物
3 熱分解炉
4 灰溶融炉
5 排ガス
6 二次燃焼室
7 燃焼制御装置
8 灰溶融炉燃焼空気
9 二次燃焼室燃焼空気
10 廃棄物供給装置
15 砂層温度検出装置
16 フリーボード温度検出装置
17 供給ライン
18 熱分解炉一次空気
19 一次空気流量検出装置
22 灰溶融炉温度検出装置
23 燃焼空気流量検出装置
24 二次燃焼室温度検出装置
25 二次燃焼室空気流量検出装置
26 排ガスダクト
27 O2濃度及びNOx濃度検出装置
28 空気比及び燃焼率演算装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion control device and a combustion control method for a pyrolysis gasification melting furnace in which waste such as municipal waste is pyrolyzed and gasified, and the gasified gas is combusted at a high temperature to melt ash. .
[0002]
[Prior art]
A conventional pyrolysis gasification melting furnace includes a pyrolysis furnace that thermally decomposes and gasifies waste, an ash melting furnace that is provided on the downstream side of the pyrolysis furnace, and melts ash; A secondary combustion chamber that is provided on the downstream side and combusts exhaust gas discharged from the ash melting furnace, and is taken out from the ash melting furnace as slag in order to reduce its resources, reduce its volume, and make it harmless. At the same time, exhaust gas is discharged from the secondary combustion chamber and guided to the ash gas treatment facility, and waste heat of the exhaust gas is recovered to generate steam for power generation.
[0003]
By the way, in such a pyrolysis gasification melting furnace, since it has a plurality of combustion chambers consisting of a pyrolysis furnace, an ash melting furnace and a secondary combustion chamber, the balance of the combustion air amount in each combustion chamber deteriorates. , NOx may be generated in large quantities, or the ash melting furnace auxiliary fuel required in a small-scale plant may be increased.
[0004]
[Problems to be solved by the invention]
However, in the conventional pyrolysis gasification melting furnace, since it is necessary to balance the amount of combustion air in a plurality of combustion chambers, it can be obtained only from the result of calculating the process balance from the mass balance and heat balance, It was difficult to grasp and perform the optimum operation. Therefore, there has been a problem in that it has an adverse effect on the environment due to a large amount of NOx generation, resulting in an increase in cost due to an increase in the amount of auxiliary fuel used.
[0005]
The present invention has been made in view of such a situation, and its purpose is to control the reduction combustion in the ash melting furnace by direct operation of the air ratio and the combustion rate, thereby reducing NOx and the amount of auxiliary fuel used. It is an object of the present invention to provide a combustion control apparatus and a combustion control method for a pyrolysis gasification melting furnace capable of maintaining a good environment and reducing costs by minimizing the above.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems of the prior art, the present invention provides a pyrolysis furnace that thermally decomposes and gasifies waste, an ash melting furnace provided on the downstream side of the pyrolysis furnace, and the ash melting furnace the ash in the combustion control apparatus for the pyrolysis gasification melting furnace and a secondary combustion chamber for burning exhaust gas discharged, the pyrolysis furnace, and the ash melting furnace and the secondary combustion chamber of the air-gas ratio from An arithmetic device for calculating the combustion rate of the melting furnace is provided, and the air ratio of the ash melting furnace and the secondary combustion chamber is controlled based on the calculation result of the arithmetic device.
Further, in the present invention, the arithmetic device is connected to a sand layer temperature detection device, a freeboard temperature detection device and a primary air flow rate detection device of the pyrolysis furnace, and a temperature detection device and a combustion air flow rate detection device of the ash melting furnace. And a secondary combustion chamber temperature detection device and a secondary combustion air flow rate detection device.
[0007]
On the other hand, another invention of the present invention combusts a pyrolysis furnace that thermally decomposes and gasifies waste, an ash melting furnace provided downstream of the pyrolysis furnace, and exhaust gas discharged from the ash melting furnace. In a combustion control method for a pyrolysis gasification melting furnace comprising a secondary combustion chamber and a combustion control device provided in association with the ash melting furnace and the secondary combustion chamber, the combustion control device is provided along with the combustion control device. by the air ratio and the combustion rate calculating unit, said thermal cracking furnace, comprising the steps of calculating the air-gas ratio and the combustion rate of the ash melting furnace of the ash melting furnace and the secondary combustion chamber, said secondary combustion chamber outlet Determining the level of NOx concentration, the level of combustion rate of the ash melting furnace, and the air ratio of the pyrolysis furnace and the ash melting furnace, respectively, and the ash melting furnace according to the respective determination results The air ratio in the secondary combustion chamber is controlled by the combustion control device. And a stage.
[0008]
In the present invention, when the NOx concentration at the outlet of the secondary combustion chamber is low, the combustion rate of the ash melting furnace is low, and the air ratio between the pyrolysis furnace and the ash melting furnace is small, the ash melting While increasing the air ratio of the furnace, the air ratio of the secondary combustion chamber is decreased, the NOx concentration at the outlet of the secondary combustion chamber is low, the combustion rate of the ash melting furnace is low, and the thermal decomposition When the air ratio of the furnace and the ash melting furnace is large or when the NOx concentration at the outlet of the secondary combustion chamber is low and the combustion rate of the ash melting furnace is high, the air ratio of the ash melting furnace and the secondary combustion When the air ratio of the chamber is held together, the NOx concentration at the outlet of the secondary combustion chamber is high, the combustion rate of the ash melting furnace is low, and the air ratio of the pyrolysis furnace and the ash melting furnace is small Is the air ratio of the ash melting furnace and the secondary The air ratio of the firing chamber is maintained together, the NOx concentration at the outlet of the secondary combustion chamber is high, the combustion rate of the ash melting furnace is low, and the air ratio of the pyrolysis furnace and the ash melting furnace is large. Or when the NOx concentration at the outlet of the secondary combustion chamber is high and the combustion rate of the ash melting furnace is high, the air ratio of the ash melting furnace is reduced and the air ratio of the secondary combustion chamber is increased. It is preferable.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a combustion control apparatus and a combustion control method for a pyrolysis gasification melting furnace according to the present invention will be described in detail based on the illustrated embodiments. Here, FIG. 1 is a control flow diagram of the combustion control apparatus of the pyrolysis gasification melting furnace according to the embodiment of the present invention, and FIG. 2 is a diagram of each part by the arithmetic unit (process simulator) provided in the combustion control apparatus of the present embodiment. FIG. 3 is a control block chart of a combustion control method for a pyrolysis gasification melting furnace according to an embodiment of the present invention.
[0010]
As shown in FIG. 1, the pyrolysis gasification melting furnace 1 of this embodiment is provided with a pyrolysis furnace 3 that thermally decomposes and gasifies waste 2 such as waste, and a downstream side of the pyrolysis furnace 3. The ash melting furnace 4 and a secondary combustion chamber 6 for burning the exhaust gas 5 discharged from the ash melting furnace 4 are provided. The ash melting furnace 4 and the secondary combustion chamber 6 are provided with a combustion control device 7. Controlled ash melting furnace combustion air 8 and secondary combustion chamber combustion air 9 are supplied.
[0011]
A waste supply device 10 for supplying a predetermined amount of waste 2 into the furnace is provided on the side surface of the pyrolysis furnace 3. For this reason, the supply device 10 is rotated by a hopper 11 that inputs the waste 2, a screw 13 that is rotated and driven by the motor 12, and an input port (not shown) of the waste 2 to the pyrolysis furnace 3. ) Has a chute 14 for guiding to). Further, in the furnace of the pyrolysis furnace 3, a sand layer temperature detecting device 15 for detecting the temperature of the sand layer and a free board temperature detecting device 16 for detecting the temperature of the free board are provided. It communicates with the ash melting furnace 4 via a line 17. Further, a pyrolysis furnace primary air 18 which is sent from an air supply source (not shown) and used for pyrolyzing the waste 2 is supplied to the bottom of the pyrolysis furnace 3. A primary air flow rate detection device 19 for detecting the flow rate of the primary air 18 is provided between the bottom of the furnace and the air supply source.
[0012]
The ash melting furnace 4 melts ash by high-temperature combustion of a mixture of pyrolysis gas, undecomposed residue, char, ash, and the like fed from the supply line 17, from an outlet 20 at the bottom of the furnace. The taken-out molten slag 21 is discharged through a slag cooling tank (not shown). Further, an ash melting furnace temperature detecting device 22 for detecting the internal temperature is provided in the furnace of the ash melting furnace 4, and a combustion air flow rate detecting device for detecting the flow rate of the ash melting furnace combustion air 8 outside the furnace. 23 is provided.
[0013]
The secondary combustion chamber 6 is provided to burn the exhaust gas 5 again, and is provided in communication with an upper position on the downstream side of the ash melting furnace 4. In addition, a secondary combustion chamber temperature detecting device 24 for detecting the internal temperature is provided at the upper portion of the secondary combustion chamber 6. Further, a secondary combustion chamber air flow rate detection device 25 for detecting the flow rate of the secondary combustion chamber combustion air 9 is provided outside the upper and lower intermediate positions of the secondary combustion chamber 6, and the exhaust gas 5 is provided downstream at the top outlet. An exhaust gas duct 26 leading to an exhaust gas treatment facility (not shown) on the side is connected, and in the middle of the exhaust gas duct 26, a concentration detection device 27 that detects the O 2 concentration and the NOx concentration at the outlet of the secondary combustion chamber 6. Is provided. Moreover, the concentration detection device 27 is electrically connected to the combustion control device 7.
[0014]
On the other hand, the combustion control device 7 of the pyrolysis gasification melting furnace 1 according to this embodiment includes a pyrolysis furnace sand layer temperature, a pyrolysis furnace freeboard temperature, an ash melting furnace temperature, a secondary combustion chamber temperature, and a secondary combustion chamber. outlet O 2 concentration, the pyrolysis furnace primary air flow rate, calculate the process balance than ash melting furnace combustion air flow rate and the secondary combustion chamber air flow rate, pyrolysis furnace 3, air in the ash melting furnace 4 and the secondary combustion chamber 6 A calculation device (process simulator) 28 for calculating the ratio and the combustion rate of the ash melting furnace 4 is provided. The combustion control device 7 is based on the calculation result of the calculation device 28 and the ash melting furnace 4 and the secondary combustion chamber 6. The air ratio is controlled.
For this reason, the arithmetic unit 28 is electrically connected to the sand layer temperature detection device 15, the freeboard temperature detection device 16 and the primary air flow rate detection device 19 of the pyrolysis furnace 3 as shown by the dotted line in FIG. 4 is electrically connected to the temperature detection device 22 and the combustion air flow rate detection device 23, and is also electrically connected to the temperature detection device 24 and the secondary combustion chamber air flow rate detection device 25 of the secondary combustion chamber 6. Yes. Moreover, the calculation device 28 is electrically connected to the combustion control device 7 as indicated by the arrow in FIG.
[0015]
A specific example of the calculation method of the combustion air ratio and the combustion rate of each part by the arithmetic unit 28 will be described below with reference to FIG. Here, the mass flow rate is represented by G, the volume flow rate by V, the temperature by T, and the specific heat by Cp.
(1) Calculation of combustion air ratio (1) Total combustion air ratio λ = 21 / (21−O 2 )
Here, 21 represents the proportion of O 2 in the air.
(2) Pyrolysis furnace air ratio λ 1 = V 11 / (V 11 + V 31 + V 41 ) · λ
(3) Pyrolysis furnace to ash melting furnace air ratio λ 12 = (V 11 + V 31 ) / (V 11 + V 31 + V 41 ) · λ
[0016]
(2) Calculation of the burning rate of each part
[1] Pyrolysis furnace sand layer Material balance: GR + G11 = G12
Heat balance: GRCpRTR + G11Cp11 + η1 · LHVR / GR = G12Cp12T12 + Q1
η1: Pyrolysis furnace sand layer burning rate LHVR: Waste lower heating value Q1: Pyrolysis furnace sand layer heat release Burning rate: η 1 = (G 12 Cp 12 T 12 + Q 1 -G 11 C p11 T 11 ) / (LHV R · G R ) = G 11 / G 0 · η l1
ηl1: Combustion rate for the combustion air in the pyrolysis furnace sand layer (oxygen consumption rate)
[2] Pyrolysis furnace free board Material balance: G21 = G22
Heat balance: G21Cp21T21 + η2, LHVR, GR = G22Cp22T22 + Q2
η2: Pyrolysis furnace free board burning rate Q2: Pyrolysis furnace free board heat dissipation Burning rate: η2 = (G22Cp22T22 + Q2−G21Cp21T21) / (LHVR · GR) = (G21 + (1-ηl1) G11) / G0 · ηl2
ηl2: Combustion rate (combustion rate of oxygen) in the pyrolysis furnace freeboard
[3] Ash melting furnace Material balance: G22 + G31 = G32
Heat balance: G22Cp22T22 + G31Cp31T31 + η3 ・ LHVR ・ GR = G32
Cp32T32 + Q3
η3: Ash melting furnace combustion rate Q3: Ash melting furnace heat dissipation combustion rate: η3 = (G32Cp32T32 + Q3− (G22Cp22T22 + G31Cp31T31
)) / (LHVR · GR) = ((1-ηl2) (G21 + (1-
ηl1) G11) + G31) / G0 · ηl3
ηl3: Combustion rate for ash melting furnace combustion air (oxygen consumption rate)
[4] Secondary combustion chamber Material balance: G32 + G41 = G42
Heat balance: G32Cp32T32 + G41Cp41T41 + η4 ・ LHVR ・ GR = G42Cp42
T42 + Q4
η4: secondary combustion chamber combustion rate Q4: secondary combustion chamber heat dissipation combustion rate: η4 = (G42Cp42T42 + Q4− (G32Cp32T32 + G41Cp41T41)) / (LHVR · GR) = (1−η1−η2−η3)
[0017]
In the pyrolysis gasification melting furnace 1 according to the embodiment of the present invention, as shown in FIG. 1, when waste 2 such as waste is supplied to the pyrolysis furnace 3 by the supply device 10, the waste 2 is Partial combustion is performed in the furnace to which the primary air 18 is fed, and dry pyrolysis is performed with the heat. Then, a mixture of pyrolysis gas, undecomposed residue, char, ash and the like generated in the pyrolysis furnace 3 is introduced into the ash melting furnace 4 through a supply line 17 from an unillustrated inlet, and combustion air 8 is supplied. The ash is heated and melted in a high temperature furnace. Further, when the exhaust gas 5 discharged from the ash melting furnace 4 flows into the upper secondary combustion chamber 6, it is burned again in the chamber supplied with the combustion air 9, and passes through the exhaust gas duct 26 to downstream exhaust gas treatment equipment (see FIG. (Not shown).
[0018]
Next, a combustion control method for the pyrolysis gasification melting furnace 1 according to the embodiment of the present invention will be described.
In the pyrolysis gasification melting furnace 1 of the present embodiment, the reduction combustion of the ash melting furnace 4 is controlled by the combustion control method using the combustion control device 7 and the arithmetic device 28. That is, the combustion control method of the present embodiment uses the temperature, O 2 concentration, and numerical value of the air flow rate obtained from the detection device provided in each part, and the calculation method of the combustion air ratio and combustion rate of each part described above. a step of then, the process balance calculated by the air ratio and combustion rate calculating unit 28, a pyrolysis furnace 3 calculates the air-gas ratio and combustion rate of ash melting furnace 4 ash melting furnace 4 and the secondary combustion chamber 6, Stages of determining the level of NOx concentration at the outlet of the secondary combustion chamber 6, the level of combustion rate of the ash melting furnace 4, and the magnitude of the air ratio between the pyrolysis furnace 3 and the ash melting furnace 4, respectively, Accordingly, a step of controlling the air ratio of the ash melting furnace 4 and the secondary combustion chamber 6 by the combustion control device 7 is included.
[0019]
In the combustion control method including such a stage, as shown in FIG. 3, first, the arithmetic unit 28 calculates the air ratios of the pyrolysis furnace 3, the ash melting furnace 4, and the secondary combustion chamber 6, The combustion rate of the ash melting furnace 4 is calculated. Next, the NOx concentration at the outlet of the secondary combustion chamber 6 is detected by the concentration detection device 27, the NOx concentration is low, the combustion rate of the ash melting furnace 4 is low from the calculation results, and the pyrolysis furnace 3 and ash melting furnace 4 When the air ratio is small, the air ratio of the ash melting furnace 4 is increased and the air ratio of the secondary combustion chamber 6 is decreased. Further, the NOx concentration at the outlet of the secondary combustion chamber 6 detected by the concentration detector 27 is low, the combustion rate of the ash melting furnace 4 is low from the calculation result, and the air ratio of the pyrolysis furnace 3 and ash melting furnace 4 is large. If the NOx concentration at the outlet of the secondary combustion chamber 6 detected by the case or the concentration detector 27 is low and the combustion rate of the ash melting furnace 4 is high from the calculation result, the air ratio of the ash melting furnace 4 and the secondary combustion chamber 6 The air ratio of both is maintained.
[0020]
On the other hand, the NOx concentration at the outlet of the secondary combustion chamber 6 detected by the concentration detector 27 is high, the combustion rate of the ash melting furnace 4 is low from the calculation results, and the air ratio between the pyrolysis furnace 3 and the ash melting furnace 4 is small. In this case, both the air ratio of the ash melting furnace 4 and the air ratio of the secondary combustion chamber 6 are maintained. Further, the NOx concentration at the outlet of the secondary combustion chamber 6 detected by the concentration detector 27 is high, the combustion rate of the ash melting furnace 4 is low from the calculation results, and the air ratio between the pyrolysis furnace 3 and the ash melting furnace 4 is large. In the case where the NOx concentration at the outlet of the secondary combustion chamber 6 detected by the case or the concentration detector 27 is high and the combustion rate of the ash melting furnace 4 is high from the calculation result, the air ratio of the ash melting furnace 4 is reduced and The air ratio of the next combustion chamber 6 is increased.
[0021]
Combustion control apparatus 7 of the pyrolysis gasification melting furnace 1 according to the embodiments of the invention, the pyrolysis furnace 3, the air-gas ratio and combustion rate of ash melting furnace 4 ash melting furnace 4 and the secondary combustion chamber 6 operation And the air ratio of the ash melting furnace 4 and the secondary combustion chamber 6 is controlled based on the calculation result of the calculation device 28, so that the ash melting furnace 4 and the secondary combustion chamber are controlled. The air ratio of 6 and the combustion rate of the ash melting furnace 4 can be directly manipulated. As a result, the reduction combustion in the ash melting furnace 4 can be controlled, and the NOx concentration of the exhaust gas 5 can be reduced. Moreover, if the combustion control device 7 of this embodiment is applied, the combustion efficiency in the ash melting furnace 4 can be increased, the amount of auxiliary fuel used for the ash melting furnace 4 can be reduced, and the cost can be reduced. Can do.
[0022]
While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention.
[0023]
【The invention's effect】
As described above, the combustion control apparatus for a pyrolysis gasification melting furnace according to the present invention includes a pyrolysis furnace for pyrolyzing waste to gasify, an ash melting furnace provided on the downstream side of the pyrolysis furnace, be those with a secondary combustion chamber for burning exhaust gas discharged from the ash melting furnace, said thermal cracking furnace, the ash melting furnace and the secondary combustion chamber air-gas ratio and the ash melting furnace An arithmetic device for calculating the combustion rate is provided, and the air ratio of the ash melting furnace and the secondary combustion chamber is controlled based on the calculation result of the arithmetic device. The reduction combustion in the ash melting furnace can be controlled by direct manipulation of the air ratio, reducing NOx and minimizing the amount of auxiliary fuel used, maintaining a good environment, and producing Cost can be reduced.
[0024]
A combustion control method for a pyrolysis gasification melting furnace according to the present invention includes a pyrolysis furnace for pyrolyzing waste to gasify, an ash melting furnace provided on the downstream side of the pyrolysis furnace, and the ash melting furnace And a combustion control device provided in association with the ash melting furnace and the secondary combustion chamber, and provided in association with the combustion control device. the obtained air ratio and combustion rate calculating unit, said thermal cracking furnace, comprising the steps of calculating the air-gas ratio and the combustion rate of the ash melting furnace of the ash melting furnace and the secondary combustion chamber, said secondary combustion chamber A step of determining the level of NOx concentration at the outlet, the level of combustion rate of the ash melting furnace, and the air ratio of the pyrolysis furnace and the ash melting furnace, and the ash melting furnace according to the respective determination results And the combustion control device controls the air ratio of the secondary combustion chamber. Because it contains a step, on the same effect as the invention can be obtained, while balancing the combustion air quantity of each part, the pyrolysis gasification melting furnace can be operated operated at optimum conditions.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a control flow of a combustion control apparatus for a pyrolysis gasification melting furnace according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram illustrating a method for calculating a combustion air ratio and a combustion rate of each part by an arithmetic unit provided in the combustion control apparatus according to the embodiment of the present invention.
FIG. 3 is a control block chart showing a combustion control method for a pyrolysis gasification melting furnace according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pyrolysis gasification melting furnace 2 Waste 3 Pyrolysis furnace 4 Ash melting furnace 5 Exhaust gas 6 Secondary combustion chamber 7 Combustion control device 8 Ash melting furnace combustion air 9 Secondary combustion chamber combustion air 10 Waste supply device 15 Sand layer temperature Detection device 16 Free board temperature detection device 17 Supply line 18 Pyrolysis furnace primary air 19 Primary air flow rate detection device 22 Ash melting furnace temperature detection device 23 Combustion air flow rate detection device 24 Secondary combustion chamber temperature detection device 25 Secondary combustion chamber air Flow rate detection device 26 Exhaust gas duct 27 O 2 concentration and NOx concentration detection device 28 Air ratio and combustion rate calculation device

Claims (4)

廃棄物を熱分解してガス化する熱分解炉と、該熱分解炉の下流側に設けられる灰溶融炉と、該灰溶融炉から排出される排ガスを燃焼する二次燃焼室とを備えた熱分解ガス化溶融炉の燃焼制御装置において、
前記熱分解炉、前記灰溶融炉及び前記二次燃焼室の気比と前記灰溶融炉の燃焼率を演算する演算装置を設け、該演算装置の演算結果に基づいて前記灰溶融炉及び前記二次燃焼室の空気比を制御するように構成したことを特徴とする熱分解ガス化溶融炉の燃焼制御装置。
A pyrolysis furnace that thermally decomposes and gasifies waste, an ash melting furnace provided downstream of the pyrolysis furnace, and a secondary combustion chamber that burns exhaust gas discharged from the ash melting furnace In the pyrolysis gasification melting furnace combustion control device,
Said thermal cracking furnace, an arithmetic unit is provided for calculating the air-gas ratio and the combustion rate of the ash melting furnace of the ash melting furnace and the secondary combustion chamber, the ash melting furnace and on the basis of the calculation result of the arithmetic unit A combustion control apparatus for a pyrolysis gasification melting furnace, characterized in that the air ratio in the secondary combustion chamber is controlled.
前記演算装置は、前記熱分解炉の砂層温度検出装置、フリーボード温度検出装置及び一次空気流量検出装置に接続され、前記灰溶融炉の温度検出装置及び燃焼空気流量検出装置に接続されていると共に、前記二次燃焼室の温度検出装置及び二次燃焼空気流量検出装置に接続されていることを特徴とする請求項1に記載の熱分解ガス化溶融炉の燃焼制御装置。The arithmetic unit is connected to a sand layer temperature detection device, a freeboard temperature detection device and a primary air flow rate detection device of the pyrolysis furnace, and is connected to a temperature detection device and a combustion air flow rate detection device of the ash melting furnace. The combustion control device for a pyrolysis gasification melting furnace according to claim 1, wherein the combustion control device is connected to a temperature detection device and a secondary combustion air flow rate detection device for the secondary combustion chamber. 廃棄物を熱分解してガス化する熱分解炉と、該熱分解炉の下流側に設けられる灰溶融炉と、該灰溶融炉から排出される排ガスを燃焼する二次燃焼室と、これら灰溶融炉及び二次燃焼室に関連して設けられる燃焼制御装置とを備えた熱分解ガス化溶融炉の燃焼制御方法において、
前記燃焼制御装置に付随して設けられた空気比及び燃焼率演算装置により、前記熱分解炉、前記灰溶融炉及び前記二次燃焼室の気比と前記灰溶融炉の燃焼率を演算する段階と、前記二次燃焼室の出口におけるNOx濃度の高低、前記灰溶融炉の燃焼率の高低、及び前記熱分解炉と前記灰溶融炉の空気比の大小をそれぞれ判定する段階と、それぞれの判定結果に応じて前記灰溶融炉及び前記二次燃焼室の空気比を前記燃焼制御装置により制御する段階とを含むことを特徴とする熱分解ガス化溶融炉の燃焼制御方法。
A pyrolysis furnace for pyrolyzing waste to gasify, an ash melting furnace provided on the downstream side of the pyrolysis furnace, a secondary combustion chamber for combusting exhaust gas discharged from the ash melting furnace, and the ash In a combustion control method for a pyrolysis gasification melting furnace comprising a combustion control device provided in association with a melting furnace and a secondary combustion chamber,
By the air ratio is provided in association with the combustion control device and combustion rate calculating unit, said thermal cracking furnace, to calculate the air-gas ratio and the combustion rate of the ash melting furnace of the ash melting furnace and the secondary combustion chamber Determining the level of NOx concentration at the outlet of the secondary combustion chamber, the level of combustion rate of the ash melting furnace, and the magnitude of the air ratio between the pyrolysis furnace and the ash melting furnace, And controlling the air ratio of the ash melting furnace and the secondary combustion chamber by the combustion control device in accordance with the determination result.
前記二次燃焼室の出口におけるNOx濃度が低く、前記灰溶融炉の燃焼率が低く、かつ前記熱分解炉と前記灰溶融炉の空気比が小さい場合は、前記灰溶融炉の空気比を大きくすると共に、前記二次燃焼室の空気比を小さくし、また、前記二次燃焼室の出口におけるNOx濃度が低く、前記灰溶融炉の燃焼率が低く、かつ前記熱分解炉と前記灰溶融炉の空気比が大きい場合または前記二次燃焼室の出口におけるNOx濃度が低く、前記灰溶融炉の燃焼率が高い場合は、前記灰溶融炉の空気比及び前記二次燃焼室の空気比を共に保持し、一方、前記二次燃焼室の出口におけるNOx濃度が高く、前記灰溶融炉の燃焼率が低く、かつ前記熱分解炉と前記灰溶融炉の空気比が小さい場合は、前記灰溶融炉の空気比及び前記二次燃焼室の空気比を共に保持し、また、前記二次燃焼室の出口におけるNOx濃度が高く、前記灰溶融炉の燃焼率が低く、かつ前記熱分解炉と前記灰溶融炉の空気比が大きい場合または前記二次燃焼室の出口におけるNOx濃度が高く、前記灰溶融炉の燃焼率が高い場合は、前記灰溶融炉の空気比を小さくすると共に、前記二次燃焼室の空気比を大きくすることを特徴とする請求項3に記載の熱分解ガス化溶融炉の燃焼制御方法。When the NOx concentration at the outlet of the secondary combustion chamber is low, the combustion rate of the ash melting furnace is low, and the air ratio between the pyrolysis furnace and the ash melting furnace is small, the air ratio of the ash melting furnace is increased. In addition, the air ratio of the secondary combustion chamber is reduced, the NOx concentration at the outlet of the secondary combustion chamber is low, the combustion rate of the ash melting furnace is low, and the pyrolysis furnace and the ash melting furnace If the NOx concentration at the outlet of the secondary combustion chamber is low and the combustion rate of the ash melting furnace is high, both the air ratio of the ash melting furnace and the air ratio of the secondary combustion chamber are On the other hand, if the NOx concentration at the outlet of the secondary combustion chamber is high, the combustion rate of the ash melting furnace is low, and the air ratio between the pyrolysis furnace and the ash melting furnace is small, the ash melting furnace The air ratio of the secondary combustion chamber and the air ratio of the secondary combustion chamber are both maintained. And when the NOx concentration at the outlet of the secondary combustion chamber is high, the combustion rate of the ash melting furnace is low, and the air ratio of the pyrolysis furnace and the ash melting furnace is large, or in the secondary combustion chamber 4. When the NOx concentration at the outlet is high and the combustion rate of the ash melting furnace is high, the air ratio of the ash melting furnace is decreased and the air ratio of the secondary combustion chamber is increased. A combustion control method for a pyrolysis gasification melting furnace as described in 1. above.
JP2002087335A 2002-03-27 2002-03-27 Combustion control device and combustion control method for pyrolysis gasification melting furnace Expired - Fee Related JP3825351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087335A JP3825351B2 (en) 2002-03-27 2002-03-27 Combustion control device and combustion control method for pyrolysis gasification melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087335A JP3825351B2 (en) 2002-03-27 2002-03-27 Combustion control device and combustion control method for pyrolysis gasification melting furnace

Publications (3)

Publication Number Publication Date
JP2003279022A JP2003279022A (en) 2003-10-02
JP2003279022A5 JP2003279022A5 (en) 2006-02-09
JP3825351B2 true JP3825351B2 (en) 2006-09-27

Family

ID=29233564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087335A Expired - Fee Related JP3825351B2 (en) 2002-03-27 2002-03-27 Combustion control device and combustion control method for pyrolysis gasification melting furnace

Country Status (1)

Country Link
JP (1) JP3825351B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4108624B2 (en) * 2004-02-19 2008-06-25 三井造船株式会社 Combustion control method and waste treatment apparatus
JP5509171B2 (en) * 2011-10-05 2014-06-04 株式会社神鋼環境ソリューション Combustion control device for gasification melting furnace and combustion control method for gasification melting furnace

Also Published As

Publication number Publication date
JP2003279022A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
RU2712555C2 (en) Method of combustion process in furnace plants with grate
JP5430210B2 (en) Incinerator and combustion control method
JP3034467B2 (en) Direct-type incineration ash melting treatment equipment and treatment method
CN112240553B (en) Plasma gasification melting furnace system and control method thereof
JP3825351B2 (en) Combustion control device and combustion control method for pyrolysis gasification melting furnace
JP3868315B2 (en) Combustion control device and combustion control method for pyrolysis gasification melting furnace
JP3525077B2 (en) Directly connected incineration ash melting equipment and its operation control method
JPH0546397B2 (en)
JP5510782B2 (en) Waste melting treatment method and waste melting treatment apparatus
KR20080078520A (en) Method and system for controlling combustion of gasfication melting system
JP4243764B2 (en) Pyrolysis gasification melting system and its heating method
JP2000320816A (en) Oxyhydrogen direct melting furnace system
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP4009151B2 (en) Combustion control method and apparatus for gasification melting furnace
JP3525078B2 (en) Separate incineration ash melting equipment and its operation control method
JP4266879B2 (en) Gasification furnace and combined recycling equipment
JP5255509B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP2004332989A (en) Solid substance combustion device and method
JP4097999B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
JP3553483B2 (en) Melting furnace combustion control method and apparatus in waste gasification melting furnace
JP4337072B2 (en) Waste melting furnace
JP2003302026A (en) Waste thermal decomposition device and its control method
JPH0849820A (en) Device and method for treating waste
JPH09329311A (en) Thermal decomposition system of waste in waste processing apparatus
JPH102532A (en) Waste incinerating device and operating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

LAPS Cancellation because of no payment of annual fees