JP3823793B2 - Cooker - Google Patents

Cooker Download PDF

Info

Publication number
JP3823793B2
JP3823793B2 JP2001293826A JP2001293826A JP3823793B2 JP 3823793 B2 JP3823793 B2 JP 3823793B2 JP 2001293826 A JP2001293826 A JP 2001293826A JP 2001293826 A JP2001293826 A JP 2001293826A JP 3823793 B2 JP3823793 B2 JP 3823793B2
Authority
JP
Japan
Prior art keywords
temperature
input power
heating
sensor
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001293826A
Other languages
Japanese (ja)
Other versions
JP2003100436A (en
Inventor
恵子 坂上
亜希子 杉山
暦 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001293826A priority Critical patent/JP3823793B2/en
Publication of JP2003100436A publication Critical patent/JP2003100436A/en
Application granted granted Critical
Publication of JP3823793B2 publication Critical patent/JP3823793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)
  • Electric Ovens (AREA)
  • Electric Stoves And Ranges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加熱調理器の加熱調理の方法に関するものである。
【0002】
【従来の技術】
従来、煮物調理を行う場合には、強火で煮汁を沸騰させた後、沸騰を持続させることにより調理物の加熱を行い、その後沸騰が続く程度に火加減を弱めることによって、調理物への加熱を進めるとともに調味料を浸透させる形態をとることがほとんどであり、煮汁は高温で一定に保たれていることが多かった。
【0003】
【発明が解決しようとする課題】
しかし、高温で一定に保つということは、調理物の軟化は進むが、過加熱によって、煮崩れたり、調味料の浸透が不十分のまま調理が終了していた。
【0004】
本発明は、調理物を一旦低温に下げ、調味料を調理物に浸透させることによって、しっかり調味料が染み込み、また煮崩れの少ない煮物調理を自動で行うことができる加熱調理器を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記従来の課題を解決するために、被加熱物を加熱する加熱手段と、前記被加熱物を収容する容器と、この容器を介し前記被加熱物の温度を検知する温度検知手段と、前記加熱手段への入力電力を決定する入力電力決定手段と、時間を計測する計時手段と、前記入力電力を制御する制御手段とを備え、前記入力電力決定手段は、沸騰までは前記加熱手段に一定の入力を行い、一定時間沸騰させ、所定温度T1以上の温度を維持させた後、通電をオフして所定温度T2まで温度を降下させ、再び前記所定温度T1まで温度を上昇させる加熱調理器であって、前記温度検知手段による温度と前記計時手段による時間によって求めた沸騰工程における温度勾配tの値が小さいほど、再び前記所定温度T1まで温度を上昇させる時の入力電力値を大きく決定するとともに、沸騰後、前記所定温度T2に下がるまでの時間を計測し、前記温度勾配tに対し前記所定温度T2にさがる温度勾配が小さい場合、再び前記所定温度T1に上昇させる時の入力電力値を既に決定させた入力電力値よりも小さくするようにしたものである。
【0006】
【発明の実施の形態】
請求項1に記載の発明は、被加熱物を加熱する加熱手段と、前記被加熱物を収容する容器と、この容器を介し前記被加熱物の温度を検知する温度検知手段と、前記加熱手段への入力電力を決定する入力電力決定手段と、時間を計測する計時手段と、前記入力電力を制御する制御手段とを備え、前記入力電力決定手段は、沸騰までは前記加熱手段に一定の入力を行い、一定時間沸騰させ、所定温度T1以上の温度を維持させた後、通電をオフして所定温度T2まで温度を降下させ、再び前記所定温度T1まで温度を上昇させる加熱調理器であって、前記温度検知手段による温度と前記計時手段による時間によって求めた沸騰工程における温度勾配tの値が小さいほど、再び前記所定温度T1まで温度を上昇させる時の入力電力値を大きく決定するとともに、沸騰後、前記所定温度T2に下がるまでの時間を計測し、前記温度勾配tに対し、前記所定温度T2にさがるまでの温度勾配が小さい場合、再び前記所定温度T1に上昇させる時の入力電力値を既に決定させた入力電力値よりも小さくすることにより、粘度の異なる煮込み調理に対応することができる。
【0007】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0008】
(実施例1)
図1は、本体に鍋を載置した時の電気接続を示すブロック図である。
【0009】
図1において、1は加熱調理器本体のトッププレートであり、2は鍋、3は本実施例では電磁誘導加熱方式を使用した加熱手段である加熱コイルである加熱手段、4は被加熱物の温度を検知する温度検出手段であるセンサーで、トッププレート1の略中央の裏面に設けられている温度検知手段(以下センサーと称する)、5は加熱手段への入力電力を決定する入力電力決定手段、6は時間を計測する計時手段、7は入力電力を制御する制御手段である。制御手段7は、加熱手段5への通電を制御プログラムによって制御しているもので、本実施例ではマイクロコンピュータを使用している。センサー4の検知温度は、入力電力決定手段5に伝えられ、制御手段7によって通電がコントロールされている。
【0010】
以下、本実施例における動作について説明する。図2は、本実施例における加熱調理器の温度センサーと調理時間と入力電力の関係を示す特性図である。
【0011】
図において、加熱開始後、計時手段6とセンサー4とから、経過時間t3、前記経過時間内における温度上昇値T3より温度勾配tを算出し、入力電力決定手段5でQの値を決定する。沸騰までは、加熱コイル3に一定の入力を行う。沸騰後は、所定温度T1以上を維持するように、センサー4による温度を見ながら、入力電力決定手段5および制御手段7によって入力電力をコントロールする。所定時間が経過した後、センサー4による温度が所定温度T2に降下するまで通電をオフする。センサー4による温度が所定温度T2に達した後、入力電力決定手段5によって決定させた入力電力値Qを入力し、再び所定温度T1まで温度を上昇させるために、加熱を開始する。センサー4による温度が再び所定温度T1に達すると、通電をオフし、調理を終了する。
【0012】
本実施例では、大根の煮込み調理を行う場合の例を示す。大根1本は皮をむき輪切りにして、隠し包丁を入れ、鍋の中に入れる。水を大根が浸かるくらいに入れ、しょうゆ大さじ4、砂糖とみりん、酒を各大さじ1ずつ加える。本体に鍋を載せ、調理を開始する。本実施例では、T1は95℃、T2は60℃に設定されている。沸騰工程において、センサー4によって鍋底の温度を検知し、温度勾配tを求め、センサー4の温度が100℃になった時に、入力電力決定手段5および制御手段7により加熱コイル3への通電がコントロールされて、センサー4の温度は95℃以上を保つ。その後、20分間を経過させ、大根の軟化を進める。20分間経過した後、通電をオフし、センサー4の温度が60℃になるまで温度を下げる。通電をオフして温度を下げるのは、調理物の温度が下がると、煮汁が調理物の中まで染み込み、味を良くなるためである。調味料の拡散現象は低温で時間をかけることにより、静かに起こるので、形を崩すことなく内部まで均一な味をつけることができる。センサー4の温度が60℃まで下がると、再び、加熱を開始する。沸騰工程において求めた温度勾配tによって、入力電力値Qが決定されているので、その値を制御手段7によって加熱コイル3へ通電する。本実施例では、Qは300Wとする。再び加熱を開始し、センサー4の温度が95℃になると、通電をオフし、調理終了とし、大根の中までしっかりと味の染みた煮崩れのない煮物が仕上がる。
【0013】
(実施例2)
本実施例では、調理物の負荷が大きい場合や味の染み込みが悪い調理物においての煮込み調理における動作の例を示す。構成は実施例1と同じであるので説明は省略する。
【0014】
図3は、本実施例における加熱調理器の温度センサーと調理時間と入力電力の関係を示す特性図である。図において、実施例1と同様に、加熱開始後、計時手段6とセンサー4とから、T3、t3の値より温度勾配tを算出し、入力電力決定手段5で入力電力値Qを決定する。この時、温度勾配tの値が小さければ、調理物の負荷が大きいと判断し、所定温度T1とT2を周期的に繰り返す回数を増やす。また、同様に温度勾配tの値が小さければ、沸騰後の所定温度T1以上の温度を維持させる煮込み工程時間tnの長さを長くする。沸騰までは、実施例1と同様に加熱コイル3に一定の入力を行う。沸騰後は、所定温度T1以上を維持するように、センサー4による温度を見ながら、入力電力決定手段5および制御手段7によって入力電力をコントロールしながら、煮込み工程時間tnを経過させる。煮込み工程時間tnが経過した後、センサー4による温度が所定温度T2に降下するまで通電をオフする。センサー4による温度が所定温度T2に達した後、入力電力決定手段5によって決定させた入力電力値Qを入力し、再び所定温度T1まで温度を上昇させるために、加熱を開始する。センサー4による温度が再び所定温度T1に達すると、再び通電をオフし、所定温度T2まで温度を下げる。これを繰り返し、決定された回数を繰り返した後、所定温度T1に達したところで、調理を終了する。
【0015】
本実施例では、人参とかぼちゃの煮込み調理を行う場合の例を示す。人参2本の皮をむき、大き目の乱切りにする。かぼちゃ1/2個は、にんじんと同じくらいの大きさにきり、面取りをする。切った調理物を鍋の中に入れる。水を調理物が浸かるくらいに入れ、みりん、しょうゆを各大さじ4ずつ加える。本体に鍋を載せ、調理を開始する。本実施例では、T1は95℃、T2は70℃に設定されている。沸騰工程において、センサー4によって鍋底の温度を検知し、温度勾配tを求め、センサー温度が100℃になった時に、入力電力決定手段5および制御手段7により加熱コイル3への通電がコントロールされて、センサー4の温度は95℃以上を保つ。本実施例で、前記温度勾配tにより、負荷が大きいと判断されたので、煮込み工程時間tnを30分とする。また、所定温度T1とT2の繰り返し回数は2回と、Qの値は400Wとする。30分間経過した後、通電をオフし、センサー4の温度が70℃になるまで温度を下げる。センサー4の温度が70℃まで下がると、再び、加熱を開始する。この時の入力電力値Qは400Wを制御手段7によって加熱コイル3へ通電する。再び加熱を開始し、センサー4の温度が95℃になると、通電をオフし、調理物の温度を下げる。センサー4の温度が70℃まで下がると制御手段7が400W入力し、加熱を再開させる。これを2回繰り返し、所定温度T1まで調理物の温度が達した時に調理終了とすると、味の染み込みにくい調理物の中までしっかりと味の染みた煮崩れのない煮物が仕上がる。
【0016】
(実施例3)
本実施例では、味の染み込みが悪く、煮崩れのしやすい調理物においての煮込み調理における動作の例を示す。図4は、本実施例における加熱調理器の温度センサーと調理時間と入力電力の関係を示す特性図である。
【0017】
図において、実施例1と同様に、加熱開始後、計時手段6とセンサー4とから、t3、T3の値より温度勾配tを算出し、入力電力決定手段5で入力電力値Qを決定する。沸騰までは、加熱コイル3に一定の入力を行う。センサー4による温度が所定温度T2に降下するまで通電をオフする工程までは、実施例1と同様の動作を行う。センサー4による温度が所定温度T2に達した後、入力電力決定手段5によって決定させた入力電力値Qを入力する。この時、通電を小刻みにオンオフすることによって、再び所定温度T1まで温度を上昇させる速度を緩やかにさせる。センサー4による温度が再び所定温度T1に達すると、通電をオフし、調理を終了する。
【0018】
本実施例では、じゃがいもの煮込み調理を行う場合の例を示す。じゃがいも6個の皮をむき、食べやすい大きさに切ってしばらく水にさらして灰汁抜きをし、鍋の中に入れる。だし汁をじゃがいもが浸かるくらいに入れ、しょうゆ大さじ3、砂糖とみりん、酒を各大さじ1ずつ加える。本体に鍋を載せ、調理を開始する。本実施例では、所定温度T1は90℃、所定温度T2は60℃に設定されている。沸騰工程において、センサー4によって鍋底の温度を検知し、温度勾配tを求め、センサー4の温度が100℃になった時に、入力電力決定手段5および制御手段7により加熱コイル3への通電がコントロールされて、センサー4の温度は90℃以上を保つ。その後、15分間を経過させ、じゃがいもの軟化を進める。15分間経過した後、通電をオフし、センサー4の温度が60℃になるまで温度を下げる。センサー4の温度が60℃まで下がると、再び、加熱を開始する。沸騰工程において求めた温度勾配tによって、入力電力値Qが決定されているので、その値を制御手段7によって加熱コイル3へ通電する。本実施例では、Qは300Wとする。この時、加熱コイル3への通電は10秒毎にオンオフを繰り返し、調理物の温度上昇を緩やかにさせる。再び加熱を開始し、センサー4の温度が90℃になると、通電をオフし、調理終了とし、じゃがいもの中までしっかりと味の染みた煮崩れのない煮物が仕上がる。
【0019】
(実施例4)
本実施例では、粘度の高い煮込み調理においての動作をしめす。図5は、本実施例における加熱調理器の温度センサーと調理時間と入力電力の関係を示す特性図である。
【0020】
図において、実施例1と同様に、加熱開始後、計時手段6とセンサー4とから、t3、T3の値より温度勾配tを算出し、入力電力決定手段5で入力電力値Qを決定する。この時、同時に所定温度T2まで降下するのにかかる時間t4を予測する。沸騰までは、加熱コイル3に一定の入力を行う。センサー4による温度が所定温度T2に降下するまで通電をオフする工程までは、実施例1と同様の動作を行う。センサー4による温度が所定温度T2に達し時、すでにt4が経過していた場合、入力電力決定手段5によって既に決定させた入力電力値Qを変更し、小さい値を入力する。これは、調理物の粘度が高い場合、温度の降下が緩やかになり、高い値を入力した場合に、焦げ付きやすくなるためである。加熱再開後、センサー4による温度が再び所定温度T1に達すると、通電をオフし、調理を終了する。
【0021】
本実施例では、シチューの煮込み工程を調理する場合の例を示す。じゃがいも2個、にんじん1/2本、たまねぎ1個、鶏肉200gを食べやすい大きさに切り、油を加えて炒め、4カップの水を加える。本体に鍋を載せ、煮込み工程を開始する。なお、炒め工程を加熱調理器で行うこともできる。本実施例では、T1は95℃、T2は70℃に設定されている。沸騰工程において、センサー4によって鍋底の温度を検知し、温度勾配tを求め、センサー4の温度が100℃になった時に、入力電力決定手段5および制御手段7により加熱コイル3への通電がコントロールされて、センサー4の温度は95℃以上を保つ。この時、温度勾配tより、入力電力値Qは400Wと決定し、温度降下時間t4は30分以内であると予測したとする。その後、20分間を経過させ、調理物の軟化を進める。20分間経過した後、通電をオフし、シチューのルーを加え、センサー4の温度が70℃になるまで温度を下げる。本実施例では、センサー4の温度が70℃まで降下した時に、35分が経過していたとする。その場合、決定していた入力電力値400Wを、300Wに変更する。再決定された入力値を制御手段7により加熱コイル3へ通電する。再び加熱を開始し、センサー4の温度が95℃になると、通電をオフし、調理終了とする。一度決定した入力電力値Qを変更することによって、粘度が高い煮物であっても、焦げ付くことなく調理をすることができる。
【0022】
なお、本実施例においては加熱手段を電磁誘導加熱方式の加熱コイル5としたが、抵抗ヒーターでも同様の効果が得られる。
【0023】
また、本実施例で用いた時間、温度、入力電力の値は例であって、他の値をとっても構わない。
【0024】
【発明の効果】
以上のように本発明によれば、粘度の高い煮物でも焦げ付くことなく調理することができる。
【図面の簡単な説明】
【図1】 本発明における加熱調理器に鍋を載置した時のブロック図
【図2】 本発明の実施例1における加熱調理器の温度センサーと調理時間と入力電力の関係を示す特性図
【図3】 本発明の実施例2における加熱調理器の温度センサーと調理時間と入力電力の関係を示す特性図
【図4】 本発明の実施例3における加熱調理器の温度センサーと調理時間と入力電力の関係を示す特性図
【図5】 本発明の実施例4における加熱調理器の温度センサーと調理時間と入力電力の関係を示す特性図
【符号の説明】
1 トッププレート
2 鍋
3 加熱コイル(加熱手段)
4 センサー(温度検知手段)
5 入力電力決定手段
6 計時手段
7 制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of cooking by a heating cooker.
[0002]
[Prior art]
Conventionally, when cooking boiled food, boil the broth with high heat, then heat the cooked food by sustaining the boiling, and then heat the cooked food by reducing the heating to the extent that boiling continues. In most cases, the broth was kept at a high temperature.
[0003]
[Problems to be solved by the invention]
However, keeping it constant at high temperature means that the cooked food has been softened, but cooking has been overcooked due to overheating and insufficient penetration of seasonings.
[0004]
The present invention provides a heating cooker that can automatically perform boiled cooking with less seasoning by allowing the seasoning to permeate into the cooked product by lowering the cooked product to a low temperature and allowing the seasoned product to penetrate into the cooked product. With the goal.
[0005]
[Means for Solving the Problems]
In order to solve the conventional problem, a heating means for heating an object to be heated, a container for storing the object to be heated, a temperature detecting means for detecting the temperature of the object to be heated via the container, and the heating Input power determining means for determining the input power to the means, time measuring means for measuring time, and control means for controlling the input power, the input power determining means is fixed to the heating means until boiling This is a heating cooker that performs input, boiles for a certain period of time , maintains a temperature equal to or higher than a predetermined temperature T1 , then turns off the current to lower the temperature to the predetermined temperature T2, and then increases the temperature to the predetermined temperature T1 again. Thus, the smaller the value of the temperature gradient t in the boiling process determined by the temperature by the temperature detecting means and the time by the time measuring means, the larger the input power value when raising the temperature to the predetermined temperature T1 again. With determining, after boiling, the measures the time down to a predetermined temperature T2, if with respect to the temperature gradient t the temperature gradient decreases to a predetermined temperature T2 is small, the input power when raising again to the predetermined temperature T1 The value is made smaller than the input power value that has already been determined .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a heating means for heating an object to be heated, a container for storing the object to be heated, a temperature detecting means for detecting the temperature of the object to be heated via the container, and the heating means. an input power determining means for determining the input power to the timer means for measuring time, and a control means for controlling the input power, the input power determining means, constant input to said heating means to boiling was carried out, boiled predetermined time, after maintaining the predetermined temperature T1 or higher, energization lowering the temperature to the predetermined temperature T2 is turned off and there a heating cooker Ru raising the temperature again until the predetermined temperature T1 Te, higher temperature and by the temperature sensing means and the smaller the value of the temperature gradient t in boiling step was determined by the time by timer means, to determine a large input power value when the temperature is increased again to the predetermined temperature T1 Together, after boiling, the measures the time down to a predetermined temperature T2, with respect to the temperature gradient t, when the temperature gradient of the down to the predetermined temperature T2 is small, when the raising again to the predetermined temperature T1 By making the input power value smaller than the input power value that has already been determined, it is possible to cope with stewed cooking with different viscosities.
[0007]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0008]
Example 1
FIG. 1 is a block diagram showing electrical connection when a pan is placed on the main body.
[0009]
In FIG. 1, 1 is a top plate of a heating cooker body, 2 is a pan, 3 is a heating means that is a heating means using an electromagnetic induction heating method in this embodiment, and 4 is a heating object. A sensor, which is a temperature detection means for detecting temperature, is a temperature detection means (hereinafter referred to as a sensor) provided on the substantially central back surface of the top plate 1, and 5 is an input power determination means for determining input power to the heating means. , 6 is a time measuring means for measuring time, and 7 is a control means for controlling input power. The control means 7 controls energization to the heating means 5 by a control program, and a microcomputer is used in this embodiment. The detected temperature of the sensor 4 is transmitted to the input power determining means 5, and energization is controlled by the control means 7.
[0010]
The operation in this embodiment will be described below. FIG. 2 is a characteristic diagram showing the relationship between the temperature sensor, cooking time, and input power of the cooking device in the present embodiment.
[0011]
In the figure, the temperature gradient t is calculated from the elapsed time t3 and the temperature rise value T3 within the elapsed time from the time measuring means 6 and the sensor 4 after the start of heating, and the value of Q is determined by the input power determining means 5. Until boiling, a constant input is made to the heating coil 3. After boiling, the input power is controlled by the input power determination means 5 and the control means 7 while watching the temperature by the sensor 4 so as to maintain the predetermined temperature T1 or higher. After the predetermined time has elapsed, the energization is turned off until the temperature of the sensor 4 drops to the predetermined temperature T2. After the temperature by the sensor 4 reaches the predetermined temperature T2, the input power value Q determined by the input power determination means 5 is input, and heating is started to raise the temperature to the predetermined temperature T1 again. When the temperature by the sensor 4 reaches the predetermined temperature T1 again, the energization is turned off and cooking is finished.
[0012]
In a present Example, the example in the case of performing the stew cooking of a radish is shown. One radish is peeled and cut into slices, and a hidden knife is placed in the pan. Add enough water to soak the radish and add 4 tablespoons soy sauce, sugar, mirin, and sake. Put the pan on the body and start cooking. In this embodiment, T1 is set to 95 ° C. and T2 is set to 60 ° C. In the boiling process, the temperature of the bottom of the pan is detected by the sensor 4, the temperature gradient t is obtained, and when the temperature of the sensor 4 reaches 100 ° C, the energization to the heating coil 3 is controlled by the input power determining means 5 and the control means 7. Thus, the temperature of the sensor 4 is maintained at 95 ° C. or higher. Then, let 20 minutes pass, and advance softening of a radish. After 20 minutes, the energization is turned off and the temperature is lowered until the temperature of the sensor 4 reaches 60 ° C. The reason why the temperature is lowered by turning off the electric current is that when the temperature of the food is lowered, the broth soaks into the food and the taste is improved. The diffusion phenomenon of seasonings occurs quietly by taking time at low temperatures, so that a uniform flavor can be given to the inside without breaking the shape. When the temperature of the sensor 4 falls to 60 ° C., heating is started again. Since the input power value Q is determined by the temperature gradient t obtained in the boiling process, the value is supplied to the heating coil 3 by the control means 7. In this embodiment, Q is 300 W. When heating is started again and the temperature of the sensor 4 reaches 95 ° C., the energization is turned off and the cooking is finished.
[0013]
(Example 2)
In the present embodiment, an example of operation in stewed cooking in a case where the load of the cooked food is large or in which the taste is not soaked is shown. Since the configuration is the same as that of the first embodiment, description thereof is omitted.
[0014]
FIG. 3 is a characteristic diagram showing the relationship between the temperature sensor, cooking time, and input power of the cooking device in the present embodiment. In the figure, as in Example 1, after the start of heating, the temperature gradient t is calculated from the values of T3 and t3 from the time measuring means 6 and the sensor 4, and the input power value Q is determined by the input power determining means 5. At this time, if the value of the temperature gradient t is small, it is determined that the load of the food is large, and the number of times of periodically repeating the predetermined temperatures T1 and T2 is increased. Similarly, if the value of the temperature gradient t is small, the length of the boiling process time tn for maintaining the temperature equal to or higher than the predetermined temperature T1 after boiling is increased. Until boiling, a constant input is made to the heating coil 3 as in the first embodiment. After boiling, the boiling time tn is allowed to elapse while controlling the input power by the input power determining means 5 and the control means 7 while watching the temperature by the sensor 4 so as to maintain the predetermined temperature T1 or higher. After the simmering process time tn has elapsed, the energization is turned off until the temperature of the sensor 4 drops to the predetermined temperature T2. After the temperature by the sensor 4 reaches the predetermined temperature T2, the input power value Q determined by the input power determination means 5 is input, and heating is started to raise the temperature to the predetermined temperature T1 again. When the temperature of the sensor 4 reaches the predetermined temperature T1 again, the energization is turned off again and the temperature is lowered to the predetermined temperature T2. After repeating this and repeating the determined number of times, when the predetermined temperature T1 is reached, cooking is terminated.
[0015]
In the present embodiment, an example in which stewed cooking of carrots and pumpkins is shown. Peel two carrots into large pieces. 1/2 pumpkin is about the same size as a carrot and chamfered. Put the cut food in the pan. Add enough water to soak the food and add 4 tablespoons of mirin and soy sauce. Put the pan on the body and start cooking. In this embodiment, T1 is set to 95 ° C. and T2 is set to 70 ° C. In the boiling process, the temperature of the pan bottom is detected by the sensor 4, the temperature gradient t is obtained, and when the sensor temperature reaches 100 ° C., the energization to the heating coil 3 is controlled by the input power determining means 5 and the control means 7. The temperature of the sensor 4 is kept at 95 ° C. or higher. In this example, because the load was determined to be large due to the temperature gradient t, the boiling process time tn was set to 30 minutes. The number of repetitions of the predetermined temperatures T1 and T2 is 2, and the value of Q is 400W. After 30 minutes, the energization is turned off and the temperature is lowered until the temperature of the sensor 4 reaches 70 ° C. When the temperature of the sensor 4 falls to 70 ° C., heating is started again. At this time, the input power value Q is 400 W, and the heating coil 3 is energized by the control means 7. Heating is started again, and when the temperature of the sensor 4 reaches 95 ° C., the energization is turned off and the temperature of the food is lowered. When the temperature of the sensor 4 falls to 70 ° C., the control means 7 inputs 400 W and restarts the heating. This is repeated twice, and when the cooking is finished when the temperature of the cooked food reaches the predetermined temperature T1, a boiled dish that does not break into the cooked food is obtained, even in a dish that is hard to soak up the taste.
[0016]
Example 3
In the present embodiment, an example of operation in stewed cooking in a cooked product that is poorly soaked in taste and easy to boil is shown. FIG. 4 is a characteristic diagram showing the relationship between the temperature sensor, cooking time, and input power of the cooking device in the present embodiment.
[0017]
In the figure, similarly to Example 1, after the start of heating, the temperature gradient t is calculated from the values of t3 and T3 from the timing means 6 and the sensor 4, and the input power determination means 5 determines the input power value Q. Until boiling, a constant input is made to the heating coil 3. The same operation as in the first embodiment is performed until the step of turning off the energization until the temperature by the sensor 4 falls to the predetermined temperature T2. After the temperature by the sensor 4 reaches a predetermined temperature T2, the input power value Q determined by the input power determination means 5 is input. At this time, the energization is turned on and off in small increments, so that the speed at which the temperature is raised again to the predetermined temperature T1 is gradually reduced. When the temperature by the sensor 4 reaches the predetermined temperature T1 again, the energization is turned off and cooking is finished.
[0018]
In a present Example, the example in the case of performing potato stew cooking is shown. Peel 6 potatoes, cut to a size that is easy to eat, expose to water for a while, drain the lye, and place in a pan. Add soup stock to soak potatoes and add 3 tablespoons soy sauce, sugar, mirin, and sake. Put the pan on the body and start cooking. In this embodiment, the predetermined temperature T1 is set to 90 ° C., and the predetermined temperature T2 is set to 60 ° C. In the boiling process, the temperature of the bottom of the pan is detected by the sensor 4, the temperature gradient t is obtained, and when the temperature of the sensor 4 reaches 100 ° C, the energization to the heating coil 3 is controlled by the input power determining means 5 and the control means 7. Thus, the temperature of the sensor 4 is maintained at 90 ° C. or higher. Then, let the potato soften after 15 minutes. After 15 minutes, the power is turned off and the temperature is lowered until the temperature of the sensor 4 reaches 60 ° C. When the temperature of the sensor 4 falls to 60 ° C., heating is started again. Since the input power value Q is determined by the temperature gradient t obtained in the boiling process, the value is supplied to the heating coil 3 by the control means 7. In this embodiment, Q is 300 W. At this time, the energization of the heating coil 3 is repeatedly turned on and off every 10 seconds to moderate the temperature rise of the cooked food. When heating is started again and the temperature of the sensor 4 reaches 90 ° C., the energization is turned off, the cooking is finished, and the boiled simmered food that has been tastefully squeezed into the potato is finished.
[0019]
Example 4
In this embodiment, the operation in stew cooking with high viscosity is shown. FIG. 5 is a characteristic diagram showing the relationship between the temperature sensor, cooking time, and input power of the cooking device in the present embodiment.
[0020]
In the figure, similarly to Example 1, after the start of heating, the temperature gradient t is calculated from the values of t3 and T3 from the timing means 6 and the sensor 4, and the input power determination means 5 determines the input power value Q. At this time, a time t4 required to simultaneously drop to the predetermined temperature T2 is predicted. Until boiling, a constant input is made to the heating coil 3. The same operation as in the first embodiment is performed until the step of turning off the energization until the temperature by the sensor 4 falls to the predetermined temperature T2. When t4 has already elapsed when the temperature by the sensor 4 reaches the predetermined temperature T2, the input power value Q already determined by the input power determination means 5 is changed and a small value is input. This is because when the viscosity of the cooked food is high, the temperature drops slowly, and when a high value is input, it becomes easy to burn. When the temperature by the sensor 4 reaches the predetermined temperature T1 again after resuming the heating, the energization is turned off and the cooking is finished.
[0021]
In this embodiment, an example of cooking a stew stew process is shown. Cut 2 potatoes, 1/2 carrot, 1 onion and 200 g chicken into a size that is easy to eat, add oil and stir. Add 4 cups of water. Place the pan on the main body and start the cooking process. In addition, a fried process can also be performed with a heating cooker. In this embodiment, T1 is set to 95 ° C. and T2 is set to 70 ° C. In the boiling process, the temperature of the bottom of the pan is detected by the sensor 4, the temperature gradient t is obtained, and when the temperature of the sensor 4 reaches 100 ° C, the energization to the heating coil 3 is controlled by the input power determining means 5 and the control means 7. Thus, the temperature of the sensor 4 is maintained at 95 ° C. or higher. At this time, it is assumed that the input power value Q is determined to be 400 W from the temperature gradient t, and the temperature drop time t4 is predicted to be within 30 minutes. Then, let 20 minutes pass and advance softening of a cooking thing. After 20 minutes, the power is turned off, the stew roux is added, and the temperature is lowered until the temperature of the sensor 4 reaches 70 ° C. In this embodiment, it is assumed that 35 minutes have elapsed when the temperature of the sensor 4 has dropped to 70 ° C. In this case, the determined input power value 400W is changed to 300W. The control unit 7 energizes the heating coil 3 with the re-determined input value. Heating is started again, and when the temperature of the sensor 4 reaches 95 ° C., the energization is turned off and cooking is finished. By changing the input power value Q once determined, even a boiled food with high viscosity can be cooked without being burnt.
[0022]
In this embodiment, the heating means is the electromagnetic induction heating type heating coil 5, but the same effect can be obtained with a resistance heater.
[0023]
Further, the values of time, temperature, and input power used in this embodiment are examples, and other values may be taken.
[0024]
【The invention's effect】
As described above, according to the present invention, even a simmered dish having a high viscosity can be cooked without being burnt.
[Brief description of the drawings]
FIG. 1 is a block diagram when a pan is placed on a heating cooker according to the present invention. FIG. 2 is a characteristic diagram showing a relationship between a temperature sensor, cooking time, and input power of the heating cooker according to Embodiment 1 of the present invention. FIG. 3 is a characteristic diagram showing the relationship between the temperature sensor, cooking time, and input power of the cooking device in Embodiment 2 of the present invention. FIG. 4 is a temperature sensor, cooking time, and input of the cooking device in Embodiment 3 of the present invention. Fig. 5 is a characteristic diagram showing the relationship between electric power. Fig. 5 is a characteristic diagram showing the relationship between the temperature sensor of the cooking device, cooking time, and input power in Example 4 of the present invention.
1 top plate 2 pan 3 heating coil (heating means)
4 Sensor (temperature detection means)
5 Input power determining means 6 Timekeeping means 7 Control means

Claims (1)

被加熱物を加熱する加熱手段と、前記被加熱物を収容する容器と、この容器を介し前記被加熱物の温度を検知する温度検知手段と、前記加熱手段への入力電力を決定する入力電力決定手段と、時間を計測する計時手段と、前記入力電力を制御する制御手段とを備え、前記入力電力決定手段は、沸騰までは前記加熱手段に一定の入力を行い、一定時間沸騰させ、所定温度T1以上の温度を維持させた後、通電をオフして所定温度T2まで温度を降下させ、再び前記所定温度T1まで温度を上昇させる加熱調理器であって、前記温度検知手段による温度と前記計時手段による時間によって求めた沸騰工程における温度勾配tの値が小さいほど、再び前記所定温度T1まで温度を上昇させる時の入力電力値を大きく決定するとともに、沸騰後、前記所定温度T2に下がるまでの時間を計測し、前記温度勾配tに対し前記所定温度T2にさがる温度勾配が小さい場合、再び前記所定温度T1に上昇させる時の入力電力値を既に決定させた入力電力値よりも小さくする加熱調理器。A heating means for heating the object to be heated, a container for storing the object to be heated, a temperature detecting means for detecting the temperature of the object to be heated via the container, and an input power for determining the input power to the heating means Determination means, time measuring means for measuring time, and control means for controlling the input power, the input power determination means performs a constant input to the heating means until boiling , boil for a certain time, predetermined after maintaining the temperature T1 above temperature, energization lowering the temperature to the predetermined temperature T2 is turned off, and a re-heating cooker in which the Ru raising the temperature to a predetermined temperature T1, the temperature by the temperature detecting means as the value of the temperature gradient t in boiling step was determined by the time by the clock means is small, with largely determines the input power value when the temperature is increased again to the predetermined temperature T1, after boiling, the Measured time until the temperature falls to the constant temperature T2, and when the temperature gradient reaching the predetermined temperature T2 is small with respect to the temperature gradient t, the input power value for which the input power value for raising the temperature to the predetermined temperature T1 again has already been determined. Cooker to make smaller than the value .
JP2001293826A 2001-09-26 2001-09-26 Cooker Expired - Fee Related JP3823793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293826A JP3823793B2 (en) 2001-09-26 2001-09-26 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293826A JP3823793B2 (en) 2001-09-26 2001-09-26 Cooker

Publications (2)

Publication Number Publication Date
JP2003100436A JP2003100436A (en) 2003-04-04
JP3823793B2 true JP3823793B2 (en) 2006-09-20

Family

ID=19115540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293826A Expired - Fee Related JP3823793B2 (en) 2001-09-26 2001-09-26 Cooker

Country Status (1)

Country Link
JP (1) JP3823793B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349098A (en) * 2003-05-22 2004-12-09 Matsushita Electric Ind Co Ltd Induction heating cooker
JP4839681B2 (en) * 2005-06-08 2011-12-21 パナソニック株式会社 Induction heating cooker
JP2020186871A (en) * 2019-05-16 2020-11-19 株式会社ハーマン Gas stove
JP7300308B2 (en) * 2019-05-16 2023-06-29 株式会社ハーマン Gas stove
CN113520140B (en) * 2020-04-22 2023-01-13 佛山市顺德区智烹科技有限公司 Automatic cooking method and automatic cooking machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224166A (en) * 1995-02-23 1996-09-03 Matsushita Electric Ind Co Ltd Electric rice cooker
JPH10149875A (en) * 1996-11-21 1998-06-02 Matsushita Electric Ind Co Ltd Induction-heated cooking device
JPH11123140A (en) * 1997-10-22 1999-05-11 Matsushita Electric Ind Co Ltd Heating cooker

Also Published As

Publication number Publication date
JP2003100436A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
EP3403468B1 (en) Kitchen appliance and cooking monitoring method
CN101317635B (en) Cooking method and device for automatically receiving juice and frying dish
CN109793421B (en) Cooking control method and cooking control device, storage medium and pressure cooking appliance
CN105686615A (en) Cookware control method and cookware control system
JP2007103289A (en) Induction heating cooker
CN109812838A (en) Kitchen range firepower control method, apparatus and kitchen range
CN112256069B (en) Cooking control method and device for cooker and electronic device
JP2009093976A (en) Induction cooker
CN103637029A (en) Stirring-free electric-heating automatic cooing apparatus and cooking method thereof
JP2004261476A (en) Electric pressure cooker
JP3985539B2 (en) Induction heating cooker
US11832762B2 (en) Method for operating a cooking oven
JP3823793B2 (en) Cooker
JP2013039328A (en) Electric cooking device, method of boiling, and method of soaking
KR920002418B1 (en) Automatic cooking appliance and method of cooking
JPH08238171A (en) Heat cooking method
JP4321482B2 (en) Electromagnetic induction heating cooker
JP2006120552A (en) Heating cooker
CN109752970B (en) Cooking appliance, detection method and device of cooking appliance and inner pot thereof, storage medium and processor
JP5413003B2 (en) Electric pressure cooker
CN112120523A (en) Cooking method, cooking utensil and cooking device
CN111012152B (en) Cooking control method of cooker and cooker
JP4311154B2 (en) Electromagnetic induction heating cooker
CN2602576Y (en) Electric heating plate
JP4863169B2 (en) Cooking device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees