JP3823241B2 - Seismic isolation device installation method and installation structure - Google Patents

Seismic isolation device installation method and installation structure Download PDF

Info

Publication number
JP3823241B2
JP3823241B2 JP04582199A JP4582199A JP3823241B2 JP 3823241 B2 JP3823241 B2 JP 3823241B2 JP 04582199 A JP04582199 A JP 04582199A JP 4582199 A JP4582199 A JP 4582199A JP 3823241 B2 JP3823241 B2 JP 3823241B2
Authority
JP
Japan
Prior art keywords
seismic isolation
dowel
flange plate
plate
upper face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04582199A
Other languages
Japanese (ja)
Other versions
JP2000240072A (en
Inventor
義英 内山
信義 村井
雅史 山本
章 西村
一一 日下部
一三 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP04582199A priority Critical patent/JP3823241B2/en
Publication of JP2000240072A publication Critical patent/JP2000240072A/en
Application granted granted Critical
Publication of JP3823241B2 publication Critical patent/JP3823241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、建物や橋、塔等のいわゆる免震構造物の免震手段として設置される免震装置の設置方法及び設置構造の技術分野に属し、更に云えば、免震装置に極力曲げを与えない設置方法及び設置構造に関する。
【0002】
【従来の技術】
従来、建物や橋、塔等のいわゆる免震構造物を免震化する目的で設置された免震装置は、地震力(水平力)を受けて揺れる前記構造物によって曲げを受ける。鋼板とゴムシートとを交互に重ね合わせ相互に接着して柱状に積層された所謂積層ゴムと呼ばれる免震装置の場合、曲げに起因するゴムシートの局部的な引張り力により鋼板とゴムシートが剥離したり、局部的な圧縮力によりゴムシートそのものが破壊する虞がある。また、転がり支承のような機械式の免震装置に、曲げが作用すると、転動体等に局部的な大荷重が付加され、作動不良の原因となる虞がある。
【0003】
従って、免震装置(積層ゴム、転がり支承等)には、出来るだけ地震を受けた建物の曲げ変形を吸収・緩和して過大な曲げを与えない構造の実施が切望される。このニーズに応えた技術として、▲1▼免震装置に直接接合される梁等の径を大きくすることより強剛したり、▲2▼免震装置の上下にスラブを設置する、免震装置の設置方法及び設置構造がある。
【0004】
【本発明が解決しようとする課題】
しかしながら、前記▲1▼、▲2▼に記載した技術はともに、費用が非常に嵩むほか、建物中間階での免震(中間層免震)、柱頭での免震、あるいは軟弱地盤地域で不同沈下を生じる可能性のある建物の免震化は実施が施工上大変困難であるという問題があった。
【0005】
従って、本発明の目的は、積層ゴムの上部面板とフランジプレートとを免震構造物の曲げ変形に伴うローリングを許容可能とし上下変位を吸収・緩和する構造で連結することにより、積層ゴムに極力、曲げを与えないようにした免震装置の設置方法及び設置構造を提供することである。
本発明の更なる目的は、中間層免震、柱頭での免震、あるいは軟弱地盤地域で不同沈下を生じる可能性のある建物での免震の実施が容易に実現可能で、経済性に優れた免震装置の設置方法及び設置構造を提供することである。
【0006】
【課題を解決するための手段】
上記従来技術の課題を解決するための手段として、請求項1に記載した発明に係る免震装置の設置方法は、
基礎構造物へ固定した積層ゴムの上部面板と、免震構造物の柱の下底へ取り付けたフランジプレートとを、各々の鉛直な中心線上に水平力を伝達可能な不動点を設けて、免震構造物の曲げ変形をローリングとして許容する球面ないしは多角形面を介して接続すると共に、前記不動点を中心とする同心円に配置した複数のボルトを鉛直方向に設け、皿バネ、コイルバネ等の弾性バネないしはゴム等の弾性体を装着しナットをねじ込み、前記上部面板と前記フランジプレートの周辺部を前記免震構造物の曲げ変形に伴うローリングを許容可能に連結することを特徴とする。
【0007】
請求項2に記載した発明に係る免震装置の設置構造は、
基礎構造物へ固定した積層ゴムの上部面板の上面の中心部にダボ又はダボ孔が設けられていること、
免震構造物の柱の下底へ取り付けたフランジプレートの下面中心部に、前記上部面板のダボ又はダボ孔に嵌まり合うダボ孔又はダボが設けられていること、
前記上部面板の上面と前記フランジプレートの下面の少なくともいずれか一方の面が免震構造物の曲げ変形をローリングとして許容する球面ないしは多角形面に形成されていること、
前記積層ゴムの上部面板と前記フランジプレートは、前記ダボ及びダボ孔とを水平力の伝達が可能に嵌め合わされ、ダボ及びダボ孔を中心とする同心円に配置した複数のボルトが鉛直方向に設けられ、同ボルトに皿バネ、コイルバネ等の弾性バネないしはゴム等の弾性体を装着しナットをねじ込み、前記上部面板と前記フランジプレートの周辺部が前記免震構造物の曲げ変形に伴うローリングを許容可能に連結されていること、
をそれぞれ特徴とする。
【0009】
請求項に記載した発明は、請求項2に記載した免震装置の設置構造において、フランジプレートの下面は、その外周から中心部へ向かって漸次膨らむ球面ないしは多角形面に形成され、積層ゴムの上部面板の上面は略水平面に形成されていることを特徴とする。
【0010】
【発明の実施の形態、及び実施例】
図1と図2は、請求項1と請求項2に記載した免震装置の設置方法及び設置構造の実施形態を示している。
基礎梁(基礎構造物)10へ固定して垂直に立てた積層ゴム1の上部面板2の上面2aは略水平な平面とされ、その略中心部にダボ(シアキー)3が一体的に設けられている。
一方、免震構造物の柱11の下底へ取り付けた柱脚としてのフランジプレート4の下面4aは同柱11の曲げ変形をローリングとして許容する球面ないしは多角形面に形成され、その下面中心部に前記上部面板2のダボ3に嵌まり合うダボ孔5が設けられている。前記積層ゴム1の上部面板2と前記フランジプレート4は、前記ダボ3及びダボ孔5とを水平力の伝達が可能に嵌め合わされ、ダボ3及びダボ孔5を中心とする同心円にバランス良く配置した複数のボルト6が鉛直方向に設けられ、同ボルト6に皿バネ、コイルバネ等の弾性バネないしはゴム等の弾性体7を装着しナットをねじ込み、前記上部面板2と前記フランジプレート4の周辺部が前記免震構造物の曲げ変形に伴うローリングを許容可能に連結されている(請求項1及び請求項2記載の発明)。
【0011】
示例では、前記上部面板2とフランジプレート4は、平面的に見て、中心X(図1)を円心とする二つの同心円に沿ってバランス良く配設された複数個(実施例では内側円に6個、外側円に6個の計12個)のボルト孔へボルト6を貫通させ、前記フランジプレート4の上面における前記ボルト6の上部に皿バネ7を設置し、同ボルト6の上下端へナット8をねじ込み締め付けることにより連結されている。なお、該連結部材の個数及び配置は図示例に限定されず、前記上部面板2と前記フランジプレート4の周辺部が前記免震構造物の曲げ変形に伴うローリングを許容可能に連結する構造であれば自由な個数及び配置で実施できる。また、前記皿バネ7は、前記積層ゴム1の上部面板2の下面に設置しても同様に実施できる。前記皿バネ7の代わりにコイルバネないしはゴム等の弾性体を用いても同様に実施できる。
【0012】
前記免震構造物の柱11の曲げ変形をローリングとして許容する構造として、図示例では、前記フランジプレート4の下面4aはその外周から中心(ダボ孔5)へ向かって漸次膨らむ球面ないしは多角形面に形成され、前記上部面板2の上面2aは略水平面に形成されている(請求項3記載の発明)が、これに限定されない。前記上部面板2の上面2aをその外周から中心(ダボ3)へ向かって漸次膨らむ球面ないしは多角形面に形成し、前記フランジプレート4の下面4aを水平面に形成しても同様に実施できるし、両者をそれぞれ前記したような球面ないしは多角形面に形成しても同様に実施できる。
【0013】
以上のように構成された免震装置1の設置構造によれば、前記免震構造物の柱11に曲げ変形が発生し積層ゴム1へ圧縮力が作用した場合、前記フランジプレート4が回転を起こし、このとき同フランジプレート4の外周部は球面ないしは多角形面にしたがってローリングを生じて上下に変動し、前記した12個の皿バネ7が伸縮動作して追従し前記上下変位を吸収・緩和するため、前記ボルト6に過度の付加軸力が作用せず、積層ゴム1には極力、曲げを伝達することを防止できる。一方、前記曲げ変形に伴い免震構造物の柱11から積層ゴム1へ引張り力が作用するときも、前記ボルト6が引張りに抵抗するが、このとき前記柱11に曲げ変形が発生した場合にも、前記圧縮力作用時と同様の原理で、前記した12個の皿バネ7の伸縮により、積層ゴム1には極力、曲げを伝達することを防止できる。
【0014】
よって、免震構造物の柱11より積層ゴム1へ圧縮力、引張り力のいずれが作用する場合においても、同柱11に生じる過大な曲げ変形を吸収・緩和し、積層ゴム1には極力、曲げを伝達することを防止できる。
なお、前記ダボ3をフランジプレート4の下面に一体的に設け、同ダボ3に嵌まり合うダボ孔5を前記上部面板2に設けても同様に実施できる。さらに、前記基礎梁10は、これに限定されず、橋台と桁等の所謂構造物であれば様々な組み合わせで実施できる。即ち、建物中間階での免震(中間階免震)や柱頭での免震等にも好適に実施できるのである。因みに、図中の符号9は積層ゴム1の下部面板である。
【0015】
【本発明が奏する効果】
本発明に係る免震装置の設置方法及び免震装置の設置構造によれば、基礎構造物へ固定した積層ゴムの上部面板と、免震構造物の柱の下底面へ取り付けたフランジプレートとを、各々の鉛直な中心線上に水平力を伝達可能な不動点を設けて、免震構造物の曲げ変形をローリングとして許容する球面ないしは多角形面を介して接続し、積層ゴムの曲げ変形に伴うローリングを許容可能とし上下変位を吸収・緩和する構造で連結することができるので、
1)積層ゴムの支持力を維持しつつ免震構造物の曲げ変形を吸収・緩和し、積層ゴムには極力、曲げを伝達することを防止できる。したがって、積層ゴム本来の機能を恒久的に維持することができる。
2)中間層免震や柱頭での免震、不同沈下対策等が容易に実現可能となり、施工上簡便で経済性が高い。
【図面の簡単な説明】
【図1】本発明に係る免震装置の設置構造の実施例を示した平面図である。
【図2】図1のA−A線矢視断面図である。
【符号の説明】
1 免震装置
2 上部面板
2a 上部面板の上面
3 ダボ(シアキー)
4 フランジプレート
4a フランジプレートの下面
5 ダボ孔
6 ボルト
7 皿バネ
8 ナット
9 下部面板
10 基礎梁(基礎構造物)
11 柱
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of seismic isolation devices installed as seismic isolation means for so-called seismic isolation structures such as buildings, bridges, towers, and the like, and more specifically, the seismic isolation devices are bent as much as possible. It relates to an installation method and an installation structure which are not given.
[0002]
[Prior art]
Conventionally, seismic isolation devices installed for the purpose of isolating so-called seismic isolation structures such as buildings, bridges, and towers are subjected to bending by the structures that are shaken by receiving an earthquake force (horizontal force). In the case of a seismic isolation device called laminated rubber, in which steel plates and rubber sheets are alternately stacked and bonded together, the steel plates and rubber sheets are peeled off by the local tensile force of the rubber sheets caused by bending. Or the rubber sheet itself may be destroyed by a local compressive force. Further, if bending acts on a mechanical seismic isolation device such as a rolling bearing, a large local load is applied to the rolling elements and the like, which may cause malfunction.
[0003]
Therefore, the seismic isolation devices (laminated rubber, rolling bearings, etc.) are strongly desired to implement a structure that does not give excessive bending by absorbing and mitigating bending deformation of buildings that have received earthquakes as much as possible. As a technology that meets this need, (1) seismic isolation devices that are more rigid by increasing the diameter of the beam directly joined to the seismic isolation device, and (2) slabs are installed above and below the seismic isolation device. There are installation methods and installation structures.
[0004]
[Problems to be solved by the present invention]
However, both of the technologies described in (1) and (2) above are very expensive, and they are isolated in the middle floor of the building (intermediate layer seismic isolation), seismic isolation in the capital, or in the soft ground area. There was a problem that the seismic isolation of buildings that could cause subsidence was very difficult to implement.
[0005]
Accordingly, the object of the present invention is to connect the laminated rubber upper face plate and the flange plate to the laminated rubber as much as possible by connecting them with a structure that allows rolling accompanying bending deformation of the seismic isolation structure and absorbs and relaxes the vertical displacement. It is to provide an installation method and an installation structure of a seismic isolation device that does not give bending.
A further object of the present invention is that it is easy to implement seismic isolation in buildings that may cause seismic isolation at the middle layer, seismic isolation at the stigma, or uneven subsidence in soft ground areas. It is to provide a seismic isolation device installation method and installation structure.
[0006]
[Means for Solving the Problems]
As a means for solving the problems of the prior art, the installation method of the seismic isolation device according to the invention described in claim 1 is:
An upper surface plate of the laminated rubber fixed to the substructure, a flange plate attached to the lower bottom surface of the column of the seismic isolation structure, provided capable of transmitting fixed point horizontal force on each of the vertical center line, It is connected via a spherical surface or polygonal surface that allows bending deformation of the seismic isolation structure as rolling, and a plurality of bolts arranged in concentric circles centered on the fixed point are provided in the vertical direction, such as a disc spring and a coil spring. An elastic body such as an elastic spring or rubber is attached, a nut is screwed, and the peripheral portion of the upper face plate and the flange plate is connected to allow the rolling accompanying bending deformation of the seismic isolation structure.
[0007]
The installation structure of the seismic isolation device according to the invention described in claim 2 is:
A dowel or dowel hole is provided in the center of the upper surface of the upper face plate of the laminated rubber fixed to the substructure,
The lower surface center portion of the flange plate attached to the lower bottom surface of the column of the seismic isolation structure, the dowel or fits into the dowel holes fit dowel holes or dowels of the upper surface plate is provided,
At least one of the upper surface of the upper face plate and the lower surface of the flange plate is formed as a spherical surface or a polygonal surface allowing bending deformation of the seismic isolation structure as rolling;
The laminated rubber upper face plate and the flange plate are fitted with the dowel and the dowel hole so that a horizontal force can be transmitted, and a plurality of bolts arranged in concentric circles around the dowel and the dowel hole are provided in the vertical direction. Attaching an elastic body such as a disc spring or a coil spring or an elastic body such as rubber to the bolt and screwing a nut, the peripheral part of the upper face plate and the flange plate can allow rolling accompanying bending deformation of the seismic isolation structure Connected to
Are each characterized.
[0009]
According to a third aspect of the present invention , in the installation structure of the seismic isolation device according to the second aspect, the lower surface of the flange plate is formed into a spherical surface or a polygonal surface that gradually swells from the outer periphery toward the central portion, and is a laminated rubber. The upper surface of the upper face plate is formed in a substantially horizontal plane.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 show an embodiment of an installation method and an installation structure of the seismic isolation device according to claims 1 and 2.
The upper surface 2a of the upper face plate 2 of the laminated rubber 1 fixed to the foundation beam (foundation structure) 10 is set to be a substantially horizontal plane, and a dowel (shear key) 3 is integrally provided at a substantially central portion thereof. ing.
On the other hand, the lower surface 4a of the flange plate 4 of a pedestal attached to the lower bottom surface of the column 11 of the seismic isolation structure is formed in a spherical or polygonal surface to allow bending deformation of the pillar 11 as rolling, its lower surface center A dowel hole 5 that fits into the dowel 3 of the upper face plate 2 is provided in the portion. The upper face plate 2 and the flange plate 4 of the laminated rubber 1 are fitted together so that the dowel 3 and the dowel hole 5 can be transmitted with a horizontal force, and are arranged in a concentric circle with the dowel 3 and the dowel hole 5 as the center. A plurality of bolts 6 are provided in the vertical direction, and an elastic body 7 such as a disc spring or a coil spring or an elastic body 7 such as rubber is attached to the bolt 6 and a nut is screwed, and the peripheral portions of the upper face plate 2 and the flange plate 4 are Rolling accompanying bending deformation of the seismic isolation structure is connected in an acceptable manner ( invention according to claims 1 and 2 ).
[0011]
In FIG示例, the upper surface plate 2 and the flange plate 4, in plan view, the center X inside a plurality (Example which is well-disposed balanced along two concentric circles whose center (Figure 1) Bolts 6 are passed through bolt holes 6 in a circle and 6 in an outer circle, and a disc spring 7 is installed on top of the bolt 6 on the upper surface of the flange plate 4. It is connected by screwing and tightening the nut 8 to the end. The number and arrangement of the connecting members are not limited to the illustrated example, and the peripheral portion of the upper face plate 2 and the flange plate 4 may be configured to allow the rolling accompanying the bending deformation of the seismic isolation structure to be allowed. Any number and arrangement can be used. The disc spring 7 can be similarly implemented even if it is installed on the lower surface of the upper face plate 2 of the laminated rubber 1. It can be similarly implemented by using an elastic body such as a coil spring or rubber instead of the disc spring 7.
[0012]
In the illustrated example, the lower surface 4a of the flange plate 4 is a spherical surface or a polygonal surface that gradually expands from the outer periphery toward the center (the dowel hole 5) as a structure that allows bending deformation of the column 11 of the seismic isolation structure as rolling. The upper surface 2a of the upper face plate 2 is formed in a substantially horizontal plane ( the invention according to claim 3 ), but is not limited thereto. The upper surface 2a of the upper face plate 2 is formed into a spherical surface or a polygonal surface that gradually swells from the outer periphery toward the center (the dowel 3), and the lower surface 4a of the flange plate 4 can be formed in a horizontal plane in the same manner. Even if both are formed on a spherical surface or a polygonal surface as described above, the present invention can be similarly implemented.
[0013]
According to the installation structure of the seismic isolation device 1 configured as described above, when bending deformation occurs in the column 11 of the seismic isolation structure and a compressive force acts on the laminated rubber 1, the flange plate 4 rotates. At this time, the outer peripheral portion of the flange plate 4 rolls up and down in accordance with a spherical surface or a polygonal surface, and fluctuates up and down. The 12 disc springs 7 expand and contract to follow and absorb and relax the vertical displacement. Therefore, an excessive additional axial force does not act on the bolt 6, and transmission of bending to the laminated rubber 1 can be prevented as much as possible. On the other hand, when a tensile force acts on the laminated rubber 1 from the pillar 11 of the seismic isolation structure along with the bending deformation, the bolt 6 resists pulling, but when the bending deformation occurs in the pillar 11 at this time. However, it is possible to prevent bending from being transmitted to the laminated rubber 1 as much as possible by the expansion and contraction of the twelve disc springs 7 based on the same principle as when the compressive force is applied.
[0014]
Therefore, even when compressive force or tensile force is applied to the laminated rubber 1 from the pillar 11 of the seismic isolation structure, excessive bending deformation generated in the pillar 11 is absorbed / relieved, and the laminated rubber 1 has as much as possible, It is possible to prevent the bending from being transmitted.
The same operation can be performed by providing the dowel 3 integrally on the lower surface of the flange plate 4 and providing the upper face plate 2 with dowel holes 5 that fit into the dowel 3 . Et al of the foundation beam 10 is not limited thereto, it can be implemented in various combinations as long as the so-called structures such as bridge abutments and digits. In other words, it can be suitably applied to seismic isolation on the middle floor of buildings (intermediate floor seismic isolation) and seismic isolation at the capital. Incidentally, reference numeral 9 in the drawing denotes a lower face plate of the laminated rubber 1.
[0015]
[Effects of the present invention]
According to the installation method of the seismic isolation device and the installation structure of the seismic isolation device according to the present invention, the upper surface plate of the laminated rubber fixed to the foundation structure and the flange plate attached to the lower bottom surface of the column of the seismic isolation structure , provided capable of transmitting fixed point horizontal force on each of the vertical center line, the bending deformation of the base-isolated structure and connected through a spherical or polygonal surface allows the rolling, due to the bending deformation of the laminated rubber Since it can be connected with a structure that allows rolling and absorbs and relaxes vertical displacement,
1) Absorbing and mitigating bending deformation of the seismic isolation structure while maintaining the supporting force of the laminated rubber, it is possible to prevent the bending rubber from being transmitted to the laminated rubber as much as possible. Therefore, the original function of the laminated rubber can be maintained permanently.
2) Middle layer seismic isolation, seismic isolation at the stigma, and non-settlement countermeasures can be easily realized, making construction simple and economical.
[Brief description of the drawings]
FIG. 1 is a plan view showing an embodiment of an installation structure of a seismic isolation device according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
[Explanation of symbols]
1 Seismic isolation device 2 Upper face plate 2a Upper face plate 3 Upper surface dowel (shear key)
4 Flange plate 4a Lower surface of flange plate 5 Dowel hole 6 Bolt 7 Belleville spring 8 Nut 9 Lower face plate 10 Foundation beam (foundation structure)
11 pillars

Claims (3)

基礎構造物へ固定した積層ゴムの上部面板と、免震構造物の柱の下底へ取り付けたフランジプレートとを、各々の鉛直な中心線上に水平力を伝達可能な不動点を設けて、免震構造物の曲げ変形をローリングとして許容する球面ないしは多角形面を介して接続すると共に、前記不動点を中心とする同心円に配置した複数のボルトを鉛直方向に設け、皿バネ、コイルバネ等の弾性バネないしはゴム等の弾性体を装着しナットをねじ込み、前記上部面板と前記フランジプレートの周辺部を前記免震構造物の曲げ変形に伴うローリングを許容可能に連結することを特徴とする、免震装置の設置方法。An upper surface plate of the laminated rubber fixed to the substructure, a flange plate attached to the lower bottom surface of the column of the seismic isolation structure, provided capable of transmitting fixed point horizontal force on each of the vertical center line, It is connected via a spherical surface or polygonal surface that allows bending deformation of the seismic isolation structure as rolling, and a plurality of bolts arranged in concentric circles centered on the fixed point are provided in the vertical direction, such as a disc spring and a coil spring. An elastic body such as an elastic spring or rubber is attached, a nut is screwed, and the peripheral portion of the upper face plate and the flange plate is connected in an acceptable manner with rolling accompanying bending deformation of the seismic isolation structure. How to install a seismic device. 基礎構造物へ固定した積層ゴムの上部面板の上面の中心部にダボ又はダボ孔が設けられていること、
免震構造物の柱の下底へ取り付けたフランジプレートの下面中心部に、前記上部面板のダボ又はダボ孔に嵌まり合うダボ孔又はダボが設けられていること、
前記上部面板の上面と前記フランジプレートの下面の少なくともいずれか一方の面が免震構造物の曲げ変形をローリングとして許容する球面ないしは多角形面に形成されていること、
前記積層ゴムの上部面板と前記フランジプレートは、前記ダボ及びダボ孔とを水平力の伝達が可能に嵌め合わされ、ダボ及びダボ孔を中心とする同心円に配置した複数のボルトが鉛直方向に設けられ、同ボルトに皿バネ、コイルバネ等の弾性バネないしはゴム等の弾性体を装着しナットをねじ込み、前記上部面板と前記フランジプレートの周辺部が前記免震構造物の曲げ変形に伴うローリングを許容可能に連結されていること、
をそれぞれ特徴とする免震装置の設置構造。
A dowel or dowel hole is provided in the center of the upper surface of the upper face plate of the laminated rubber fixed to the substructure,
The lower surface center portion of the flange plate attached to the lower bottom surface of the column of the seismic isolation structure, the dowel or fits into the dowel holes fit dowel holes or dowels of the upper surface plate is provided,
At least one of the upper surface of the upper face plate and the lower surface of the flange plate is formed as a spherical surface or a polygonal surface allowing bending deformation of the seismic isolation structure as rolling;
The laminated rubber upper face plate and the flange plate are fitted with the dowel and the dowel hole so that a horizontal force can be transmitted, and a plurality of bolts arranged in concentric circles around the dowel and the dowel hole are provided in the vertical direction. Attaching an elastic body such as a disc spring or a coil spring or an elastic body such as rubber to the bolt and screwing a nut, the peripheral part of the upper face plate and the flange plate can allow rolling accompanying bending deformation of the seismic isolation structure Connected to
Installation structure of seismic isolation devices characterized by each.
フランジプレートの下面は、その外周から中心部へ向かって漸次膨らむ球面ないしは多角形面に形成され、積層ゴムの上部面板の上面は略水平面に形成されていることを特徴とする、請求項2に記載した免震装置の設置構造。The lower surface of the flange plate is formed in a spherical surface or a polygonal surface that gradually swells from the outer periphery toward the center, and the upper surface of the upper surface plate of the laminated rubber is formed in a substantially horizontal plane. Installation structure of the seismic isolation device described.
JP04582199A 1999-02-24 1999-02-24 Seismic isolation device installation method and installation structure Expired - Lifetime JP3823241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04582199A JP3823241B2 (en) 1999-02-24 1999-02-24 Seismic isolation device installation method and installation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04582199A JP3823241B2 (en) 1999-02-24 1999-02-24 Seismic isolation device installation method and installation structure

Publications (2)

Publication Number Publication Date
JP2000240072A JP2000240072A (en) 2000-09-05
JP3823241B2 true JP3823241B2 (en) 2006-09-20

Family

ID=12729928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04582199A Expired - Lifetime JP3823241B2 (en) 1999-02-24 1999-02-24 Seismic isolation device installation method and installation structure

Country Status (1)

Country Link
JP (1) JP3823241B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563354B2 (en) 2001-02-09 2004-09-08 株式会社椿本チエイン Roller chains incorporating roller bearings
JP4625692B2 (en) * 2004-12-27 2011-02-02 株式会社竹中工務店 Building construction method of base-isolated structure with laminated rubber bearing
JP2008106604A (en) * 2006-09-27 2008-05-08 Hiroshi Hoshino Seismic isolator using spring and quadrangular-, pentagonal-, hexagonal-, heptagonal- and octagonal-shaped sill
WO2017064673A1 (en) * 2015-10-14 2017-04-20 Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) Multiple-friction dissipating device
JP6298498B2 (en) * 2015-11-25 2018-03-20 有限会社三神製作所 Pile puller
CN108677699A (en) * 2018-06-29 2018-10-19 浙江秦山橡胶工程股份有限公司 A kind of damping ball shaped steel bearing
CN111335501B (en) * 2020-03-09 2021-05-04 西南交通大学 Full-bolt connection assembly type prefabricated wallboard component and anti-seismic design method based on swing energy dissipation mechanism thereof
CN112095793A (en) * 2020-09-11 2020-12-18 西安建筑科技大学 Self-resetting swinging glued wood post with post boot
CN113136978A (en) * 2021-04-29 2021-07-20 广州大学 Swing wall based on ring swing mechanism

Also Published As

Publication number Publication date
JP2000240072A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
US8516753B2 (en) Fork configuration dampers and method of using same
JP3823241B2 (en) Seismic isolation device installation method and installation structure
CN112281641B (en) Grid damping support
JP2018084100A (en) Base-isolated building
JP3550574B2 (en) Sliding bearing seismic isolation device
KR101915707B1 (en) Seismic design the water tank
JP4274557B2 (en) Horizontal load elastic support device
KR102092413B1 (en) Seismic reinforcement vibration control device having double-plate intermediary damper
JPH11148534A (en) Slip type base isolation support device
JP4439694B2 (en) High-damping frame of high-rise building
JP2665730B2 (en) Omnidirectional fixed bearing device using rubber bearing
JP3713645B2 (en) Seismic isolation device using laminated rubber
JP3671317B2 (en) Seismic isolation mechanism
KR101905886B1 (en) Rahmem bridge of seismic performance and bibration attenuating performance using prestressed using crossbeam
JP2000291733A (en) Compound base isolation unit and base isolation structure
JP2002285656A (en) Architectural design wall
JPS61215825A (en) Anti-seismic supporting device
JP4698389B2 (en) Seismic retrofit equipment and seismic retrofit method for buildings
JP3733500B2 (en) Base-isolated building on soft ground
JPH033723Y2 (en)
JP3091236U (en) Earthquake-resistant structure of pillar
JPH11336370A (en) Unit building, construction method thereof and base isolated building
KR102092412B1 (en) Seismic reinforcement method using vibration control device with double stell plates for building structure
KR102097821B1 (en) Structure with seismic reinforcement using damper with double stell plate
WO1996020323A1 (en) Stiffness decoupler for base isolation of structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4