WO2017064673A1 - Multiple-friction dissipating device - Google Patents

Multiple-friction dissipating device Download PDF

Info

Publication number
WO2017064673A1
WO2017064673A1 PCT/IB2016/056183 IB2016056183W WO2017064673A1 WO 2017064673 A1 WO2017064673 A1 WO 2017064673A1 IB 2016056183 W IB2016056183 W IB 2016056183W WO 2017064673 A1 WO2017064673 A1 WO 2017064673A1
Authority
WO
WIPO (PCT)
Prior art keywords
skates
friction
column
axial
normal
Prior art date
Application number
PCT/IB2016/056183
Other languages
Spanish (es)
French (fr)
Inventor
Raúl O. CURADELLI
Carlos A. Martinez
Original Assignee
Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet)
Universidad Nacional De Cuyo
Inis Biotech Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet), Universidad Nacional De Cuyo, Inis Biotech Llc filed Critical Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet)
Publication of WO2017064673A1 publication Critical patent/WO2017064673A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/027Preventive constructional measures against earthquake damage in existing buildings

Definitions

  • the present invention relates to a friction-based multiple energy dissipation device, which can be used especially to control the dynamic response in terms of displacements and accelerations, both in new and rehabilitated structures.
  • the present invention provides a novel system called multiple friction heatsink whereby the structural demand is reduced by dissipating the kinetic energy that the structure possesses.
  • Friction heatsinks are widely used in passive vibration control, as they are characterized by offering high power dissipation capacity with relatively low implementation and maintenance costs.
  • the device of the present invention maintains the advantages of a conventional friction heatsink while avoiding the aforementioned disadvantages.
  • the design commonly used in gantry-type structures is based on abalone joints of limited sliding bracing in an X-shape.
  • Another type of device, which uses friction to dissipate energy uses a pre-compressed internal spring that exerts a force that converts through an internal wedge and an external wedge in a normal force on the skates that rub against each other.
  • EDR energy dissipating restraint
  • CFD compactrical friction damper
  • the friction skates are dry friction skates.
  • said multiple friction skates form a set of skates stacked together.
  • for mounting the device comprises a fastening system by screws between the column and the friction skates.
  • it comprises at least two columns, preferably three or more columns, surrounded by said sets of multiple friction skates.
  • the axial load regulator applies an adjustable axial or normal precompression load.
  • said friction skates can move horizontally generating frictional forces that dissipate energy and resist horizontal movement.
  • the contact between the column and each skate is made by means of a fixing means comprising a toroidal ring fixed to the column which rests on the internal cylindrical surface of each skate.
  • Figures la, Ib and show a diagram of the multiple friction heatsink, the exploded view thereof and an axial load regulator detail, respectively;
  • Figure 2 shows the implementation of the heatsink of Figure 1 in a portico-like structure of a bay.
  • Figures 3a, 3b, 3c and 3d are graphs showing the Fourier spectrum of the register of displacements in free vibrations for different values of normal heatsink forces (5, 10, 15 and 20% of the structure's weight).
  • Figure 4 is an image illustrating the arrangement of the instruments for pseudostatic cyclic loading and unloading tests.
  • Figure 5 shows a graph indicating the hysteresis cycle for each normal force studied.
  • Figure 6 shows several records of displacements and accelerations for the structure with and without control (Imperial Valley Earthquake) under different normal force values.
  • Figure 7 shows several records of displacements and accelerations for the structure with and without control (Kobe Earthquake) under different normal force values.
  • the expression indicating that the column is "surrounded by multiple friction skates" should be understood as that the column is surrounded by a plurality of said skates in the longitudinal direction.
  • Figures la and Ib show an embodiment of the device of the invention 1 installed in a column 2.
  • the friction heatsink 1 is feasible to be installed in columns 2 of any type of section, in said Fig. La and Ib shows how it can be installed in parts through fastening bolts 3 in a column of circular section 2.
  • it consists of multiple stacked friction skates 4, subject to an axial pre-compression load.
  • the contact between the column and each skate 4 is made through a toroidal ring fixed to the column 2 that rests on the internal cylindrical surface of each skate 4.
  • the normal pre-compression load which generates the necessary normal force, is applied from the upper end of the skid pack 4 by means of four pre-compressed springs 5 (Fig. Le). Said force can be adjusted by means of high strength screws 6.
  • Fig. 2 explains the operation of the Multiple Friction Heatsink.
  • the skates 4 are move horizontally generating between the contact interfaces of the skates 4, friction forces that dissipate energy and resist horizontal movement.
  • Fig. 3a-3d shows the Fourier spectra of the displacement registers measured in the structure lintel, for the tests in free vibrations, for each of the cases of normal force applied.
  • cyclic loading and unloading tests were performed, in a pseudostatic manner (low loading speed).
  • Fig. 4 the arrangement of the instruments and the loading system by means of which a cyclic force controlled by a tensioner is applied to the structure is observed.
  • Fig. 5 the experimentally obtained force-displacement curves are shown for each of the cases of normal force studied. As expected, the cycles enclose a larger area as the value of the normal force applied is increased, which indicates a greater amount of energy dissipated per cycle.
  • Friction manifold of the invention a series of experimental tests on forced vibration were carried out. For this, 10 records of real accelerations with duration and content of different frequencies and with spectral accelerations between 0.23 g and 0.31 g were used, in order to have maximum displacements close to 2.5 cm, corresponding to the elastic limit of the structure. The details of the records used are shown in Table 1. Table 1: Characteristics of the seismic records used (Source:
  • Table 2 shows the structural response in terms of maximum values and mean quadratic values (rms) of displacements and accelerations of the upper beam of the structure for each record of seismic excitation and normal force applied.
  • N 0.05 W 0.0092 -46.51 0.0016 -67.35 1.3345 -37.15 0.1371 -60.96
  • N 0.15 W 0.0047 -72.67 7.69E-04 -84.31 0.9209 -56.63 0.1068 -69.59
  • N 0.20 W 0.0036 -79.07 6.35E-04 -87.04 0.7535 -64.51 0.1076 -69.36
  • N 0.05 W 0.009 -43.75 0.0013 -65.79 1.2921 -35.01 0.1339 -56.97
  • Duzce N 0.10 W 0.0057 -64.38 0.001 -73.68 1.0174 -48.83 0.1237 -60.25
  • N 0.15 W 0.0051 -68.13 8.75E-04 -76.97 0.873 -56.09 0.1252 -59.77
  • N 0.20 W 0.004 -75.00 7.64E-04 -79.90 0.8264 -58.44 0.1371 -55.94 Without control 0.0172 - 0.0054 - 2.058 - 0.4332 -
  • N 0.05 W 0.0069 -59.88 0.0015 -72.22 0.9626 -53.23 0.145 -66.53
  • Friuli N 0.10 W 0.0062 -63.95 0.0011 -79.63 1.0231 -50.29 0.1308 -69.81
  • N 0.15 W 0.0063 -63.37 8.63E-04 -84.01 1.1056 -46.28 0.1263 -70.84
  • N 0.20 W 0.005 -70.93 6.98E-04 -87.08 0.9873 -52.03 0.1237 -71.45
  • N 0.05 W 0.0066 -67.49 0.0011 -74.42 0.9874 -58.59 0.1084 -68.07
  • Hollister N 0.10 W 0.0048 -76.35 6.42E-04 -85.08 0.7878 -66.96 0.0822 -75.79
  • N 0.15 W 0.0043 -78.82 5.12E-04 -88.10 0.8287 -65.25 0.0848 -75.02
  • N 0.20 W 0.0038 -81.28 4.31E-04 -89.98 0.8016 -66.38 0.0797 -76.52
  • N 0.05 W 0.012 -26.83 0.0013 -66.67 1.5529 -18.27 0.1206 -61.59
  • N 0.10 W 0.0086 -47.56 9.02E-04 -76.86 1.2303 -35.25 0.1036 -67.01 Valley
  • N 0.15 W 0.0064 -60.98 7.20E-04 -81.54 1.1427 -39.86 0.105 -66.56
  • N 0.20 W 0.0046 -71.95 5.78E-04 -85.18 0.9368 -50.69 0.11 -64.97
  • N 0.05 W 0.0115 -37.50 0.0015 -67.39 1.5609 -28.67 0.1934 -62.10
  • N 0.15 W 0.0056 -69.57 6.23E-04 -86.46 1.0228 -53.26 0.1214 -76.21
  • N 0.20 W 0.0032 -82.61 3.56E-04 -92.26 0.7462 -65.90 0.1017 -80.07
  • N 0.05 W 0.0121 -40.69 0.0013 -66.67 1.5852 -34.08 0.1576-60.17
  • N 0.15 W 0.0085 -58.33 6.34E-04 -83.75 1.3896 -42.21 0.1161 -70.66
  • N 0.20 W 0.0073 -64.22 5.04E-04 -87.07 1.2802 -46.76 0.1195 -69.80
  • N 0.05 W 0.0141 -30.88 0.0018 -60.87 1.7755 -27.55 0.202 -54.97
  • Landers N 0.10 W 0.0104 -49.02 0.0014 -69.57 1.4591 -40.46 0.1904 -57.56
  • N 0.15 W 0.0085 -58.33 0.0011 -76.09 1.4288 -41.70 0.1808 -59.70
  • N 0.20 W 0.0064 -68.63 9.12E-04 -80.18 1.1644 -52.49 0.1807 -59.72
  • N 0.05 W 0.0089 -44.03 0.0026 -65.33 1.1889 -38.23 0.153 -65.95
  • N 0.15 W 0.0057 -64.15 0.0012 -84.00 1.0266 -46.66 0.1091 -75.72
  • N 0.20 W 0.0044 -72.33 9.27E-04 -87.64 0.8768 -54.45 0.1061 -76.39
  • N 0.10 W 0.0116 -24.68 0.0021 -57.14 1.6957 -12.80 0.1841 -44.66
  • N 0.15 W 0.0113 -26.62 0.0018 -63.27 1.7102 -12.05 0.1735 -47.85
  • N 0.20 W 0.0102 -33.77 0.0015 -69.39 1.6432 -15.50 0.163 -51.01
  • Figs. 6 and 7 show the records of displacements and absolute accelerations, measured in the lintel of the structure, obtained with and without vibration control for the seismic records of Imperial Valley and Kobe, respectively. It can be seen how the structural response of the main structure is significantly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

The invention relates to a multiple-friction device for dissipating energy, which can be used to control the dynamic response in terms of displacements and accelerations, and which comprises at least one column surrounded by a set of multiple-friction members which are in contact with same and are secured together by means of securing pins. The device further comprises at least one axial load adjuster mounted on a plurality of compression springs, the adjuster being secured by means of high-strength screws. The device does not have the disadvantages of the implementation of traditional friction dissipators, and can be used in both new and renovated structures.

Description

DISPOSITIVO DISIPADOR DE FRICCIÓN MÚLTIPLE  MULTIPLE FRICTION DISSIPER DEVICE
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se refiere a un dispositivo disipador de energía múltiple basado en fricción, que puede ser empleado especialmente para controlar la respuesta dinámica en términos de desplazamientos y aceleraciones, tanto en estructuras nuevas como rehabilitadas.  The present invention relates to a friction-based multiple energy dissipation device, which can be used especially to control the dynamic response in terms of displacements and accelerations, both in new and rehabilitated structures.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
En los últimos veinte años se han llevado a cabo grandes esfuerzos para reducir la vulnerabilidad de estructuras bajo excitaciones dinámicas tales como sismos o viento a través del concepto de disipación de energía. En lugar de incrementar la resistencia como era tradicional, la presente invención provee un sistema novedoso llamado disipador múltiple de fricción mediante el cual se reduce la demanda estructural al disipar la energía cinética que posee la estructura.  In the last twenty years, great efforts have been made to reduce the vulnerability of structures under dynamic excitations such as earthquakes or wind through the concept of energy dissipation. Instead of increasing the resistance as it was traditional, the present invention provides a novel system called multiple friction heatsink whereby the structural demand is reduced by dissipating the kinetic energy that the structure possesses.
Como sistema de protección estructural es ampliamente reconocido el uso de dispositivos externos para disipar la energía proveniente de una excitación dinámica. Los disipadores de fricción son muy utilizados en el control pasivo de vibraciones, ya que se caracterizan por ofrecer alta capacidad de disipación de energía con costos de implementación y mantenimiento relativamente bajos. The use of external devices to dissipate energy from dynamic excitation is widely recognized as a structural protection system. Friction heatsinks are widely used in passive vibration control, as they are characterized by offering high power dissipation capacity with relatively low implementation and maintenance costs.
La mayoría de los disipadores de fricción actuales en el mercado se instalan mediante riostras diagonales, lo que puede conducir a problemas funcionales ya que se pueden obstruir aberturas de circulación, iluminación y/o ventilación. El dispositivo de la presente invención mantiene las ventajas de un disipador de fricción convencional salvando las desventajas mencionadas. Most of the current friction heatsinks on the market are installed using diagonal braces, which can lead to functional problems since they can obstruct circulation, lighting and / or ventilation openings. The device of the present invention maintains the advantages of a conventional friction heatsink while avoiding the aforementioned disadvantages.
Distintos tipos de disipadores de fricción han sido desarrollados y utilizados para mejorar el desempeño estructural tanto de edificaciones nuevas como existentes en todo el mundo durante los últimos 30 años.  Different types of friction heatsinks have been developed and used to improve the structural performance of both new and existing buildings throughout the world over the past 30 years.
El diseño comúnmente empleado en estructuras tipo pórtico se basa en uniones abulonadas de deslizamiento limitado arriostrados en forma de X. Otro tipo de dispositivo, que utiliza la fricción para disipar energía, utiliza un resorte interno precomprimido que ejerce una fuerza que se convierte a través de una cuña interna y otra externa en una fuerza normal sobre los patines que friccionan entre sí.  The design commonly used in gantry-type structures is based on abalone joints of limited sliding bracing in an X-shape. Another type of device, which uses friction to dissipate energy, uses a pre-compressed internal spring that exerts a force that converts through an internal wedge and an external wedge in a normal force on the skates that rub against each other.
También existe un disipador de energía denominado de disipación de energía limitada (energy dissipating restraint o EDR), el cual cuenta con un mecanismo de fricción en donde la fuerza de contacto entre las superficies fricciónales del dispositivo crece linealmente con la deformación. Otros desarrollos propusieron conexiones de fricción ranuradas abulonadas que se aplican principalmente a pórticos arriostrados concéntricamente .  There is also an energy dissipator called limited energy dissipation (energy dissipating restraint or EDR), which has a friction mechanism where the contact force between the frictional surfaces of the device grows linearly with deformation. Other developments proposed grooved grooved friction connections that are mainly applied to concentric bracing frames.
Otro tipo de disipador de fricción propuesto es el CFD (cylindrical friction damper), que consta de un pistón y un cilindro, el cual posee un diámetro interno ligeramente inferior al del pistón, de manera de lograr la presión de contacto.  Another type of friction sink proposed is the CFD (cylindrical friction damper), which consists of a piston and a cylinder, which has an internal diameter slightly smaller than the piston, in order to achieve the contact pressure.
BREVE DESCRIPCION DE LA INVENCIÓN Es entonces un objeto de la presente invención proveer un dispositivo de disipación de energía, basado en fricción seca, que no muestra las desventajas de implementación de los disipadores de fricción tradicionales y se puede utilizar tanto en estructuras nuevas como en rehabilitadas. BRIEF DESCRIPTION OF THE INVENTION It is then an object of the present invention to provide an energy dissipation device, based on dry friction, which does not show the disadvantages of implementing traditional friction heatsinks and can be used in both new and rehabilitated structures.
Es por lo tanto un objeto de la presente invención proveer un dispositivo disipador de energía múltiple de fricción, que puede ser empleado especialmente para controlar la respuesta dinámica en términos de desplazamientos y aceleraciones, tanto en estructuras nuevas como rehabilitadas, en donde el dispositivo comprende al menos una columna la cual se encuentra rodeada de múltiples patines de fricción en contacto con la misma, los cuales se encuentran sujetos entre sí mediante pernos de sujeción, comprendiendo además al menos un regulador de carga axial montado sobre una pluralidad de resortes de compresión, estando dicho regulador sujeto mediante tornillos de alta resistencia.  It is therefore an object of the present invention to provide a multiple friction energy dissipating device, which can be used especially to control the dynamic response in terms of displacements and accelerations, both in new and rehabilitated structures, where the device comprises the less a column which is surrounded by multiple friction skates in contact therewith, which are held together by means of fastening bolts, further comprising at least one axial load regulator mounted on a plurality of compression springs, being said regulator secured by high strength screws.
En una forma de realización preferida de la invención, los patines de fricción son patines de fricción seca.  In a preferred embodiment of the invention, the friction skates are dry friction skates.
En otra forma de realización preferida de la invención, dichos múltiples patines de fricción forman un conjunto de patines apilados entre sí.  In another preferred embodiment of the invention, said multiple friction skates form a set of skates stacked together.
En aún otra forma de realización preferida de la invención, para su montaje el dispositivo comprende un sistema de sujeción mediante tornillos entre la columna y los patines de fricción.  In yet another preferred embodiment of the invention, for mounting the device comprises a fastening system by screws between the column and the friction skates.
En una forma de realización preferida de la invención, el mismo comprende al menos dos columnas, preferiblemente tres o más columnas, rodeadas de dichos conjuntos de múltiples patines de fricción.  In a preferred embodiment of the invention, it comprises at least two columns, preferably three or more columns, surrounded by said sets of multiple friction skates.
En otra forma de realización preferida de la invención, el regulador de carga axial aplica una carga axial o normal regulable de precompresión. En aún otra forma de realización preferida de la invención, dichos patines de fricción pueden desplazarse horizontalmente generando fuerzas de fricción que disipan energía y resisten el movimiento horizontal. In another preferred embodiment of the invention, the axial load regulator applies an adjustable axial or normal precompression load. In yet another preferred embodiment of the invention, said friction skates can move horizontally generating frictional forces that dissipate energy and resist horizontal movement.
En otra forma de realización preferida de la invención, el contacto entre la columna y cada patín se realiza mediante un medio de fijación que comprende un anillo toroidal fijo a la columna el cual apoya sobre la superficie cilindrica interna de cada patín.  In another preferred embodiment of the invention, the contact between the column and each skate is made by means of a fixing means comprising a toroidal ring fixed to the column which rests on the internal cylindrical surface of each skate.
BREVE DESCRIPCION DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS
Para mayor claridad y comprensión del objeto de la presente invención, se lo ha ilustrado en varias figuras, en las que se ha representado el mismo en una de las formas preferidas de realización, todo a título de ejemplo, en donde:  For greater clarity and understanding of the object of the present invention, it has been illustrated in several figures, in which it has been represented in one of the preferred embodiments, all by way of example, where:
Las figuras la, Ib y le muestran un esquema del disipador múltiple de fricción, el despiece del mismo y un detalle de regulador de carga axial, respectivamente;  Figures la, Ib and show a diagram of the multiple friction heatsink, the exploded view thereof and an axial load regulator detail, respectively;
La figura 2 muestra la implementación del disipador de la figura 1 en una estructura de tipo pórtico de un vano.  Figure 2 shows the implementation of the heatsink of Figure 1 in a portico-like structure of a bay.
Las figuras 3a, 3b, 3c y 3d son gráficos que muestran el espectro de Fourier del registro de desplazamientos en vibraciones libres para diferentes valores de fuerzas normales del disipador (5, 10, 15 y 20% del peso de la estructura).  Figures 3a, 3b, 3c and 3d are graphs showing the Fourier spectrum of the register of displacements in free vibrations for different values of normal heatsink forces (5, 10, 15 and 20% of the structure's weight).
La figura 4 es una imagen que ilustra la disposición de los instrumentos para los ensayos de carga y descarga cíclica pseudoestática.  Figure 4 is an image illustrating the arrangement of the instruments for pseudostatic cyclic loading and unloading tests.
La figura 5 muestra un gráfico que indica el ciclo de histéresis para cada fuerza normal estudiada.  Figure 5 shows a graph indicating the hysteresis cycle for each normal force studied.
La figura 6 muestra varios registros de desplazamientos y aceleraciones para la estructura con y sin control (Terremoto Imperial Valley) bajo diferentes valores de fuerza normales. La figura 7 muestra varios registros de desplazamientos y aceleraciones para la estructura con y sin control (Terremoto Kobe) bajo diferentes valores de fuerza normales. Figure 6 shows several records of displacements and accelerations for the structure with and without control (Imperial Valley Earthquake) under different normal force values. Figure 7 shows several records of displacements and accelerations for the structure with and without control (Kobe Earthquake) under different normal force values.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN  DETAILED DESCRIPTION OF THE INVENTION
La invención será ahora descripta en detalle haciendo referencia a los dibujos que la ilustran, en una forma de realización preferida y sólo a modo de ejemplo no limitativo del alcance de la invención.  The invention will now be described in detail with reference to the drawings that illustrate it, in a preferred embodiment and only by way of example not limiting the scope of the invention.
A los efectos de la presente invención, la expresión que indica que la columna está "rodeada de múltiples patines de fricción" debe entenderse como que la columna está rodeada de una pluralidad de dichos patines en dirección longitudinal.  For the purposes of the present invention, the expression indicating that the column is "surrounded by multiple friction skates" should be understood as that the column is surrounded by a plurality of said skates in the longitudinal direction.
Las Figuras la y Ib muestran una forma de realización del dispositivo de la invención 1 instalado en una columna 2. Si bien el disipador múltiple de fricción 1 es factible de ser instalado en columnas 2 de cualquier tipo de sección, en dichas Fig. la y Ib se muestra como puede ser instalado por partes a través de pernos de sujeción 3 en una columna de sección circular 2. Como se observa, el mismo consiste en múltiples patines de fricción apilados 4, sujetos a una carga axial de precompresión. El contacto entre la columna y cada patín 4 se realiza a través de un anillo toroidal fijo a la columna 2 que apoya sobre la superficie cilindrica interna de cada patín 4. De esta manera al deformarse la columna, sólo el movimiento horizontal de la columna en cualquier dirección se trasmite a cada patín permitiendo el giro relativo entre ambos (Fig. Ib). La carga normal de precompresión, que genera la fuerza normal necesaria, se aplica desde el extremo superior del paquete de patines 4 por medio de cuatro resortes precomprimidos 5 (Fig. le). Dicha fuerza puede ser ajustada por medio de tornillos de alta resistencia 6.  Figures la and Ib show an embodiment of the device of the invention 1 installed in a column 2. Although the friction heatsink 1 is feasible to be installed in columns 2 of any type of section, in said Fig. La and Ib shows how it can be installed in parts through fastening bolts 3 in a column of circular section 2. As can be seen, it consists of multiple stacked friction skates 4, subject to an axial pre-compression load. The contact between the column and each skate 4 is made through a toroidal ring fixed to the column 2 that rests on the internal cylindrical surface of each skate 4. Thus, when the column is deformed, only the horizontal movement of the column in any direction is transmitted to each skate allowing relative rotation between them (Fig. Ib). The normal pre-compression load, which generates the necessary normal force, is applied from the upper end of the skid pack 4 by means of four pre-compressed springs 5 (Fig. Le). Said force can be adjusted by means of high strength screws 6.
La Fig. 2 explica el funcionamiento del Disipador Múltiple de Fricción. Como se puede observar, cuando la estructura se deforma bajo excitación, los patines 4 se desplazan horizontalmente generando entre las interfaces de contacto de los patines 4, fuerzas de fricción que disipan energía y resisten el movimiento horizontal. Fig. 2 explains the operation of the Multiple Friction Heatsink. As can be seen, when the structure deforms under excitement, the skates 4 are move horizontally generating between the contact interfaces of the skates 4, friction forces that dissipate energy and resist horizontal movement.
A partir de ensayos dinámicos experimentales sobre un modelo a escala, se evaluó la eficacia para controlar la respuesta estructural en términos de desplazamientos y aceleraciones bajo diferentes condiciones de operación y características de excitación.  Based on experimental dynamic tests on a scale model, the effectiveness of controlling the structural response in terms of displacements and accelerations under different operating conditions and excitation characteristics was evaluated.
Para caracterizar y verificar su desempeño, se instaló en un modelo estructural tipo pórtico de un piso y un vano y fue ensayado, en diferentes condiciones de operación, bajo diferentes registros sísmicos (Fig. 4).  To characterize and verify its performance, it was installed in a porch-type structural model of a floor and a span and was tested, under different operating conditions, under different seismic registers (Fig. 4).
Los resultados experimentales demuestran la eficacia para controlar la respuesta dinámica de la estructura controlada.  The experimental results demonstrate the effectiveness in controlling the dynamic response of the controlled structure.
I. Ensayos de vibraciones libres  I. Free vibration tests
Las Fig. 3a-3d muestran los espectros de Fourier de los registros de desplazamientos medidos en el dintel de la estructura, para los ensayos en vibraciones libres, para cada uno de los casos de fuerza normal aplicada. Si bien en sistemas no lineales, el concepto de frecuencias y modos de vibración no es aplicable, se puede estimar, a través de los espectros de Fourier, la frecuencia y el amortiguamiento efectivo del sistema.  Fig. 3a-3d shows the Fourier spectra of the displacement registers measured in the structure lintel, for the tests in free vibrations, for each of the cases of normal force applied. Although in non-linear systems, the concept of frequencies and vibration modes is not applicable, the frequency and effective damping of the system can be estimated through Fourier spectra.
Se observa que el incremento de fuerza normal del sistema de disipación produce sólo un pequeño incremento en la frecuencia fundamental equivalente de vibración y consecuentemente en la rigidez efectiva del sistema. El incremento en la relación de amortiguamiento crítico efectiva en cada caso se puede estimar midiendo el ancho de la campana del espectro, a través del método de la potencia media. De esta manera se muestra que el control de la respuesta del sistema se realiza por disipación de energía y no por incremento de rigidez efectiva. It is observed that the increase in normal force of the dissipation system produces only a small increase in the equivalent fundamental frequency of vibration and consequently in the effective stiffness of the system. The increase in the ratio of effective critical damping in each case can be estimated by measuring the width of the spectrum hood, through the average power method. This way it shows that the control of the response of the system is carried out by energy dissipation and not by an increase in effective stiffness.
II. Ensayo pseudoestático de carga y descarga  II. Pseudostatic loading and unloading test
Complementariamente a los ensayos de vibraciones libres, se realizaron ensayos de carga y descarga cíclica, de manera pseudoestática (baja velocidad de carga). En la Fig. 4 se observa la disposición de los instrumentos y el sistema de carga mediante el cual se le aplica a la estructura una fuerza cíclica controlada a través de un tensor.  In addition to the free vibration tests, cyclic loading and unloading tests were performed, in a pseudostatic manner (low loading speed). In Fig. 4 the arrangement of the instruments and the loading system by means of which a cyclic force controlled by a tensioner is applied to the structure is observed.
En la Fig. 5 se muestran las curvas fuerza-desplazamiento obtenidas experimentalmente, para cada uno de los casos estudiados de fuerza normal. Como era de esperar, los ciclos encierran un área mayor a medida que se aumenta el valor de la fuerza normal aplicada, lo cual indica una mayor cantidad de energía disipada por ciclo. In Fig. 5, the experimentally obtained force-displacement curves are shown for each of the cases of normal force studied. As expected, the cycles enclose a larger area as the value of the normal force applied is increased, which indicates a greater amount of energy dissipated per cycle.
III. Ensayos de vibraciones forzadas en mesa vibratoria III. Vibration table forced vibration tests
Para evaluar la efectividad en el control de la respuesta estructural del Disipador To evaluate the effectiveness in controlling the structural response of the Heatsink
Múltiple de Fricción de la invención, se llevaron a cabo una serie de ensayos experimentales en vibración forzada. Para ello se emplearon 10 registros de aceleraciones reales con duración y contenido de frecuencias diferentes y con aceleraciones espectrales entre 0.23 g y 0.31 g, de manera de tener desplazamientos máximos próximos a 2.5 cm, correspondiente al límite elástico de la estructura. Los detalles de los registros empleados se muestran en la Tabla 1. Tabla 1: Características de los registros sísmicos utilizados (Fuente: Friction manifold of the invention, a series of experimental tests on forced vibration were carried out. For this, 10 records of real accelerations with duration and content of different frequencies and with spectral accelerations between 0.23 g and 0.31 g were used, in order to have maximum displacements close to 2.5 cm, corresponding to the elastic limit of the structure. The details of the records used are shown in Table 1. Table 1: Characteristics of the seismic records used (Source:
http://peer.berkeley.edu/ smcat/ search.html) .  http://peer.berkeley.edu/ smcat / search.html).
Figure imgf000010_0001
Figure imgf000010_0001
La Tabla 2 muestra la respuesta estructural en términos de valores máximos y valores cuadráticos medios (rms) de desplazamientos y aceleraciones de la viga superior de la estructura para cada registro de excitación sísmica y fuerza normal aplicada.  Table 2 shows the structural response in terms of maximum values and mean quadratic values (rms) of displacements and accelerations of the upper beam of the structure for each record of seismic excitation and normal force applied.
Tabla 2: Respuesta estructural Table 2: Structural response
Despl Reducción Reducción Acel Reducción Reducción Despl Reduction Reduction Accel Reduction Reduction
Fuerza rms despl rms acel Force rms deplo rms acel
Terremoto max despl max rms despl max acel max rms acel  Earthquake max deplo max rms deplo max acel max rms acel
Normal (m) (m/s2) Normal (m) (m / s 2 )
(m) (%) (%) (m/s2) (%) (%)(m) (%) (%) (m / s 2 ) (%) (%)
Sin control 0,0172 - 0,0049 - 2,1232 - 0,3512 -Without control 0.0172 - 0.0049 - 2.1232 - 0.3512 -
N=0,05 W 0,0092 -46,51 0,0016 -67,35 1,3345 -37,15 0,1371 -60,96N = 0.05 W 0.0092 -46.51 0.0016 -67.35 1.3345 -37.15 0.1371 -60.96
Coalinga N=0,10 W 0,0056 -67,44 0,0011 -77,55 0,9361 -55,91 0,1127 -67,91Coalinga N = 0.10 W 0.0056 -67.44 0.0011 -77.55 0.9361 -55.91 0.1127 -67.91
N=0,15 W 0,0047 -72,67 7,69E-04 -84,31 0,9209 -56,63 0,1068 -69,59N = 0.15 W 0.0047 -72.67 7.69E-04 -84.31 0.9209 -56.63 0.1068 -69.59
N=0,20 W 0,0036 -79,07 6,35E-04 -87,04 0,7535 -64,51 0,1076 -69,36N = 0.20 W 0.0036 -79.07 6.35E-04 -87.04 0.7535 -64.51 0.1076 -69.36
Sin control 0,016 - 0,0038 - 1,9883 - 0,3112 -Without control 0.016 - 0.0038 - 1.9883 - 0.3112 -
N=0,05 W 0,009 -43,75 0,0013 -65,79 1,2921 -35,01 0,1339 -56,97N = 0.05 W 0.009 -43.75 0.0013 -65.79 1.2921 -35.01 0.1339 -56.97
Duzce N=0,10 W 0,0057 -64,38 0,001 -73,68 1,0174 -48,83 0,1237 -60,25Duzce N = 0.10 W 0.0057 -64.38 0.001 -73.68 1.0174 -48.83 0.1237 -60.25
N=0,15 W 0,0051 -68,13 8,75E-04 -76,97 0,873 -56,09 0,1252 -59,77N = 0.15 W 0.0051 -68.13 8.75E-04 -76.97 0.873 -56.09 0.1252 -59.77
N=0,20 W 0,004 -75,00 7,64E-04 -79,90 0,8264 -58,44 0,1371 -55,94 Sin control 0,0172 - 0,0054 - 2,058 - 0,4332 -N = 0.20 W 0.004 -75.00 7.64E-04 -79.90 0.8264 -58.44 0.1371 -55.94 Without control 0.0172 - 0.0054 - 2.058 - 0.4332 -
N=0,05 W 0,0069 -59,88 0,0015 -72,22 0,9626 -53,23 0,145 -66,53N = 0.05 W 0.0069 -59.88 0.0015 -72.22 0.9626 -53.23 0.145 -66.53
Friuli N=0,10 W 0,0062 -63,95 0,0011 -79,63 1,0231 -50,29 0,1308 -69,81Friuli N = 0.10 W 0.0062 -63.95 0.0011 -79.63 1.0231 -50.29 0.1308 -69.81
N=0,15 W 0,0063 -63,37 8,63E-04 -84,01 1,1056 -46,28 0,1263 -70,84N = 0.15 W 0.0063 -63.37 8.63E-04 -84.01 1.1056 -46.28 0.1263 -70.84
N=0,20 W 0,005 -70,93 6,98E-04 -87,08 0,9873 -52,03 0,1237 -71,45N = 0.20 W 0.005 -70.93 6.98E-04 -87.08 0.9873 -52.03 0.1237 -71.45
Sin control 0,0203 - 0,0043 - 2,3845 - 0,3395 -Without control 0,0203 - 0,0043 - 2,3845 - 0,3395 -
N=0,05 W 0,0066 -67,49 0,0011 -74,42 0,9874 -58,59 0,1084 -68,07N = 0.05 W 0.0066 -67.49 0.0011 -74.42 0.9874 -58.59 0.1084 -68.07
Hollister N=0,10 W 0,0048 -76,35 6,42E-04 -85,08 0,7878 -66,96 0,0822 -75,79Hollister N = 0.10 W 0.0048 -76.35 6.42E-04 -85.08 0.7878 -66.96 0.0822 -75.79
N=0,15 W 0,0043 -78,82 5,12E-04 -88,10 0,8287 -65,25 0,0848 -75,02N = 0.15 W 0.0043 -78.82 5.12E-04 -88.10 0.8287 -65.25 0.0848 -75.02
N=0,20 W 0,0038 -81,28 4,31E-04 -89,98 0,8016 -66,38 0,0797 -76,52N = 0.20 W 0.0038 -81.28 4.31E-04 -89.98 0.8016 -66.38 0.0797 -76.52
Sin control 0,0164 - 0,0039 - 1,9 - 0,314 -Without control 0.0164 - 0.0039 - 1.9 - 0.314 -
N=0,05 W 0,012 -26,83 0,0013 -66,67 1,5529 -18,27 0,1206 -61,59N = 0.05 W 0.012 -26.83 0.0013 -66.67 1.5529 -18.27 0.1206 -61.59
Imperial Imperial
N=0,10 W 0,0086 -47,56 9,02E-04 -76,86 1,2303 -35,25 0,1036 -67,01 Valley  N = 0.10 W 0.0086 -47.56 9.02E-04 -76.86 1.2303 -35.25 0.1036 -67.01 Valley
N=0,15 W 0,0064 -60,98 7,20E-04 -81,54 1,1427 -39,86 0,105 -66,56 N = 0.15 W 0.0064 -60.98 7.20E-04 -81.54 1.1427 -39.86 0.105 -66.56
N=0,20 W 0,0046 -71,95 5,78E-04 -85,18 0,9368 -50,69 0,11 -64,97N = 0.20 W 0.0046 -71.95 5.78E-04 -85.18 0.9368 -50.69 0.11 -64.97
Sin control 0,0184 - 0,0046 - 2,1883 - 0,5103 -Without control 0.0184 - 0.0046 - 2.1883 - 0.5103 -
N=0,05 W 0,0115 -37,50 0,0015 -67,39 1,5609 -28,67 0,1934 -62,10N = 0.05 W 0.0115 -37.50 0.0015 -67.39 1.5609 -28.67 0.1934 -62.10
Kobe N=0,10 W 0,0088 -52,17 0,001 -78,26 1,3051 -40,36 0,1568 -69,27Kobe N = 0.10 W 0.0088 -52.17 0.001 -78.26 1.3051 -40.36 0.1568 -69.27
N=0,15 W 0,0056 -69,57 6,23E-04 -86,46 1,0228 -53,26 0,1214 -76,21N = 0.15 W 0.0056 -69.57 6.23E-04 -86.46 1.0228 -53.26 0.1214 -76.21
N=0,20 W 0,0032 -82,61 3,56E-04 -92,26 0,7462 -65,90 0,1017 -80,07N = 0.20 W 0.0032 -82.61 3.56E-04 -92.26 0.7462 -65.90 0.1017 -80.07
Sin control 0,0204 - 0,0039 - 2,4046 - 0,3957 -Without control 0.0204 - 0.0039 - 2.4046 - 0.3957 -
N=0,05 W 0,0121 -40,69 0,0013 -66,67 1,5852 -34,08 0,1576 -60,17N = 0.05 W 0.0121 -40.69 0.0013 -66.67 1.5852 -34.08 0.1576-60.17
Kocaeli N=0,10 W 0,0095 -53,43 8,75E-04 -77,57 1,3803 -42,60 0,127 -67,90Kocaeli N = 0.10 W 0.0095 -53.43 8.75E-04 -77.57 1.3803 -42.60 0.127 -67.90
N=0,15 W 0,0085 -58,33 6,34E-04 -83,75 1,3896 -42,21 0,1161 -70,66N = 0.15 W 0.0085 -58.33 6.34E-04 -83.75 1.3896 -42.21 0.1161 -70.66
N=0,20 W 0,0073 -64,22 5,04E-04 -87,07 1,2802 -46,76 0,1195 -69,80N = 0.20 W 0.0073 -64.22 5.04E-04 -87.07 1.2802 -46.76 0.1195 -69.80
Sin control 0,0204 - 0,0046 - 2,4506 - 0,4486 -Without control 0.0204 - 0.0046 - 2.4506 - 0.4486 -
N=0,05 W 0,0141 -30,88 0,0018 -60,87 1,7755 -27,55 0,202 -54,97N = 0.05 W 0.0141 -30.88 0.0018 -60.87 1.7755 -27.55 0.202 -54.97
Landers N=0,10 W 0,0104 -49,02 0,0014 -69,57 1,4591 -40,46 0,1904 -57,56Landers N = 0.10 W 0.0104 -49.02 0.0014 -69.57 1.4591 -40.46 0.1904 -57.56
N=0,15 W 0,0085 -58,33 0,0011 -76,09 1,4288 -41,70 0,1808 -59,70N = 0.15 W 0.0085 -58.33 0.0011 -76.09 1.4288 -41.70 0.1808 -59.70
N=0,20 W 0,0064 -68,63 9,12E-04 -80,18 1,1644 -52,49 0,1807 -59,72N = 0.20 W 0.0064 -68.63 9.12E-04 -80.18 1.1644 -52.49 0.1807 -59.72
Sin control 0,0159 - 0,0075 - 1,9248 - 0,4493 -Without control 0.0159 - 0.0075 - 1.9248 - 0.4493 -
N=0,05 W 0,0089 -44,03 0,0026 -65,33 1,1889 -38,23 0,153 -65,95N = 0.05 W 0.0089 -44.03 0.0026 -65.33 1.1889 -38.23 0.153 -65.95
México N=0,10 W 0,0068 -57,23 0,0017 -77,33 1,0774 -44,03 0,1213 -73,00Mexico N = 0.10 W 0.0068 -57.23 0.0017 -77.33 1.0774 -44.03 0.1213 -73.00
N=0,15 W 0,0057 -64,15 0,0012 -84,00 1,0266 -46,66 0,1091 -75,72N = 0.15 W 0.0057 -64.15 0.0012 -84.00 1.0266 -46.66 0.1091 -75.72
N=0,20 W 0,0044 -72,33 9,27E-04 -87,64 0,8768 -54,45 0,1061 -76,39N = 0.20 W 0.0044 -72.33 9.27E-04 -87.64 0.8768 -54.45 0.1061 -76.39
San Sin control 0,0154 - 0,0049 - 1,9446 - 0,3327 - Fernando N=0,05 W 0,0136 -11,69 0,0029 -40,82 1,7492 -10,05 0,2161 -35,05San No control 0.0154 - 0.0049 - 1.9446 - 0.3327 - Fernando N = 0.05 W 0.0136 -11.69 0.0029 -40.82 1,7492 -10.05 0.2161 -35.05
N=0,10 W 0,0116 -24,68 0,0021 -57,14 1,6957 -12,80 0,1841 -44,66N = 0.10 W 0.0116 -24.68 0.0021 -57.14 1.6957 -12.80 0.1841 -44.66
N=0,15 W 0,0113 -26,62 0,0018 -63,27 1,7102 -12,05 0,1735 -47,85N = 0.15 W 0.0113 -26.62 0.0018 -63.27 1.7102 -12.05 0.1735 -47.85
N=0,20 W 0,0102 -33,77 0,0015 -69,39 1,6432 -15,50 0,163 -51,01 N = 0.20 W 0.0102 -33.77 0.0015 -69.39 1.6432 -15.50 0.163 -51.01
Como se observa en Tabla 2, los desplazamientos de la estructura se reducen fuertemente para todos los casos de fuerza normal aplicada, llegando incluso a reducciones en el desplazamiento máximo del 82%, para el caso del Terremoto de Kobe, con una fuerza normal igual al 20% del peso de la estructura. En el valor máximo de aceleraciones se obtienen reducciones de hasta un 66%, siendo la mínima reducción del 10%. La reducción en valor rms es superior al 40% en todos los casos. Estos resultados demuestran la efectividad en la reducción de la respuesta dinámica del sistema de control de vibraciones de la presente invención. As shown in Table 2, the displacements of the structure are strongly reduced for all cases of normal force applied, even reaching reductions in the maximum displacement of 82%, in the case of the Kobe Earthquake, with a normal force equal to 20% of the weight of the structure. In the maximum acceleration value, reductions of up to 66% are obtained, the minimum reduction being 10%. The reduction in rms value is greater than 40% in all cases. These results demonstrate the effectiveness in reducing the dynamic response of the vibration control system of the present invention.
Como ejemplos representativos, las Figs. 6 y 7 muestran los registros de desplazamientos y aceleraciones absolutas, medidos en el dintel de la estructura, obtenidas con y sin control de vibraciones para los registros sísmicos de Imperial Valley y Kobe, respectivamente. Se puede observar como la respuesta estructural de la estructura principal se reduce en forma significativa.  As representative examples, Figs. 6 and 7 show the records of displacements and absolute accelerations, measured in the lintel of the structure, obtained with and without vibration control for the seismic records of Imperial Valley and Kobe, respectively. It can be seen how the structural response of the main structure is significantly reduced.

Claims

REIVINDICACIONES
1. Un dispositivo disipador de energía múltiple de fricción, para controlar la respuesta dinámica en términos de desplazamientos y aceleraciones, tanto en estructuras nuevas como rehabilitadas, en donde el dispositivo comprende al menos una columna la cual se encuentra rodeada de múltiples patines de fricción, los cuales se encuentran sujetos entre sí mediante pernos de sujeción, comprendiendo además al menos un regulador de carga axial montado sobre una pluralidad de resortes de compresión, estando dicho regulador sujeto mediante tornillos de alta resistencia.  1. A multiple friction energy dissipation device, to control the dynamic response in terms of displacements and accelerations, both in new and rehabilitated structures, where the device comprises at least one column which is surrounded by multiple friction skates, which are held together by means of fastening bolts, further comprising at least one axial load regulator mounted on a plurality of compression springs, said regulator being secured by means of high strength screws.
2. El dispositivo de acuerdo con la reivindicación 1, en donde los patines de fricción son patines defricción seca. 2. The device according to claim 1, wherein the friction skates are dry defriction skates.
3. El dispositivo de acuerdo con la reivindicación 1, en donde dichos múltiples patines de fricción forman un conjunto de patines apilados entre sí. 3. The device according to claim 1, wherein said multiple friction skates form a set of skates stacked together.
4. El dispositivo de acuerdo con la reivindicación 1, que comprende para su montaje un sistema de sujeción mediante tornillos entre la columna y los patines de fricción. 4. The device according to claim 1, comprising for mounting a fastening system by screws between the column and the friction skates.
5. El dispositivo de acuerdo con la reivindicación 1 que comprende al menos dos columnas, preferiblemente tres o más columnas rodeadas cada una de múltiples patines de fricción.. 5. The device according to claim 1 comprising at least two columns, preferably three or more columns each surrounded by multiple friction skates.
6. El dispositivo de acuerdo con cualquiera de las reivindicaciones precedentes, en donde el dispositivo se encuentra sujeto a una carga axial o normal regulable de precompresión ejercida por dicho regulador de carga axial. 6. The device according to any of the preceding claims, wherein the device is subject to an adjustable axial or normal precompression load exerted by said axial load regulator.
7. El dispositivo de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dichos patines de fricción pueden desplazarse horizontalmente generando fuerzas de fricción que disipan energía y resisten el movimiento horizontal. 7. The device according to any of the preceding claims, wherein said friction skates can move horizontally generating frictional forces that dissipate energy and resist horizontal movement.
8. El dispositivo de acuerdo con cualquiera de las reivindicaciones precedentes, en donde el contacto entre la columna y cada patín se realiza mediante un medio de fijación que comprende un anillo toroidal fijo a la columna el cual apoya sobre la superficie cilindrica interna de cada patín. The device according to any of the preceding claims, wherein the contact between the column and each skate is made by means of a fixing means comprising a toroidal ring fixed to the column which rests on the internal cylindrical surface of each skate. .
9. El dispositivo de acuerdo con la reivindicación 6, en donde la carga axial o normal regulable de precompresión se aplica desde el extremo superior o inferior del conjunto de múltiples patines por medio de al menos cuatro resortes precomprimidos. 9. The device according to claim 6, wherein the adjustable axial or normal precompression load is applied from the upper or lower end of the multi-skid assembly by means of at least four pre-compressed springs.
10. El dispositivo de acuerdo con la reivindicación 9, en donde dicha carga axial o normal regulable de precompresión se ajusta por medio de resortes precomprimidos y tornillos de alta resistencia. 10. The device according to claim 9, wherein said adjustable pre-compressed axial or normal load is adjusted by means of pre-compressed springs and high strength screws.
PCT/IB2016/056183 2015-10-14 2016-10-14 Multiple-friction dissipating device WO2017064673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AR20150103323 2015-10-14
AR20150103323 2015-10-14

Publications (1)

Publication Number Publication Date
WO2017064673A1 true WO2017064673A1 (en) 2017-04-20

Family

ID=58517902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/056183 WO2017064673A1 (en) 2015-10-14 2016-10-14 Multiple-friction dissipating device

Country Status (1)

Country Link
WO (1) WO2017064673A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311925A (en) * 1992-05-13 1993-11-22 Sanwa Tekki Corp Damping supporter for tower-shaped structure
JP2000240072A (en) * 1999-02-24 2000-09-05 Takenaka Komuten Co Ltd Base isolation device installing method and installation structure
CN204590299U (en) * 2015-04-27 2015-08-26 中国地震局工程力学研究所 Three-dimensional multiple ring type tuned mass damper damping device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311925A (en) * 1992-05-13 1993-11-22 Sanwa Tekki Corp Damping supporter for tower-shaped structure
JP2000240072A (en) * 1999-02-24 2000-09-05 Takenaka Komuten Co Ltd Base isolation device installing method and installation structure
CN204590299U (en) * 2015-04-27 2015-08-26 中国地震局工程力学研究所 Three-dimensional multiple ring type tuned mass damper damping device

Similar Documents

Publication Publication Date Title
Li et al. Vibration mitigation of a stay cable with one shape memory alloy damper
US8857110B2 (en) Negative stiffness device and method
Chen et al. Shake table tests of a quarter‐scale three‐storey building model with piezoelectric friction dampers
Tan et al. Experimental study on the outrigger damping system for high-rise building
Ueng et al. Practical design issues of tuned mass dampers for torsionally coupled buildings under earthquake loadings
Xu et al. Semi‐active and passive control of the phase I linear base‐isolated benchmark building model
US11041323B2 (en) Viscoelastic bracing damper
KR101398365B1 (en) Frictional energy dissipative devices using disc springs
US11447949B2 (en) Friction damper for a building structure
WO2017064673A1 (en) Multiple-friction dissipating device
JP5574330B2 (en) Seismic isolation structure
Kazi et al. Comparative Analysis of a Multistorey Building with and without Damper
CN104652643B (en) Self-reset high-energy-consumption shape-memory-alloy friction damper
US20190376281A1 (en) Volumetric compression restrainer
CN106122688A (en) A kind of snubber base
JP6726381B2 (en) Installation structure of rotary mass damper
Priya et al. A critical review on enhancing the seismic response of buildings with energy dissipation methods
TWI509134B (en) High-performance damper with friction casings
Lee et al. Bracing systems for installation of MR dampers in a building structure
RU2457374C1 (en) Damper
Premalatha et al. Study on the Seismic Response of a Steel Building with Viscous Fluid Dampers–Chevron Configuration
ES2964317T3 (en) Impulse damper for tall and thin structures and installations
KR102480668B1 (en) System for damping seismic energy
RU2538489C1 (en) Kochetov's equifrequential package of disk-type elastic elements
CN113090705B (en) Nonlinear horizontal shock isolation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16815931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16815931

Country of ref document: EP

Kind code of ref document: A1