JP3823128B2 - Copper alloy for electronic material, manufacturing method thereof, strip used for copper alloy for electronic material, copper alloy for electronic material manufactured using the strip, and manufacturing method thereof - Google Patents

Copper alloy for electronic material, manufacturing method thereof, strip used for copper alloy for electronic material, copper alloy for electronic material manufactured using the strip, and manufacturing method thereof Download PDF

Info

Publication number
JP3823128B2
JP3823128B2 JP2001100581A JP2001100581A JP3823128B2 JP 3823128 B2 JP3823128 B2 JP 3823128B2 JP 2001100581 A JP2001100581 A JP 2001100581A JP 2001100581 A JP2001100581 A JP 2001100581A JP 3823128 B2 JP3823128 B2 JP 3823128B2
Authority
JP
Japan
Prior art keywords
copper alloy
rolling
electronic materials
surface roughness
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001100581A
Other languages
Japanese (ja)
Other versions
JP2002292406A (en
Inventor
哲生 牧
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2001100581A priority Critical patent/JP3823128B2/en
Publication of JP2002292406A publication Critical patent/JP2002292406A/en
Application granted granted Critical
Publication of JP3823128B2 publication Critical patent/JP3823128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は,良好な表面性状を有しさらには優れためっき性を有する電子材料用銅合金及びその製造方法更には、前記銅合金に使用する素条及びその製造方法に関する。
【0002】
【従来の技術】
リードフレーム,ピン,コネクター等に使用される電子材料用銅合金条では,製品の基本特性として高い機械的強度および高い電気伝導性を両立させることが要求される。さらに近年の電子部品の小型化,薄肉化の一層要求されることから,機械的強度が優れている他に,曲げ加工や繰り返し曲げに強いこと,めっき,半田付け性が良好であることが要求される。
【0003】
前記要求特性の内めっき性に関し,薄板とした製品にめっき処理した際にめっき剥がれや膨れの発生という問題が生じることがある.この原因としては,めっき前処理条件,めっき条件,素材要因および環境・外的要因が挙げられる.このうち素材要因としては,加工時の材料表面の応力集中や潤滑性不良,作業方法(製造条件)の不適当によって,材料表面にクラック状の折れ込みが生じ,めっき欠陥の原因となることがある(参考文献 「めっき欠陥の顕微鏡写真集」,兼松弘,鈴木健生,(株)21世紀社,1980)。更にはこれらクラック状の折れ込み欠陥は,製品に曲げ加工を施した際,曲げ部のクラック発生の起点となりうる。
【0004】
これらの問題を回避する一つの手段として,製品製造の中間工程あるいは最終工程において材料表面を酸洗研磨し前述の欠陥を除去するといった方法が行われている。
【0005】
【発明が解決しようとする課題】
製品表面を研磨することによって,多くの場合表層の酸化スケールの除去は可能であるが,クラック状の折れ込み欠陥は完全には除去されずに残存する場合がある。また多量に表面研磨を行うと,製造歩留の低下,および表面粗さが大きくなり製品の表面性状が劣化する。
【0006】
本発明は上述した問題解決のためになされたもので,本発明の目的は,製品をめっき処理した際のめっき剥がれや膨れの発生しない良好な表面性状であることを特徴とする電子材料用銅合金及びその製造する手段を確立することである。
【0007】
【課題を解決するための手段】
そこで本発明者らは,材料表面の折れ込み状欠陥の発生原因に関する研究を重ねたところ,銅合金薄板の製造工程における冷間圧延後の材料の表面粗さを制御することにより,クラック状の折れ込み欠陥のない良好な表面性状を得ることのできる電子材料用銅合金及びその製造方法を見出した。
【0008】
本発明は,上記知見を基に完成されたものであり,
(1)大きさが20μm以上のクラック状の折れ込み欠陥である表面欠陥がゼロ 個/1000mmである表面性状に優れた電子材料用銅合金。
(2)表面粗さ:Raが0.05〜0.09μmである表面性状に優れた上記(1)記載の電子材料用銅合金。
【0009】
(3)表面粗さ:Ryが0.45〜0.90である表面性状に優れた上記(1)及び(2)記載の電子材料用銅合金。
(4)Ni:1.0〜3.0mas%、Si:0.2〜0.6%を少なくとも含有する表面性状に優れた上記(1)〜(3)記載の電子材料用銅合金。
【0010】
(5)銅合金薄板の製造工程において,中間圧延工程における材料板厚が1.0〜3.0mmの段階における銅合金圧延板の圧延直角方向の表面粗さの内,平均粗さRaを0.5μm以下,最大高さRyを3.0μm以下に規定した表面性状に優れた電子材料用銅合金に用いる素条。
(6)上記(5)の素条を用いて製造した表面性状に優れた電子材料用銅合金。
【0011】
(7)銅合金薄板の製造工程において,中間板厚に加工する段階での冷間圧延工程における圧延ロールの表面粗さを,平均粗さRaが0.3〜0.8μmである圧延ロールを用いて圧延を行うことにより,材料板厚が1.0〜3.0mmの段階における銅合金圧延板の圧延直角方向の表面粗さの内,平均粗さRaを0.5μm以下,最大高さRyを3.0μm以下とした表面性状に優れた電子材料用銅合金に用いる素条の製造方法。
【0012】
(8)銅合金薄板の製造工程において,中間板厚に加工する段階での冷間圧延工程における圧延ロールの表面粗さを,平均粗さRaが0.3〜0.8μmである圧延ロールを用いて圧延を行うことにより,材料板厚が1.0〜3.0mmの段階における銅合金圧延板の圧延直角方向の表面粗さの内,平均粗さRaを0.5μm以下,最大高さRyを3.0μm以下とした中間工程を有する表面性状に優れた電子材料用銅合金の製造方法。
である。
【0013】
【発明の実施の形態】
以下,本発明において中間圧延段階での材料の表面粗さを前記の如くに限定した理由を詳述する。
【0014】
一般に銅合金薄板の製造において,まず鋳塊に熱間圧延あるいは冷間圧延を施し厚さ10mm前後の板とし,表面スケール除去のための面削が行われる。なお合金によっては面削前に焼鈍を行う場合もある。面削後に行われる冷間圧延工程において,中間板厚,具体的には材料板厚が1.0〜3.0mmの段階(以下,素条と称する)での材料の表面粗さが平均粗さ(Ra)が0.5μm,最大高さ(Ry)が3.0μmを超えると,その後に冷間圧延,焼鈍,酸洗,表面研磨の処理を繰り返し行っても製品板厚,例えば0.15mmの板厚に加工後も製品表面にはクラック状の折れ込み欠陥が残存することが確認された。
【0015】
クラック状の折れ込み欠陥の具体的形態は,材料表面からの観察では小さなフレーク状の母材が材料表面に押し込まれたあるいは材料表面に被った形態であり,断面から観察すると材料表層にクラックが入った様な形態になっている。
【0016】
これら製品表面のクラック状の欠陥の生成原因は以下のように考えられる。素条段階での表面粗さが大きいと,以降に行われる冷間圧延時に表面の凸部が倒れ込み,母材がフレーク状に表面に被った状態となる。あるいは凸部がつぶれた形で幅方向に不均一に広がり,圧延の張力により部分的に分断され前者と同じく母材がフレーク状に表面に被った状態となる。これら表面に被った部分は圧延による張力の影響を一方向にしか受けない,あるいは全く影響を受けないため,即ち定常部分に比べ圧延方向に引き伸ばされる力が小さいためにフレーク状の部位はほとんど圧延されず材料に押し込まれていき,結果として製品厚でも残存する。
【0017】
圧延により形成されたクラック状の折れ込み欠陥は,その後の酸洗,研磨を行っても完全には消失しない。また素条の段階で冷間加工前に酸洗研磨を行っても,素条の表面粗さの影響は残存し,結果として引き続き行われる圧延工程でクラック状の折れ込み欠陥が形成されることになる。
【0018】
これら製品板厚段階で残存している欠陥を除去するために表面研磨を行っても完全に除去することは困難であり,また製品での表面粗さがむしろ大きくなるといった弊害が生じる。
【0019】
そこで本発明者らは,クラック状の折れ込み欠陥の発生防止方法を検討した結果,中間板厚の段階での素条の表面粗さを制御することにより欠陥の発生を防止できることを見出した。具体的には材料板厚が1.0〜3.0mmの段階での素条の表面粗さを,平均粗さ(Ra)0.5μm以下,最大高さ(Ry)3.0μm以下にすることで,その後の加工工程によらず製品板厚の段階でのクラック状の折れ込み欠陥の発生が防止できることを見出した。
【0020】
また板厚1.0〜3.0mmの素条段階での表面粗さを制御するための圧延条件について詳細な調査を行った結果,圧延油の粘度,圧延速度,圧延張力,1パスあたりの加工度によらず,圧延ロールの表面粗さを制御すれば良いことを見出した。具体的には銅合金薄板の製造工程において,中間板厚すなわち材料板厚を1.0〜3.0mmに加工する段階での冷間圧延工程における圧延ロールの表面粗さを,平均粗さRaを0.3〜0.8μmにすれば良いことも同時に見出した。より好ましくは圧延ロールの表面粗さの平均粗さRaを0.4〜0.7μmとするのが良い。
【0021】
圧延ロール表面粗さが0.8μmを超えると素条の表面粗さが大きくなりクラック状の折れ込み欠陥の発生の原因となる。一方,ロール表面粗さが0.3μm未満では,圧延時に材料がスリップし材料表面にスリ傷の発生あるいは板厚が不均一の部位が形成されてしましい材料品質が低下するためである。
【0022】
又本発明の最終製品である電子材料用銅合金は、大きさが20μm以上のクラック状の折れ込み欠陥が、ゼロ 個/1000mmである。これにより、銀めっきの膨れが無い物が得られる。
ここで「欠陥の大きさ」とは光学顕微鏡観察下でその欠陥の圧延直角方向の最大長さをいう。
欠陥の大きさおよび個数を限定した理由は,材料表面におけるクラック状の折れ込み欠陥の大きさ及び個数と,銀めっき加熱試験後の膨れの発生状況について詳細な調査を行った結果,大きさが20μm以上のクラック状の折れ込み欠陥がめっき膨れの原因であり,大きさ20μm以上のクラック状の折れ込み欠陥が、ゼロ 個/1000mmであれば,銀めっき膨れの発生を防止できることが判明したためである。
【0023】
更に本発明の最終製品である電子材料用銅合金は、表面粗さRa:が
0.05〜0.09μmであると表面性状がより優れた電子材料用銅合金となる。
【0024】
又本発明の最終製品である電子材料用銅合金は、表面粗さRy:が
0.45〜0.90であると表面性状に優れた電子材料用銅合金となる。
【0025】
更にNi:1.0〜3.0mas%、Si:0.2〜0.6%を少なくとも含有する電子材料用銅合金において好適に使用される。この種の銅合金は、銀めっきを多くされるからである。
【0026】
以下,実施例により本発明を更に詳しく説明する。
【0027】
【実施例】
重量割合でCu−1.8%Ni−0.4%Si−0.6%Zn−0.5%Snの組成の銅合金を高周波溶解炉にて溶解鋳造し,インゴットを作製した.このインゴットを900℃の温度で熱間圧延を行った後,表面のスケール除去のため面削を施し厚さ9mmの板とした。これらの板を粗さの異なる圧延ロールで1.5mmまで圧延を行い,表1に示す表面粗さの異なる4種類の素条とした。
【0028】
【表1】

Figure 0003823128
【0029】
なお表面粗さはJIS-B0601に従い素条表面の圧延直角方向の表面粗さを測定した。次にこれら表面粗さの異なる素条1〜4を表2に示す種々の工程で加工を行い0.15mmの薄板とし,試験に供した。
【0030】
【表2】
Figure 0003823128
【0031】
表2中の酸洗工程では硫酸水溶液と過酸化水素水溶液を使用し,#2000バフ研磨を実施した.この際の減肉量は片面約1〜3μm程度であった。
【0032】
これらの供試材について,表面粗さ,表面欠陥個数,銀めっき性を調査した結果を表3に示す。
【表3】
Figure 0003823128
【0033】
表面粗さはJIS-B0601に従い,圧延直角方向の平均粗さRaと最大高さRyを測定した。表面欠陥個数は材料表面を光学顕微鏡により観察し,1000mm2当りでの大きさ20μm以上の粗大な欠陥個数を測定した。ここで「表面欠陥」とはクラック状の折れ込み欠陥であり,材料表面からの観察では小さなフレーク状の母材が材料表面に押し込まれたあるいは表面に被った形態で観察されるものを示す。
【0034】
「欠陥の大きさ」とは光学顕微鏡観察下でその欠陥の圧延直角方向の最大長さをいう。銀めっき性は,材料表面を清浄後,0.2μmの銅下地めっきを施した後に銀めっきを行い,これを大気中400℃で2分間加熱し,その後めっき表面のを観察し,ふくれの無いものを○,ふくれの観察されたものを×とした。
【0035】
表3から明らかなように,本発明例の実施例1〜8はいずれの加工工程の材料においても粗大な表面欠陥および銀めっきふくれが観察されず,良好な表面性状を有しめっき性に優れていることが判る。一方,比較例では,最終板厚での材料表面の表面粗さは実施例合金と同等であるが,素条段階での表面粗さが大きいため,いずれの工程で加工された材料の表面においても粗大な表面欠陥および銀めっきふくれの発生が確認された。
【0036】
図1に本発明の一態様であるクラック状の折れ込み欠陥のない銅合金の表面写真を示す。図1は表3中の実施例1として示した,素条1を用い工程▲1▼で板厚0.15mmまで加工を行った材料の表面SEM写真である。
図2に本発明の一態様であるクラック状の折れ込み欠陥のある銅合金の表面写真を示す。図2は表3中の比較例5として示した,素条4を用い工程▲1▼で板厚0.15mmまで加工を行った材料の表面SEM写真である。
【0037】
【発明の効果】
このように本発明によれば,良好な表面性状を有しさらには優れためっき性を有する銅合金が得られ,リードフレーム,端子,コネクター等電子材料用銅合金として好適である。
【図面の簡単な説明】
【図1】本発明の一態様であるクラック状の折れ込み欠陥のない銅合金の表面写真。
【図2】比較例の一態様であるクラック状の折れ込み欠陥のある銅合金の表面写真。[0001]
[Industrial application fields]
The present invention relates to a copper alloy for electronic materials having good surface properties and further having excellent plating properties, a method for producing the same, and a strip used for the copper alloy and a method for producing the same.
[0002]
[Prior art]
Copper alloy strips for electronic materials used for lead frames, pins, connectors, etc. are required to achieve both high mechanical strength and high electrical conductivity as the basic characteristics of the product. In addition to the recent demand for smaller and thinner electronic components, in addition to excellent mechanical strength, it must be resistant to bending and repeated bending, and must have good plating and solderability. Is done.
[0003]
With regard to the inner plating property of the required characteristics, there may be a problem that plating peeling or swelling occurs when a thin product is plated. The causes include pretreatment conditions for plating, plating conditions, material factors, and environmental and external factors. Among these factors, cracks in the material surface may cause cracking due to stress concentration on the material surface during processing, poor lubricity, and inappropriate working methods (manufacturing conditions), which may cause plating defects. Yes (references "Micrographs of plating defects", Hiroshi Kanematsu, Takeo Suzuki, 21st Century Inc., 1980). Furthermore, these crack-like fold defects can be the starting point for cracks in the bent part when the product is bent.
[0004]
As one means for avoiding these problems, a method of removing the above-mentioned defects by pickling and polishing the surface of a material in an intermediate process or a final process of product manufacture is performed.
[0005]
[Problems to be solved by the invention]
By polishing the surface of the product, it is possible in many cases to remove the oxide scale on the surface layer, but crack-like fold defects may remain without being completely removed. If a large amount of surface polishing is performed, the production yield decreases and the surface roughness increases and the surface properties of the product deteriorate.
[0006]
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is a copper for electronic materials characterized by good surface properties that do not cause plating peeling or swelling when a product is plated. Establishing alloys and the means to manufacture them.
[0007]
[Means for Solving the Problems]
Therefore, the present inventors conducted research on the cause of the occurrence of fold-like defects on the surface of the material. By controlling the surface roughness of the material after cold rolling in the copper alloy sheet manufacturing process, The present inventors have found a copper alloy for electronic materials and a method for producing the same, which can obtain good surface properties free from folding defects.
[0008]
The present invention has been completed based on the above findings,
(1) A copper alloy for electronic materials having excellent surface properties, in which the number of surface defects that are crack-like fold defects having a size of 20 μm or more is zero / 1000 mm 2 .
(2) Surface roughness: Copper alloy for electronic materials as described in said (1) which was excellent in the surface property whose Ra is 0.05-0.09 micrometer.
[0009]
(3) Surface roughness: The copper alloy for electronic materials according to the above (1) and (2), which has excellent surface properties with Ry of 0.45 to 0.90.
(4) The copper alloy for electronic materials according to the above (1) to (3), which has excellent surface properties containing at least Ni: 1.0 to 3.0 mass% and Si: 0.2 to 0.6%.
[0010]
(5) In the production process of the copper alloy sheet, the average roughness Ra is 0.5 μm or less of the surface roughness in the direction perpendicular to the rolling direction of the copper alloy rolled sheet in the stage where the material sheet thickness in the intermediate rolling process is 1.0 to 3.0 mm. Strips used for copper alloys for electronic materials with a maximum surface height Ry of 3.0μm or less and excellent surface properties.
(6) A copper alloy for electronic materials, which is manufactured using the strip of (5) and has excellent surface properties.
[0011]
(7) In the copper alloy sheet manufacturing process, the surface roughness of the rolling roll in the cold rolling process at the stage of processing to the intermediate sheet thickness is rolled using a rolling roll having an average roughness Ra of 0.3 to 0.8 μm. Of the surface roughness in the direction perpendicular to the rolling direction of the rolled copper alloy sheet at a thickness of 1.0 to 3.0 mm, the average roughness Ra is 0.5 μm or less and the maximum height Ry is 3.0 μm or less. A method for producing a strip used for a copper alloy for electronic materials having excellent surface properties.
[0012]
(8) In the copper alloy sheet manufacturing process, the surface roughness of the rolling roll in the cold rolling process at the stage of processing to the intermediate sheet thickness is rolled using a rolling roll having an average roughness Ra of 0.3 to 0.8 μm. Of the surface roughness in the direction perpendicular to the rolling direction of the rolled copper alloy sheet at a thickness of 1.0 to 3.0 mm, the average roughness Ra is 0.5 μm or less and the maximum height Ry is 3.0 μm or less. The manufacturing method of the copper alloy for electronic materials excellent in the surface property which has an intermediate process.
It is.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the surface roughness of the material in the intermediate rolling stage is limited as described above in the present invention will be described in detail.
[0014]
In general, in the manufacture of copper alloy sheet, the ingot is first hot-rolled or cold-rolled to form a plate with a thickness of around 10 mm, and surface chamfering is performed to remove surface scale. Depending on the alloy, annealing may be performed before chamfering. In the cold rolling process performed after chamfering, the surface roughness of the material at the stage where the intermediate plate thickness, specifically, the material plate thickness is 1.0 to 3.0 mm (hereinafter referred to as “stripe”) is the average roughness (Ra ) Exceeds 0.5μm and the maximum height (Ry) exceeds 3.0μm, it can be processed to a product thickness of 0.15mm, for example, even if cold rolling, annealing, pickling and surface polishing are repeated thereafter. After that, it was confirmed that crack-like folding defects remained on the product surface.
[0015]
The specific form of crack-like fold defects is a form in which a small flaky base material is pushed into or covered on the material surface when observed from the material surface. It is in the form of entering.
[0016]
The cause of the generation of crack-like defects on the surface of these products is considered as follows. If the surface roughness at the strip stage is large, the convex portion of the surface falls down during the subsequent cold rolling, and the base material is covered with the surface in the form of flakes. Alternatively, the convex portion is crushed and spreads unevenly in the width direction, and is partially divided by the tension of rolling, and the base material is covered with a flake like the former. Since these portions covered with the surface are affected only by the tension due to rolling in one direction or not at all, that is, since the force stretched in the rolling direction is smaller than that in the steady portion, the flaky portion is almost rolled. Instead, they are pushed into the material, and as a result, the product thickness remains.
[0017]
The crack-like folding defect formed by rolling does not disappear completely even after subsequent pickling and polishing. Moreover, even if pickling is performed before cold working at the stage of the strip, the effect of the surface roughness of the strip remains, and as a result, crack-like fold defects are formed in the subsequent rolling process. become.
[0018]
Even if surface polishing is performed in order to remove the defects remaining in the product plate thickness stage, it is difficult to completely remove the defects, and the surface roughness of the product is rather increased.
[0019]
Accordingly, the present inventors have studied a method for preventing the occurrence of crack-like folding defects, and as a result, have found that the occurrence of defects can be prevented by controlling the surface roughness of the strip at the intermediate plate thickness stage. Specifically, the surface roughness of the strip when the material thickness is 1.0 to 3.0 mm is set to an average roughness (Ra) of 0.5 μm or less and a maximum height (Ry) of 3.0 μm or less. It has been found that the occurrence of crack-like folding defects at the product plate thickness stage can be prevented regardless of the processing steps.
[0020]
In addition, as a result of detailed investigations on rolling conditions for controlling the surface roughness at the strip stage with a thickness of 1.0 to 3.0 mm, it was found that the viscosity of rolling oil, rolling speed, rolling tension, and workability per pass Regardless, it has been found that the surface roughness of the rolling roll may be controlled. Specifically, in the copper alloy sheet manufacturing process, the surface roughness of the rolling roll in the cold rolling process at the stage of processing the intermediate sheet thickness, that is, the material sheet thickness to 1.0 to 3.0 mm, and the average roughness Ra from 0.3 to At the same time, it was found that 0.8 μm is sufficient. More preferably, the average roughness Ra of the surface roughness of the rolling roll is 0.4 to 0.7 μm.
[0021]
If the surface roughness of the rolling roll exceeds 0.8 μm, the surface roughness of the strip increases and causes cracked folding defects. On the other hand, if the roll surface roughness is less than 0.3 μm, the material slips during rolling and the material quality deteriorates due to the formation of scratches or uneven thickness on the material surface.
[0022]
Moreover, the copper alloy for electronic materials, which is the final product of the present invention, has zero cracks / 1000 mm 2 in crack-like fold defects having a size of 20 μm or more. Thereby, the thing without the swelling of silver plating is obtained.
Here, “the size of the defect” means the maximum length of the defect in the direction perpendicular to the rolling direction under the observation of an optical microscope.
The reason for limiting the size and number of defects is that the size and number of crack-like fold defects on the surface of the material and the occurrence of blistering after the silver plating heating test were investigated in detail. It was found that crack-like folding defects of 20 μm or more are the cause of plating swelling, and if crack-like folding defects of 20 μm or more are zero pieces / 1000 mm 2 , the occurrence of silver plating swelling can be prevented. It is.
[0023]
Furthermore, the copper alloy for electronic materials, which is the final product of the present invention, becomes a copper alloy for electronic materials having a more excellent surface property when the surface roughness Ra: is 0.05 to 0.09 μm.
[0024]
Moreover, the copper alloy for electronic materials which is the final product of this invention will turn into a copper alloy for electronic materials excellent in surface property as surface roughness Ry: is 0.45-0.90.
[0025]
Furthermore, it is suitably used in a copper alloy for electronic materials containing at least Ni: 1.0 to 3.0 mass% and Si: 0.2 to 0.6%. This is because this type of copper alloy increases silver plating.
[0026]
Hereinafter, the present invention will be described in more detail with reference to examples.
[0027]
【Example】
A copper alloy with a composition of Cu-1.8% Ni-0.4% Si-0.6% Zn-0.5% Sn by weight was melt cast in a high frequency melting furnace to produce an ingot. The ingot was hot-rolled at a temperature of 900 ° C and then faced to remove the scale on the surface, resulting in a 9 mm thick plate. These plates were rolled to 1.5 mm with rolling rolls with different roughness, and the four types of strips with different surface roughness shown in Table 1 were made.
[0028]
[Table 1]
Figure 0003823128
[0029]
The surface roughness was measured in accordance with JIS-B0601 in the direction perpendicular to the rolling direction of the strip surface. Next, the strips 1 to 4 having different surface roughnesses were processed by various processes shown in Table 2 to obtain a 0.15 mm thin plate for the test.
[0030]
[Table 2]
Figure 0003823128
[0031]
In the pickling process in Table 2, a sulfuric acid aqueous solution and a hydrogen peroxide aqueous solution were used and # 2000 buffing was performed. The amount of thinning at this time was about 1 to 3 μm on one side.
[0032]
Table 3 shows the results of investigating the surface roughness, number of surface defects, and silver plating properties of these specimens.
[Table 3]
Figure 0003823128
[0033]
The surface roughness was measured in accordance with JIS-B0601 with the average roughness Ra and the maximum height Ry in the direction perpendicular to rolling. The number of surface defects was determined by observing the material surface with an optical microscope and measuring the number of coarse defects with a size of 20 μm or more per 1000 mm 2 . Here, the “surface defect” refers to a crack-like fold-in defect, which is observed from the material surface when a small flaky base material is pressed into the surface of the material or observed on the surface.
[0034]
“Defect size” refers to the maximum length of the defect in the direction perpendicular to the rolling direction under an optical microscope. For silver plating, the surface of the material is cleaned and then plated with 0.2μm of copper, and then plated with silver, heated in the atmosphere at 400 ° C for 2 minutes, and then the surface of the plating is observed. Was marked with ○, and the observed blister was marked with ×.
[0035]
As is apparent from Table 3, Examples 1 to 8 of the present invention examples have no surface defects and silver plating blisters observed in any of the processing materials, and have good surface properties and excellent plating properties. You can see that On the other hand, in the comparative example, the surface roughness of the material surface at the final plate thickness is equivalent to that of the alloy of the example, but the surface roughness at the strip stage is large, so the surface of the material processed in any process The generation of coarse surface defects and silver plating blisters was also confirmed.
[0036]
FIG. 1 shows a surface photograph of a copper alloy having no crack-like folding defect, which is one embodiment of the present invention. FIG. 1 is a surface SEM photograph of the material shown in Table 3 that was processed to the thickness of 0.15 mm in step (1) using the strip 1.
FIG. 2 shows a surface photograph of a copper alloy having crack-like folding defects, which is one embodiment of the present invention. FIG. 2 is a surface SEM photograph of a material processed as a comparative example 5 in Table 3 to a sheet thickness of 0.15 mm in step (1) using the strip 4.
[0037]
【The invention's effect】
As described above, according to the present invention, a copper alloy having good surface properties and further excellent plating properties can be obtained, which is suitable as a copper alloy for electronic materials such as lead frames, terminals and connectors.
[Brief description of the drawings]
FIG. 1 is a photograph of the surface of a copper alloy having no crack-like folding defects, which is an embodiment of the present invention.
FIG. 2 is a surface photograph of a copper alloy having a crack-like fold-in defect, which is one embodiment of a comparative example.

Claims (8)

大きさ20μm以上のクラック状の折れ込み欠陥である表面欠陥がゼロ 個/1000mmである表面性状に優れたことを特徴とする電子材料用銅合金。A copper alloy for electronic materials, characterized by having excellent surface properties with zero surface defects / 1000 mm 2, which are crack-like folding defects having a size of 20 μm or more. 表面粗さ:Raが0.05〜0.09μmである表面性状に優れたことを特徴とする請求項1記載の電子材料用銅合金。2. The copper alloy for electronic materials according to claim 1, wherein the surface roughness Ra is 0.05 to 0.09 [mu] m. 表面粗さ:Ryが0.45〜0.90である表面性状に優れたことを特徴とする請求項1及び2記載の電子材料用銅合金。3. The copper alloy for electronic materials according to claim 1, wherein the surface roughness: Ry is excellent in surface properties of 0.45 to 0.90. Ni:1.0〜3.0mas%、Si:0.2〜0.6%を少なくとも含有する表面性状に優れたことを特徴とする請求項1〜3記載の電子材料用銅合金。4. The copper alloy for electronic materials according to claim 1, which has excellent surface properties containing at least Ni: 1.0 to 3.0 mass% and Si: 0.2 to 0.6%. 銅合金薄板の製造工程において,中間圧延工程における材料板厚が1.0〜3.0mmの段階における銅合金圧延板の圧延直角方向の表面粗さの内,平均粗さRaを0.5μm以下,最大高さRyを3.0μm以下に規定したことを特徴とする電子材料用銅合金に用いる素条。In the copper alloy sheet manufacturing process, the average roughness Ra is 0.5 μm or less and the maximum height of the surface roughness in the direction perpendicular to the rolling direction of the copper alloy sheet when the material sheet thickness is 1.0 to 3.0 mm in the intermediate rolling process. A strip used for a copper alloy for electronic materials, characterized in that Ry is regulated to 3.0 μm or less. 請求項5の素条を用いて製造した表面性状に優れたことを特徴とする電子材料用銅合金A copper alloy for electronic materials characterized by excellent surface properties produced using the strip of claim 5 銅合金薄板の製造工程において,中間板厚に加工する段階での冷間圧延工程における圧延ロールの表面粗さを,平均粗さRaが0.3〜0.8μmである圧延ロールを用いて圧延を行うことにより,材料板厚が1.0〜3.0mmの段階における銅合金圧延板の圧延直角方向の表面粗さの内,平均粗さRaを0.5μm以下,最大高さRyを3.0μm以下としたことを特徴とする電子材料用銅合金に用いる素条の製造方法。In the copper alloy sheet manufacturing process, the surface roughness of the rolling roll in the cold rolling process at the stage of processing to an intermediate sheet thickness is rolled using a rolling roll having an average roughness Ra of 0.3 to 0.8 μm. According to the above, among the surface roughness in the direction perpendicular to the rolling direction of the rolled copper alloy sheet at a thickness of 1.0 to 3.0 mm, the average roughness Ra is 0.5 μm or less and the maximum height Ry is 3.0 μm or less. A manufacturing method of a strip used for a copper alloy for electronic materials. 銅合金薄板の製造工程において,中間板厚に加工する段階での冷間圧延工程における圧延ロールの表面粗さを,平均粗さRaが0.3〜0.8μmである圧延ロールを用いて圧延を行うことにより,材料板厚が1.0〜3.0mmの段階における銅合金圧延板の圧延直角方向の表面粗さの内,平均粗さRaを0.5μm以下,最大高さRyを3.0μm以下とした中間工程を有することを特徴とする電子材料用銅合金の製造方法。In the copper alloy sheet manufacturing process, the surface roughness of the rolling roll in the cold rolling process at the stage of processing to an intermediate sheet thickness is rolled using a rolling roll having an average roughness Ra of 0.3 to 0.8 μm. The intermediate process with the average roughness Ra of 0.5 μm or less and the maximum height Ry of 3.0 μm or less of the surface roughness in the direction perpendicular to the rolling direction of the rolled copper alloy sheet at the stage where the material plate thickness is 1.0 to 3.0 mm. A method for producing a copper alloy for electronic materials, comprising:
JP2001100581A 2001-03-30 2001-03-30 Copper alloy for electronic material, manufacturing method thereof, strip used for copper alloy for electronic material, copper alloy for electronic material manufactured using the strip, and manufacturing method thereof Expired - Fee Related JP3823128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001100581A JP3823128B2 (en) 2001-03-30 2001-03-30 Copper alloy for electronic material, manufacturing method thereof, strip used for copper alloy for electronic material, copper alloy for electronic material manufactured using the strip, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001100581A JP3823128B2 (en) 2001-03-30 2001-03-30 Copper alloy for electronic material, manufacturing method thereof, strip used for copper alloy for electronic material, copper alloy for electronic material manufactured using the strip, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002292406A JP2002292406A (en) 2002-10-08
JP3823128B2 true JP3823128B2 (en) 2006-09-20

Family

ID=18954014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001100581A Expired - Fee Related JP3823128B2 (en) 2001-03-30 2001-03-30 Copper alloy for electronic material, manufacturing method thereof, strip used for copper alloy for electronic material, copper alloy for electronic material manufactured using the strip, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3823128B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603394B2 (en) * 2005-03-14 2010-12-22 株式会社神戸製鋼所 Copper or copper alloy strip for press working
JP4581141B2 (en) * 2005-03-29 2010-11-17 Dowaメタルテック株式会社 Heat sink and manufacturing method thereof
US8522585B1 (en) * 2006-05-23 2013-09-03 Pmx Industries Inc. Methods of maintaining and using a high concentration of dissolved copper on the surface of a useful article
KR100960168B1 (en) * 2007-10-03 2010-05-26 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material for electronic and electrical parts
JP2011025284A (en) * 2009-07-27 2011-02-10 Hitachi Cable Ltd Copper or copper alloy material, method for manufacturing the same, and semiconductor package
JP5393739B2 (en) * 2011-08-01 2014-01-22 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy tin plating strip

Also Published As

Publication number Publication date
JP2002292406A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
EP2508635B1 (en) Copper alloy sheet and process for producing same
CN111788320B (en) Copper alloy for electronic and electrical equipment, copper alloy strip for electronic and electrical equipment, module for electronic and electrical equipment, terminal, and bus bar
JP5189715B1 (en) Cu-Mg-P based copper alloy sheet having excellent fatigue resistance and method for producing the same
WO2011068121A1 (en) Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP6054085B2 (en) Cu-Mg-P-based copper alloy sheet excellent in spring limit value characteristics and fatigue resistance after bending and method for producing the same
KR20160138484A (en) Copper alloy sheet material, connector, and method for manufacturing copper alloy sheet material
WO2013018228A1 (en) Copper alloy
JP4601085B1 (en) Cu-Co-Si-based copper alloy rolled plate and electrical component using the same
CN101946014A (en) Copper alloy material
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
JPH0533087A (en) Copper alloy for small conductive member
WO2018079507A1 (en) Copper alloy sheet and method for manufacturing same
JP3823128B2 (en) Copper alloy for electronic material, manufacturing method thereof, strip used for copper alloy for electronic material, copper alloy for electronic material manufactured using the strip, and manufacturing method thereof
JPH02221344A (en) High strength cu alloy having hot rollability and heating adhesiveness in plating
JP5339995B2 (en) Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
TW201819644A (en) Copper alloy plate and method for producing same
JP2010222618A (en) Cu-Ni-Si BASED COPPER ALLOY ROLLED SHEET AND ELECTRIC PART USING THE SAME
KR101965345B1 (en) Copper alloy for terminal and connector having excellent bending workability and method for manufacturing the same
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
TWI412611B (en) Copper alloy material for electric and electronic instruments and method of producing the same
JP4349631B2 (en) Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts
JP4341762B2 (en) Connector material for electronic and electrical equipment composed of high-strength Cu alloy with excellent rolling and bending workability
JP7034112B2 (en) Manufacturing methods for copper alloy materials, electrical and electronic components, electronic devices, and copper alloy materials
JP5514762B2 (en) Cu-Co-Si alloy with excellent bending workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees