JP3822771B2 - Flow rate measuring method and flow rate measuring device - Google Patents

Flow rate measuring method and flow rate measuring device Download PDF

Info

Publication number
JP3822771B2
JP3822771B2 JP36201599A JP36201599A JP3822771B2 JP 3822771 B2 JP3822771 B2 JP 3822771B2 JP 36201599 A JP36201599 A JP 36201599A JP 36201599 A JP36201599 A JP 36201599A JP 3822771 B2 JP3822771 B2 JP 3822771B2
Authority
JP
Japan
Prior art keywords
flow rate
phase
pulsation
fluid
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36201599A
Other languages
Japanese (ja)
Other versions
JP2001174306A (en
Inventor
守 鈴木
秀男 加藤
行夫 長岡
秀二 安倍
康裕 梅景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Tokyo Gas Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Tokyo Gas Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Tokyo Gas Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP36201599A priority Critical patent/JP3822771B2/en
Publication of JP2001174306A publication Critical patent/JP2001174306A/en
Application granted granted Critical
Publication of JP3822771B2 publication Critical patent/JP3822771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は流量計測方法および流量計測装置に係り、特に間欠的に流体の流量または流速の測定を行って得た値を積算する流量計測方法およびそれを実行する流量計測装置に関する。
【0002】
【従来の技術】
超音波計測方式のガスメータのような、いわゆる推量式のガスメータにおいては一般に、ガスの流量を間欠的に計測し、その計測値を積算して、ガス流量積算値すなわちガス使用量の積算値を得ている。
【0003】
ところが、ガスの流れに脈動が生じると、そのときに計測されるガス流量値に誤差が生じる場合がある。例えば、ガスの元管を共有している近隣の2つの家庭のうち一方の家庭で脈動の発生しやすいガスヒートポンプのようなガス消費器具を用いるとともに、他方の家庭でもガスを使用しているといった状況下では、その脈動の発生しやすいガス消費器具を用いている家庭のガスメータは言うまでもなく、他方の家庭の配管中のガス流にも脈動が発生し、このような脈動に起因して、ガスメータによるガス流量の計測値に誤差が生じる(含まれる)場合があり、延いてはガス流量積算値に大きな誤差が生じる場合がある。
【0004】
すなわち、ガス流量を間欠的に計測するタイミングと脈動の位相とが予期せずほぼ同期した場合などには、例えば脈動の最大値寄りの値が周期的に計測されてしまうというように、正確な流量値とは異なる誤差を含んだ計測値が毎回同じように計測され、それが次々に積算されて行くと、最終的に大きな誤差を含んだガス流量積算値となる場合がある。
【0005】
そのような脈動に起因した誤差の発生(混入)を防ぐためには、ガスの脈動を解消するための装置などを装着することも提案されているが、その装置を付設することで全体的な構成が繁雑なものとなり、またそのための製造コストや部品コストがさらに加わるので、ガスメータ全体がさらに高コスト化するという問題もある。
【0006】
そこで、従来のガスメータあるいはそれに用いられるガス流量計測方法では、ガスの脈動に起因した圧力変動を検出し、その圧力変動に基づいて、そのとき発生している脈動の周期や位相を把握して、その脈動の周期あるいは位相に対して同周期あるいは同位相でガス流量またはガス流速を間欠的に計測するという手法が、例えば特開平10−197303号公報などによって提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、実際には、ガス流中に発生する脈動の計測自体にも誤差が生じたり、あるいは脈動の周期自体が必ずしも一定ではなく時々刻々と変化することもあるので、そのような脈動の周期や位相に対して完全に同周期あるいは同位相でガス流量の計測を行うことは困難であり、その結果、誤差を含むガス流量値すなわち脈動の中心値からずれたガス流量値を周期的に計測してしまい、それが次々に積算されて行き、最終的には大きな誤差を含んだガス流量積算値となるという問題があった。
【0008】
本発明はかかる問題点に鑑みてなされたもので、その目的は、流体に脈動が発生した場合でも、流体流量値あるいはさらにそれを積算して得られる流体流量積算値を正確に計測することができる流量計測方法および流量計測装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明による流量計測方法は、上流側から下流側へと流れる流体の流量または流速の値を一度の計測期間当りに所定の頻度で間欠的に計測することを複数回繰り返し、一度の計測期間ごとに得られた値を積算する流量計測方法において、計測期間の開始位相を所定の規則性に基づいて変化させることを特徴とするものである。
【0010】
なお、前記の流体に生じる脈動の周期または位相を計測し、各計測期間の開始タイミングの周期または位相が脈動の周期または位相とは異なるものとなるように、その計測期間の開始位相を所定の規則性に基づいて変化させるようにすることは好ましい態様である。
【0011】
また、前記の流体の脈動の周期または位相を、その流体の圧力値に基づいて所定の頻度よりも高い頻度で繰り返して計測することは好ましい態様である。
【0012】
本発明による流量計測装置は、上流側から下流側へと流れるガスの流量または流速の値を一度の計測期間当りに所定の頻度で間欠的に計測することを複数回繰り返し、その一度の計測期間ごとに得られた値を積算して流体の積算流量値を得るものにおいて、計測期間の開始位相を所定の規則性に基づいて変化させる開始位相制御手段を備えたことを特徴とするものである。
【0013】
なお、前記の流体に生じる脈動の周期または位相を計測する脈動計測手段をさらに備えると共に、開始位相制御手段が、計測期間の開始タイミングの周期または位相を前記脈動の周期または位相とは異なるものとなるように変化させることは好ましい態様である。
【0014】
また、前記の脈動計測手段が、ガスの脈動の周期または位相の計測をその流体の圧力値に基づいて所定の頻度よりも高い頻度で行うようにすることは好ましい態様である。
【0015】
また、前記の流量計測装置において、流体に対して超音波を伝搬させて、該超音波の伝搬時間に基づいて前記流体の流量または流速を計測する超音波流量計測手段を備えたものとすることは望ましい態様である。すなわち本発明は、特に超音波計測方式の流量計測装置において好適なものである。しかしこれのみには限定されず、間欠的に流体の流量を計測する方式の流量計測装置であれば、その他にもフルイディック方式あるいは圧力差計測方式などのようないわゆる推量式の種々の流量計測装置にも適用可能であることは言うまでもない。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【0017】
図1は本発明の一実施の形態に係るガスメータの主要部の構成の概要を示す図である。このガスメータは、導通路1を上流側から下流側へと流れるガスに対して、一度の計測期間当りに所定の頻度で超音波を間欠的に伝搬させる超音波送/受信機器2a,2bおよび発振制御回路2cと、その超音波の伝搬時間に基づいてガス流速vを計測するガス流速演算回路3と、その一度の計測期間ごとに得られたガス流量値を積算するガス流量値積算回路4とを備えたガスメータであって、さらに、計測期間Tどうしの間ごとに時間間隔Tdを設け、かつ複数の時間間隔Tdの長さを、図示しない情報記録装置などに格納されている予め定められた規則性に基づいて変化させる開始位相制御回路5とを備えている。
【0018】
超音波送/受信機器2a,2bは、発振制御回路2cによって制御されて、一度の計測期間当りに所定の頻度で超音波を間欠的に伝搬させる。この超音波の伝搬は、上流側から下流側へと向かう伝搬と、その逆に下流側から上流側へと向かう伝搬とを、交互に繰り返すように実行される。
【0019】
ガス流速演算回路3は、上記の超音波の伝搬時間に基づいてガス流速vを計測するものである。さらに詳細には、上流側から下流側へと向かう超音波の伝搬時間と、その逆に下流側から上流側へと向かう超音波の伝搬時間との時間差に基づいて、そのときのガス流速vを計測するものである。
【0020】
なお、上記の導通路1、超音波送/受信機器2a,2b、発振制御回路2c、ガス流速演算回路3は、ハードウェアとしては従来の一般的なものと同様のものを用いても構わない。
【0021】
ガス流量値積算回路4は、一度の計測期間ごとに得られたガス流量値qを積算して行き、ガス流量の積算値Qを得る(Q=Σq)ものである。このガス流量値積算回路4のハードウェアおよび機能は、従来の一般的なものと同様のものを用いても構わない。
【0022】
脈動計測回路6は、上記のガス流速vを計測する頻度よりも高い頻度で、圧力センサ7によって検出された圧力値に基づいてガスの脈動の周期Tsまたは位相の計測を行うものである。
【0023】
開始位相制御回路5は、計測期間Tどうしの間ごとに時間間隔Tdを設け、かつ複数の計測期間Tの開始タイミングの周期または位相を、脈動計測回路6によって計測された脈動の周期または位相とは異なるものとなるように、予め定められた所定の規則性に基づいて変化させるものである。
【0024】
この開始位相制御回路5が用いる所定の規則性としては、計測期間Tの開始位相(開始タイミング)を、例えば計測期間Tの0.1倍,0.2倍,0.3倍,…0.9倍のように等差数列的に毎回ずらして行き、0.9倍の次には再び0.1倍に戻って、上記を再度繰り返すようにしてもよく、あるいは計測期間Tの1/6倍,2/6倍,3/6倍…5/6倍,6/6倍のように、計測期間Tの開始タイミングが脈動の位相とは同期しないようにずらしてもよい。またその他にも、1/6倍,5/6倍,6/6倍,2/6倍,5/6倍…のように、ランダムにずらすようにしてもよい。あるいは、計測されたガスの脈動の周期Tsの1/12倍,2/12倍,3/12倍…12/12倍のように、ガスの脈動の周期Tsの周期を基準として用いて、その脈動の周期Tsの1/12倍などを1単位として計測期間Tの開始位相をずらすようにしてもよい。
【0025】
このような開始位相制御回路5による開始タイミングを変化させる手法のさらに詳細な一例についてを図2に基づいて説明する。ここでは、連続する計測期間T1,T2,T3…の開始タイミングすなわち開始位相を、脈動の位相と比べて、それぞれ0,4π/3,2π/3[rad]のようにずらすことを適宜に組み合わせて時間的に配置する場合についてを、一例として挙げる。なお、各計測期間T1,T2,T3の時間的長さは、いずれも一様に5Ts/6と設定されているものとする。また時間的に隣り合う計測期間どうしの間の時間間隔は一様にTs/2と設定されているものとする。
【0026】
図2にも明らかなように、計測期間T1,T2,T3の設定の各場合は、同図(A),(B),(C)に示したように、それぞれ単独ではいずれも正しい平均値にはなっていない。すなわち、t軸よりも上の部分のグラフが囲む面積と下の部分のグラフが囲む面積とが等しくならない。しかし、T1の場合とT2の場合とT3の場合との、全ての場合の値を積算(合計)すると正しい平均値を示す。すなわち、t軸よりも上の部分のグラフが囲む面積と下の部分のグラフが囲む面積とが等しくなることが分かる。このようにして、脈動に起因した誤差を解消して、正しいガス流量積算値を得ることができる。
【0027】
ここで、比較例として、図3に示したように、計測期間T1,T2…が一様に脈動の周期Tsの5/6倍となっており、かつ複数の計測期間Tどうしの間の時間間隔Td1,Td2…が一様にTs/2となっている場合についてを考えると、T1におけるガス流速vの計測値は、脈動の平均値すなわち正しい値よりも小となり、T2におけるそれは大となって、それら全体で1サイクルが構成されるが、その1サイクルの全体で計測された値を積算しても、脈動の平均値すなわち正しい計測値とはならない。
【0028】
なお、上記実施の形態では、超音波方式のガス流則計測手段を用いる場合の一例についてを述べたが、この他にも、種々のいわゆる推量式のガス流量計測手段などを用いてもよいことは言うまでもない。
【0029】
また、上記実施の形態では、ガス流量を計測するガスメータに本発明の流量計測方法を適用した場合について述べたが、本発明の適用はこれのみには限定されず、例えば水や揮発油系液体燃料のような液体の流量を計測する計測装置など種々の流量計測装置にも適用可能である。
【0030】
【発明の効果】
以上説明したように、本発明によれば、連続する計測期間どうしの間ごとに時間間隔を設け、かつその開始位相を所定の規則性に基づいて変化させることにより、脈動の周期あるいは位相がどのように変化しても、その脈動に起因して計測値に混入する誤差を複数の計測期間に亙って積算した際にそれらの誤差が過不足を互いに相補って、脈動が生じなかった場合に計測される流体の流量値と同様の正確な積算値を得ることができる。しかもそのように開始位相を所定の規則性に基づいて変化させることは、少ない消費電力量で実行することが可能であることから、流量計測装置の駆動電力の低消費電力化を達成できるという利点もある。
【0031】
また、流体の脈動の周期または位相と同期しないように、連続する計測期間の開始タイミングの周期または位相を積極的に毎回変化させることにより、脈動の周期あるいは位相がどのように変化しても、その脈動に起因して計測値に混入する誤差を複数の計測期間に亙って積算した際にそれらの誤差が過不足を互いに相補って、脈動が生じなかった場合に計測される流体の流量値と同様の正確な積算値を得ることができる。
【0032】
また、流体に生じる脈動の周期または位相を計測する脈動計測手段を備えた流量計測装置においては、低消費電力による計測が可能な圧力センサを用いるなどして、流体の脈動の周期または位相の計測を流体の圧力値に基づいて所定の頻度よりも高い頻度で繰り返すことによって、より低い消費電力量で脈動に関する頻繁な情報を得ることができるので、上記のような低消費電力化の達成にさらに寄与することができ、しかも脈動の周期や位相の正確な把握が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るガスメータの主要部の構成の概要を示す図である。
【図2】開始位相制御回路による時間間隔Tdの長さを変化させる手法のさらに詳細な一例についてを示す図である。
【図3】比較例として従来の計測方法による計測結果の一例を模式的に示す図である。
【符号の説明】
1・・・ 導通路、2a,2b・・・ 超音波送/受信機器、2c・・・ 発振制御回路、3・・・ ガス流速演算回路、4・・・ ガス流量値積算回路、5・・・ 開始位相制御回路、6・・・ 脈動計測回路、7・・・ 圧力センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate measurement method and a flow rate measurement device, and more particularly to a flow rate measurement method that integrates values obtained by intermittently measuring a flow rate or a flow rate of a fluid and a flow rate measurement device that executes the method.
[0002]
[Prior art]
In general, in a so-called estimation type gas meter such as an ultrasonic measurement type gas meter, the gas flow rate is measured intermittently and the measured values are integrated to obtain an integrated gas flow rate value, that is, an integrated value of gas usage. ing.
[0003]
However, if pulsation occurs in the gas flow, an error may occur in the gas flow rate value measured at that time. For example, one of two neighboring households sharing a gas main pipe uses a gas consuming appliance such as a gas heat pump that tends to generate pulsation, and the other household also uses gas. Under the circumstances, not only a home gas meter that uses a gas consuming appliance that is prone to pulsation, but also pulsation occurs in the gas flow in the other household piping. In some cases, an error may occur (included) in the measured value of the gas flow rate due to the above, and a large error may occur in the integrated gas flow rate.
[0004]
That is, when the timing of intermittently measuring the gas flow rate and the phase of pulsation are almost synchronized unexpectedly, for example, a value close to the maximum value of pulsation is periodically measured. If measured values including errors different from the flow rate values are measured in the same way each time and are accumulated one after another, the gas flow rate integrated value including a large error may eventually be obtained.
[0005]
In order to prevent the occurrence (mixing) of errors due to such pulsation, it has been proposed to install a device for eliminating the pulsation of gas, etc., but the overall configuration by attaching the device In addition, the manufacturing cost and the parts cost are further increased, and there is a problem that the cost of the entire gas meter is further increased.
[0006]
Therefore, in the conventional gas meter or the gas flow rate measurement method used for it, the pressure fluctuation caused by the pulsation of the gas is detected, and based on the pressure fluctuation, the period and phase of the pulsation occurring at that time are grasped, For example, Japanese Patent Laid-Open No. 10-197303 proposes a method of intermittently measuring a gas flow rate or a gas flow rate at the same period or the same phase as the pulsation period or phase.
[0007]
[Problems to be solved by the invention]
However, in practice, there is an error in the measurement of pulsation generated in the gas flow, or the pulsation period itself is not necessarily constant and may change every moment. It is difficult to measure the gas flow rate completely in the same cycle or in the same phase with respect to the phase. As a result, the gas flow rate value including the error, that is, the gas flow rate value deviating from the pulsation center value is periodically measured. As a result, they are accumulated one after another, and eventually there is a problem that the gas flow rate integrated value includes a large error.
[0008]
The present invention has been made in view of such problems, and its purpose is to accurately measure the fluid flow rate value or the fluid flow rate integrated value obtained by integrating the fluid flow rate value even when pulsation occurs in the fluid. An object of the present invention is to provide a flow rate measuring method and a flow rate measuring device that can be used.
[0009]
[Means for Solving the Problems]
The flow rate measurement method according to the present invention repeats intermittently measuring the flow rate or flow velocity value of the fluid flowing from the upstream side to the downstream side at a predetermined frequency per measurement period, and every measurement period. In the flow rate measuring method for integrating the values obtained in the above, the start phase of the measurement period is changed based on a predetermined regularity.
[0010]
The period or phase of pulsation generated in the fluid is measured, and the start phase of the measurement period is set to a predetermined value so that the period or phase of the start timing of each measurement period is different from the period or phase of pulsation. It is a preferable aspect to change based on regularity.
[0011]
Moreover, it is a preferable aspect to repeatedly measure the cycle or phase of the pulsation of the fluid at a frequency higher than a predetermined frequency based on the pressure value of the fluid.
[0012]
The flow rate measuring device according to the present invention repeats intermittently measuring the flow rate or flow velocity value of the gas flowing from the upstream side to the downstream side at a predetermined frequency per measurement period, a plurality of times. What is obtained by integrating the values obtained for each time to obtain an integrated flow rate value of the fluid is characterized by comprising start phase control means for changing the start phase of the measurement period based on a predetermined regularity. .
[0013]
The pulsation measuring means for measuring the pulsation period or phase generated in the fluid is further provided, and the start phase control means is configured such that the period or phase of the start timing of the measurement period is different from the pulsation period or phase. It is a preferable aspect to change it.
[0014]
Moreover, it is a preferable aspect that the pulsation measuring means measures the period or phase of gas pulsation at a frequency higher than a predetermined frequency based on the pressure value of the fluid.
[0015]
Further, the flow rate measuring apparatus includes an ultrasonic flow rate measuring unit that propagates ultrasonic waves to the fluid and measures the flow rate or flow velocity of the fluid based on the propagation time of the ultrasonic waves. Is a desirable embodiment. That is, the present invention is particularly suitable for an ultrasonic measurement type flow rate measuring apparatus. However, the present invention is not limited to this, and if it is a flow rate measuring device that intermittently measures the flow rate of fluid, various other flow rate measurement methods such as a fluidic method or a pressure difference measurement method are used. Needless to say, the present invention can also be applied to an apparatus.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 is a diagram showing an outline of the configuration of the main part of a gas meter according to an embodiment of the present invention. This gas meter is an ultrasonic transmitter / receiver 2a, 2b that oscillates ultrasonic waves intermittently at a predetermined frequency per measurement period with respect to a gas flowing from the upstream side to the downstream side of the conduction path 1, and oscillation. A control circuit 2c, a gas flow rate calculation circuit 3 for measuring the gas flow rate v based on the propagation time of the ultrasonic wave, and a gas flow rate value integration circuit 4 for integrating the gas flow rate values obtained for each measurement period. Further, a time interval Td is provided between the measurement periods T, and the length of the plurality of time intervals Td is stored in an information recording device (not shown) or the like. And a start phase control circuit 5 that changes based on regularity.
[0018]
The ultrasonic transmission / reception devices 2a and 2b are controlled by the oscillation control circuit 2c and intermittently propagate ultrasonic waves at a predetermined frequency per one measurement period. The propagation of the ultrasonic waves is executed so that the propagation from the upstream side to the downstream side and the propagation from the downstream side to the upstream side are repeated alternately.
[0019]
The gas flow velocity calculation circuit 3 measures the gas flow velocity v based on the ultrasonic wave propagation time. More specifically, based on the time difference between the propagation time of the ultrasonic wave from the upstream side to the downstream side and the propagation time of the ultrasonic wave from the downstream side to the upstream side, the gas flow velocity v at that time is It is to be measured.
[0020]
The conduction path 1, the ultrasonic transmission / reception devices 2a and 2b, the oscillation control circuit 2c, and the gas flow rate calculation circuit 3 may be the same hardware as the conventional one. .
[0021]
The gas flow rate integration circuit 4 integrates the gas flow rate value q obtained for each measurement period to obtain an integrated value Q of the gas flow rate (Q = Σq). The hardware and function of the gas flow rate integration circuit 4 may be the same as the conventional general one.
[0022]
The pulsation measuring circuit 6 measures the cycle Ts or phase of the gas pulsation based on the pressure value detected by the pressure sensor 7 at a frequency higher than the frequency at which the gas flow velocity v is measured.
[0023]
The start phase control circuit 5 provides a time interval Td between the measurement periods T, and sets the period or phase of the start timing of the plurality of measurement periods T as the pulsation period or phase measured by the pulsation measurement circuit 6. Are changed based on a predetermined regularity so as to be different.
[0024]
As the predetermined regularity used by the start phase control circuit 5, the start phase (start timing) of the measurement period T is, for example, 0.1 times, 0.2 times, 0.3 times,. It may be shifted every time in an arithmetic progression such as 9 times, then 0.9 times and then back again to 0.1 times, or the above may be repeated again, or 1/6 of the measurement period T The start timing of the measurement period T may be shifted so as not to synchronize with the pulsation phase, such as double, 2/6, 3/6,..., 5/6, and 6/6. In addition, they may be shifted randomly such as 1/6 times, 5/6 times, 6/6 times, 2/6 times, 5/6 times, and so on. Or, using the period of the gas pulsation period Ts as a reference, such as 1/12 times, 2/12 times, 3/12 times ... 12/12 times the measured gas pulsation period Ts, The start phase of the measurement period T may be shifted with 1/12 times the pulsation period Ts as one unit.
[0025]
A more detailed example of such a method of changing the start timing by the start phase control circuit 5 will be described with reference to FIG. Here, the start timing, that is, the start phase of the continuous measurement periods T1, T2, T3,..., Is appropriately combined with shifting to 0, 4π / 3, 2π / 3 [rad], respectively, compared to the pulsation phase. As an example, the case of temporal arrangement is given below. Note that the time lengths of the measurement periods T1, T2, and T3 are all set to 5Ts / 6 uniformly. Further, it is assumed that the time interval between the measurement periods adjacent in time is uniformly set to Ts / 2.
[0026]
As is apparent from FIG. 2, in each case of setting the measurement periods T1, T2, and T3, as shown in FIGS. It is not. That is, the area surrounded by the graph in the upper part of the t-axis is not equal to the area surrounded by the graph in the lower part. However, when the values in all cases of T1, T2, and T3 are integrated (summed), a correct average value is shown. That is, it can be seen that the area enclosed by the graph above the t-axis is equal to the area enclosed by the graph below. In this way, an error due to pulsation can be eliminated and a correct gas flow rate integrated value can be obtained.
[0027]
Here, as a comparative example, as shown in FIG. 3, the measurement periods T1, T2,... Are uniformly 5/6 times the pulsation period Ts, and the time between the plurality of measurement periods T. Considering the case where the intervals Td1, Td2,... Are uniformly Ts / 2, the measured value of the gas flow velocity v at T1 is smaller than the average value of pulsation, that is, the correct value, and is larger at T2. Thus, one cycle is constituted as a whole, but even if the values measured in the whole one cycle are integrated, an average value of pulsation, that is, a correct measured value is not obtained.
[0028]
In the above-described embodiment, an example in which an ultrasonic gas flow law measuring unit is used has been described. However, various other so-called estimation type gas flow rate measuring units may be used. Needless to say.
[0029]
In the above embodiment, the case where the flow rate measuring method of the present invention is applied to a gas meter that measures the gas flow rate has been described. However, the application of the present invention is not limited to this, for example, water or volatile oil-based liquids. The present invention is also applicable to various flow rate measuring devices such as a measuring device that measures the flow rate of a liquid such as fuel.
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to determine the period or phase of pulsation by providing a time interval between consecutive measurement periods and changing the start phase based on a predetermined regularity. If the error mixed in the measured value due to the pulsation is accumulated over multiple measurement periods, the errors complement each other and there is no pulsation. Thus, an accurate integrated value similar to the fluid flow rate value measured can be obtained. In addition, changing the start phase based on a predetermined regularity in this way can be performed with a small amount of power consumption, so that it is possible to achieve low power consumption of the driving power of the flow rate measuring device. There is also.
[0031]
In addition, no matter how the pulsation cycle or phase changes by actively changing the cycle or phase of the start timing of successive measurement periods every time so as not to synchronize with the cycle or phase of the fluid pulsation, When the error mixed in the measurement value due to the pulsation is accumulated over a plurality of measurement periods, the error is complementary to the excess and deficiency, and the fluid flow rate measured when no pulsation occurs An accurate integrated value similar to the value can be obtained.
[0032]
In addition, in a flow rate measuring device equipped with a pulsation measuring means for measuring a pulsation cycle or phase generated in a fluid, a fluid pressure pulsation cycle or phase is measured by using a pressure sensor capable of measuring with low power consumption. Is repeated at a frequency higher than a predetermined frequency based on the pressure value of the fluid, so that frequent information on pulsation can be obtained with a lower power consumption. In addition, it is possible to accurately grasp the period and phase of pulsation.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a configuration of a main part of a gas meter according to an embodiment of the present invention.
FIG. 2 is a diagram showing a more detailed example of a technique for changing the length of a time interval Td by a start phase control circuit.
FIG. 3 is a diagram schematically illustrating an example of a measurement result obtained by a conventional measurement method as a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Conduction path, 2a, 2b ... Ultrasonic transmission / reception apparatus, 2c ... Oscillation control circuit, 3 ... Gas flow velocity calculation circuit, 4 ... Gas flow rate integration circuit, ...・ Start phase control circuit, 6 ... Pulsation measurement circuit, 7 ... Pressure sensor

Claims (7)

上流側から下流側へと流れる流体の流量または流速の値を一度の計測期間当たりに所定の頻度で間欠的に計測することを複数回繰り返し、前記一度の計測期間ごとに得られた値を積算する流速計測方法において、
前記計測期間の開始位相を所定の規則性に基づいて変化させる
ことを特徴とする流速計測方法。
Repeatedly measuring the flow rate or flow velocity value of the fluid flowing from the upstream side to the downstream side at a predetermined frequency per measurement period, multiple times, and integrating the values obtained for each measurement period In the flow velocity measurement method to
A flow velocity measurement method, wherein the start phase of the measurement period is changed based on a predetermined regularity.
前記流体に生じる脈動の周期または位相を計測し、前記計測期間の開始タイミングの周期または位相が前記脈動の周期または位相とは異なるものとなるように、前記計測期間の開始位相を所定の規則性に基づいて変化させる
ことを特徴とする請求項1記載の流速計測方法。
The period or phase of the pulsation generated in the fluid is measured, and the start phase of the measurement period is set to a predetermined regularity so that the period or phase of the start timing of the measurement period is different from the period or phase of the pulsation. The flow velocity measuring method according to claim 1, wherein the flow velocity is changed based on
前記流体に生じる脈動の周期または位相を、該流体の圧力値に基づいて前記所定の頻度よりも高い頻度で繰り返して計測する
ことを特徴とする請求項1記載の流速計測方法。
The flow velocity measuring method according to claim 1, wherein the period or phase of pulsation generated in the fluid is repeatedly measured at a frequency higher than the predetermined frequency based on the pressure value of the fluid.
上流側から下流側へと流れる流体の流量または流速の値を一度の計測期間当たりに所定の頻度で間欠的に計測することを複数回繰り返し、前記一度の計測期間ごとに得られた値を積算し前記流体の積算流量値を得る流量計測装置において、
前記計測期間の開始位相を所定の規則性に基づいて変化させる開始位相制御手段を備えた
ことを特徴とする流量計測装置。
Repeatedly measuring the flow rate or flow velocity value of the fluid flowing from the upstream side to the downstream side at a predetermined frequency per measurement period, multiple times, and integrating the values obtained for each measurement period In the flow rate measuring device for obtaining the integrated flow rate value of the fluid,
A flow rate measuring device comprising start phase control means for changing the start phase of the measurement period based on a predetermined regularity.
前記流体に生じる脈動の周期または位相を計測する脈動計測手段をさらに備えると共に、
前記開始位相制御手段が前記計測期間の開始タイミングの周期または位相を前記脈動の周期または位相とは異なるものとなるように変化させる
ことを特徴とする請求項4記載の流速計測装置。
And further comprising pulsation measuring means for measuring a cycle or phase of pulsation generated in the fluid;
The flow velocity measuring device according to claim 4, wherein the start phase control means changes the cycle or phase of the start timing of the measurement period to be different from the cycle or phase of the pulsation.
前記脈動計測手段が、前記流体の脈動の周期または位相の計測を該流体の圧力値に基づいて前記所定の頻度よりも高い頻度で行う
ことを特徴とする請求項4または5記載の流速計測装置。
6. The flow velocity measuring device according to claim 4, wherein the pulsation measuring unit measures a cycle or phase of the pulsation of the fluid at a frequency higher than the predetermined frequency based on a pressure value of the fluid. .
前記流体に対して超音波を伝播させて、該超音波の伝播時間に基づいて前記流体の流量または流速を計測する超音波流量計測手段を備えた
ことを特徴とする請求項4及至6いずれか1項に記載の流速計測装置。
The ultrasonic flow rate measuring means for propagating ultrasonic waves to the fluid and measuring the flow rate or flow velocity of the fluid based on the propagation time of the ultrasonic waves is provided. The flow velocity measuring device according to item 1.
JP36201599A 1999-12-21 1999-12-21 Flow rate measuring method and flow rate measuring device Expired - Lifetime JP3822771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36201599A JP3822771B2 (en) 1999-12-21 1999-12-21 Flow rate measuring method and flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36201599A JP3822771B2 (en) 1999-12-21 1999-12-21 Flow rate measuring method and flow rate measuring device

Publications (2)

Publication Number Publication Date
JP2001174306A JP2001174306A (en) 2001-06-29
JP3822771B2 true JP3822771B2 (en) 2006-09-20

Family

ID=18475625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36201599A Expired - Lifetime JP3822771B2 (en) 1999-12-21 1999-12-21 Flow rate measuring method and flow rate measuring device

Country Status (1)

Country Link
JP (1) JP3822771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148523A (en) 2012-01-23 2013-08-01 Panasonic Corp Flow rate measuring instrument
JP2014092466A (en) * 2012-11-05 2014-05-19 Tokyo Gas Co Ltd Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP2001174306A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
CN104797908B (en) Flow measurement device and its method of calculating flux
JP5753970B2 (en) Flow measuring device
WO2010079568A1 (en) Flow rate measurement device
KR20020019929A (en) Flowmeter
CN103988055B (en) Flow measurement device
JP4556253B2 (en) Flowmeter
JP3822771B2 (en) Flow rate measuring method and flow rate measuring device
JP3687893B2 (en) Flow measuring device
JP3689973B2 (en) Flow measuring device
JP3695031B2 (en) Flow measuring device
JP2001183198A (en) Method and apparatus for measurement of flow rate as well as gas meter
JP2000039344A (en) Flowmeter and gas meter
JP4859295B2 (en) Flow rate measuring method, flow rate measuring apparatus, and gas meter
JP2003222548A (en) Flow measuring device
JP2002350202A (en) Flow measuring device
JP3601523B2 (en) Flow measurement device
JP2003270009A (en) Method for measuring and displaying flow rate and flowmeter using the same
JP4007114B2 (en) Flow measuring device
JP4571898B2 (en) Current meter and flow meter
JP4784530B2 (en) Timer device
JP4858220B2 (en) Ultrasonic current meter
JP7203355B2 (en) gas meter
JP4008741B2 (en) Ultrasonic flow velocity measuring method and apparatus
JP4858219B2 (en) Ultrasonic current meter
JP2000035353A (en) Method and apparatus for measurement of propagation time as well as ultrasonic flowmeter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060623

R150 Certificate of patent or registration of utility model

Ref document number: 3822771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term