JP3821341B2 - Rotating electric machine with temperature sensor - Google Patents

Rotating electric machine with temperature sensor Download PDF

Info

Publication number
JP3821341B2
JP3821341B2 JP23756298A JP23756298A JP3821341B2 JP 3821341 B2 JP3821341 B2 JP 3821341B2 JP 23756298 A JP23756298 A JP 23756298A JP 23756298 A JP23756298 A JP 23756298A JP 3821341 B2 JP3821341 B2 JP 3821341B2
Authority
JP
Japan
Prior art keywords
temperature sensor
coil
conductor
conductor portion
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23756298A
Other languages
Japanese (ja)
Other versions
JP2000069715A (en
Inventor
誠司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP23756298A priority Critical patent/JP3821341B2/en
Publication of JP2000069715A publication Critical patent/JP2000069715A/en
Application granted granted Critical
Publication of JP3821341B2 publication Critical patent/JP3821341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、温度センサ付き回転電機に関する。
【0002】
【従来の技術】
従来の温度センサ付き回転電機では、温度センサをコイルエンドに設けるのが一般的である。これは、スロット内への温度センサ挿入が困難であることと、コイルの温度が回転電機の各部温度の中で相当に高温となることと、コイル温度が所定レベルを超えると、コイルの絶縁樹脂が劣化してその電気絶縁性が悪化するためである。
【0003】
【発明が解決しようとする課題】
しかしながら、コイルエンドに装着する従来の温度センサでは、温度センサの機械的固定強度を確保することが容易でないという問題と、コイルエンドと温度センサとの間の伝熱抵抗が大きいので温度検出精度とその応答性の一層の向上が必要であるという二つの解決すべき問題があった。以下、更に詳しく説明する。
【0004】
まず、温度センサの機械的固定について説明すると、温度センサは、コア(たとえばステータコア)にコイル(たとえばステータコイル)を巻装した後、コイルに耐熱性が良好な接着剤で接着される。しかし、コイルエンドは冷却風や電磁振動やなどにより振動するので、更に温度センサとコイルエンドとの間の熱膨張率差により熱ストレスが繰り返しこの接着剤層に作用するなどの理由により、温度センサがコイルエンドから剥離する場合が生じる。
【0005】
また、温度センサには略平板形状のサーミスタなどを用いるのが一般的であるが、温度センサが接着されるコイルエンドの渡り導体は通常は断面円形であり、このために温度センサとコイルエンドとの間の接触境界部の対面面積の増大が難しく、更に、接着剤層からなる接触境界部の平均厚さも大きく、このため、温度センサとコイルエンドとの間の伝熱抵抗の低減が容易でなかった。これら両者の間の伝熱抵抗が大きいと、温度センサの表面積の残る部分が冷却空気流で冷却されるためにコイル温度と温度センサの検出温度との間の温度検出誤差が増大するという問題や、コイル温度の上昇に対する温度センサの検出温度の追従遅れが生じてしまうという問題を派生させてしまう。
【0006】
本発明は上記問題点に鑑みなされたものであり、コイルエンドとの間の機械的密着性及び伝熱性に優れる温度センサをもつ回転電機を提供することをその目的としている。
【0007】
【課題を解決するための手段】
本発明は、コアの各スロットに交互に挿通される往き導体部及び還り導体部からなるスロット導体部と、前記スロット導体部と一体に形成されて前記往き導体部及び還り導体部の同一側端部を接続する渡り導体部とを備えるコイル導体を有し、温度センサがコイルエンドに配設されてなる温度センサ付き回転電機において、前記コイルエンドは、厚さ方向が略径方向に一致する姿勢で延設された導体板からなる前記渡り導体部を前記コアの径方向に積層してなり、前記渡り導体部は、折り曲げられてコアの径方向へ重なる形状をもつ折り曲げ端部を有し、前記温度センサは、折り曲げられて前記コアの径方向に隣接して延在する前記折り曲げ端部の一対の前記導体板の間に折り込まれて締め付けられていることを特徴としている。
本発明の回転電機の波巻き巻線によれば、温度センサは、コアの径方向に隣接して延在してコイルエンドの一部をなす一対の導体板の間に折り込まれて締め付けられるので、コイルエンドとの間の機械的密着性及び伝熱性に優れる温度センサをもつ回転電機を実現することができる。
【0008】
更に説明すると、この構成では、コイルエンドは、厚さ方向が略径方向に一致する姿勢で延設された導体板からなる複数の渡り導体部をコアの径方向に積層してなる。したがって、まず、コアの径方向に互いに隣接する一対の導体板の間に温度センサを配置すれば、温度センサはこれら導体板によりサンドイッチされるので導体板により良好に機械的支持されることができる。また、温度センサは両導体板と良好に密着するので両者間の伝熱抵抗を低減できる。更に、温度センサはそのほとんど全表面を導体板により覆われるので、冷却空気流などが温度センサに当たることがなく、冷却空気流により温度センサが無用に冷却されることがない。その上、径方向に隣接する導体板はスロット内で径方向相対変位不能に固定されるので、コイルエンドの径方向に隣接する一対の導体板間に温度センサを介設すると、これら導体板は温度センサにより径方向に弾性変形することになり、その反力として温度センサは両導体板により強く圧迫されて、その機械固定性が一層向上し、その伝熱抵抗は一層低減される。
【0009】
請求項2記載の構成によれば請求項1記載の温度センサ付き回転電機において更に、一対の導体板は温度センサを所定の挟圧力で挟持するので、高価な耐熱性接着剤を用いる必要がなく、その結果として材料費及び作業工数の低減、及び伝熱抵抗の低減を実現することができる。
【0010】
請求項3記載の構成によれば請求項1又は2記載の温度センサ付き回転電機において更に、温度センサは、一対の主面が両導体板に個別に密着する略平板形状を有するので、伝熱抵抗の一層の低減及び温度センサの良好な挟持を実現することができる
【0011】
【発明を実施するための態様】
本発明の好適な態様を以下の実施例により説明する。
【0012】
【実施例1】
本発明の波巻き巻線を固定子巻線に適用した三相モータの実施例を説明する。図1はこのモータの固定子の平面図を示し、図2は正面図を示し、図3はこの固定子の図1とは異なる面からみた平面図を示し、図4はこの固定子を用いたモータの軸方向断面図を示し、図5〜図12に固定子コイル作成手順を示す。
【0013】
1は薄板状の電極鋼板を積層した固定子コアで、内径側に開口する多数のスロットを有する。各スロット内には、星型接続された三相二層波巻き型の固定子コイル(以下、単にコイルともよぶ)2が巻装されており、スロット入り口部には、コイルのスロットからの飛出しを防止する板状のウエッジ4が嵌着されている。また、スロットの内周部にはコイル2とコア1とを絶縁するインシュレータ3が挿入されている。
【0014】
コイル2は、スロット内に挿入される直線状のスロット導体部21と、スロット導体部21と一体に形成される渡り導体部22とを有し、渡り導体部22の両端は、2スロット挟んだ両側のスロットに挿入される一対のスロット導体部21の同一端部に個別に接続されている。コイル2は、図1に示すように、三つの相コイル2a、2b、2cからなり、スロット導体部21は、図5に示すように、各相コイル2a、2b、2cの始端23〜25からみて離れる往き方向へ延在する往き導体部21aと、各相コイル2a、2b、2cの始端23〜25からみて近づく還り方向へ延在する還り導体部21bとからなる。したがって、スロット両側のコイルエンド部2dは、正確にはスロット導体部21の両側の端部と渡り導体部22とで構成され、各渡り導体部22は、図1に示すように、スロット導体部21に対して周方向へ斜めに折れ曲がっており、渡り導体部22の中央部で折り曲げられて径方向に重なる折り曲げ端部22aを各一個づつ有する。 以下、コイル2について更に詳しく説明する。
【0015】
コイル2は、図5に示すように、1スロットピッチずつ離れて平行に配列された6本のコイル導体201〜206を有し、コイル導体201、204が相コイル2aを構成し、コイル導体203、206が相コイル2bを構成し、コイル導体202、205が相コイル2cを構成している。各コイル導体201〜206は固定子コア1の径方向に薄く周方向に広い略角形断面形状を有している。
【0016】
また、第m(mは整数)番目のコイル導体の第n(nは整数)番目のスロット導体部21は、第m番目のコイル導体の第n−1番目又は第n+1番目のスロット導体部21が収容されるスロットに対して電気角180度離れたスロット、すなわち、3スロットピッチ離れたスロットに収容されている。なお、この3スロットピッチ離れたスロットには、第m−3番目又は第m+3番目のコイル導体のスロット導体部21とともに収容される。
【0017】
更に、6本のコイル導体201〜206の各始端のうち、2、4、6番目の始端は互いに短絡されて中性点とされ、残る1、3、5番目の始端は、三相星型接続された各相コイル2a、2b、2cの端子をなす。
コイル導体201〜206の具体的な製造方法について図5〜図12にに示す作製手順を参照して説明する。
【0018】
まず、図5に示すように、6本のコイル導体201〜206を1スロットピッチずつ離れて平行に配置する。スロット導体部21及び渡り導体部22はそれぞれ直線帯状に形成されており、渡り導体部22はスロット導体部21に対して適当な角度(ここでは約60度)で斜設されている。なお、23はコイル導体201の始端であり、24はコイル導体203の始端であり、25はコイル導体205の始端であり、26はコイル導体202の始端であり、27はコイル導体204の始端であり、28はコイル導体206の始端である。
【0019】
次に、図6に示すように、コイル導体201〜206の始端23〜28から数えて最初の6個の渡り導体部22をその中央部(図5に破線で示す)で、最初のスロット導体部21が下となるように(谷折りで)折り曲げる。なお、図5において、各コイル導体201〜206の始端23〜28から数えて最初のスロット導体部21と次のスロット導体部21とは3スロットピッチ離れて形成されており、これによりコイル導体201の二番目のスロット導体部21はコイル導体204の最初のスロット導体部21の上に重なり、以下同様に、コイル導体202の二番目のスロット導体部21はコイル導体205の最初のスロット導体部21の上に重なり、コイル導体203の二番目のスロット導体部21はコイル導体206の最初のスロット導体部21の上に重なる。
【0020】
次に、図7に示すように、コイル導体201〜206の始端23〜28から数えて二番目の6個の渡り導体部22をその中央部(図6に破線で示す)で、二番目のスロット導体部21が三番目のスロット導体部21の上となるように(山折りで、すなわち本発明でいう最初の折り曲げ方向と同一回転方向へ)折り曲げる。これによりコイル導体201の三番目のスロット導体部21はコイル導体204の二番目のスロット導体部21の下に重なり、以下同様に、コイル導体202の三番目のスロット導体部21はコイル導体205の二番目のスロット導体部21の下に重なり、コイル導体203の三番目のスロット導体部21はコイル導体206の二番目のスロット導体部21の下に重なる。これにより、三番目のスロット導体部21は最初のスロット導体部21とスロット内で同じ深さ(最も深い位置)に無理なく収容される。
【0021】
以下、図8に示すように、順次、谷折り、山折り、谷折りと同一回転方向へ折り曲げることにより、6本のコイル導体201〜206を各スロットに2層に収容する。その結果、ロータ磁極数から1を引いた回数だけ折り曲げることにより、各コイル導体201〜206は一周することになり、スロット内に2層に2ターン分のコイルが形成される。
【0022】
次に、図9に示すように、いままでと反対回転方向へ(すなわち上記最初の2ターン形成の最後の折り曲げが谷折りとなるので、再び谷折りで)折り曲げる。これにより、その後のスロット導体部21はスロット内で3、4層目に円滑に配置されることができる。
以下、図10に示すように、順次、谷折り、山折り、谷折りと最初の2ターンと反対回転方向へ折り曲げることにより、6本のコイル導体201〜206を各スロットに4層に収容する。その結果、再度、ロータ磁極数から1を引いた回数だけ折り曲げることにより、各コイル導体201〜206は次の一周を行うことになり、スロット内に4層に4ターン分のコイルが形成される。以下、必要なターン数が上記と同じ手順で作製される。
【0023】
次に、所定ターンを作製した後、図10に示すように、コイル導体201〜206の最終渡り導体部22bは、いままでの渡り導体部22に対して約半分の長さとされ、かつ、コイル導体204〜206の最終渡り導体部22bはそれ以外の渡り導体部22及び最終渡り導体部22bと線対称方向に斜設されている。その結果、図12に示すように、コイル導体201、204の最終渡り導体部22bの先端部は重なり、コイル導体202、205の最終渡り導体部22bの先端部は重なり、コイル導体203、206の最終渡り導体部22bの先端部は重なり、これら重なり部分を溶接することにより、三相ステータコイルが形成されることになる。更に具体的に説明すれば、図11に示すようにコイル導体201〜203の折り曲げを行い、その後、図12に示すようにコイル導体204〜206の折り曲げを行って、上記重なりを形成し、溶接すればよい。
【0024】
次に、上述のように作製されたコイル2を固定子コア1の各スロットに挿入され、次に又はスロット挿入前にコイル導体202、204、206の始端を短絡して中性点とする。
次に、この実施例の特徴をなす温度センサ5の取り付けについて図3、図4を参照して以下に説明する。
【0025】
温度センサ5は、略薄円盤状のサーミスタからなり、一つの渡り導体部22の軸方向先端部からなる折り曲げ端部22aに折り込まれている。なお、この折り込みは、図5〜図12に示すコイル作製工程中にて該当する折り曲げ端部22aの作製時に行ってもよく、又は折り曲げ端部22aの作製後に挿入してもよい。
この実施例では、温度センサ5は単に折り曲げ端部22aの間に挟持されるのみであり接着剤は用いないが、折り曲げ端部22aが温度センサ5を締め付けるので機械的に強固に固定され、また温度センサ5から折り曲げ端部22aへの伝熱抵抗も小さくすることができる。
【0026】
この温度センサ5付き固定子を用いたモータを図4に示す。
6はハウジング、7はシャフト、8は界磁コイル9をもつロータ、10は三相のステータコイル2の引き出し線である。
この実施例では、温度センサ5の引き出し線は、三相のステータコイル2の引き出し線10と同一方向すなわちリヤ方向へ引き出されるので、端末処理が容易となる。
【0027】
【変形態様】
上記実施例では、温度センサ5を渡り導体部22の折り曲げ端部22a内に折り込んだが、たとえば図3に示すC点で径方向に隣接する一対の渡り導体部22、22の間に挿入することもでき、同様の効果を奏することができる。
コイル導体201〜206はあらかじめ渡り導体部22をスロット導体部21に対して斜設するのではなく、折り曲げ時に屈曲して渡り導体部22としてもよい。
【0028】
6本のコイル導体201〜206でたとえば偶数ターン分のコイル(本発明でいうコイル群)を作り、更に他の6本のコイル導体でたとえば偶数ターン分のコイル(本発明でいうコイル群)を作り、これらコイル群同士を半分の長さの渡り導体部22を重ねて溶接する手法などにより接続してもよい。
コイル導体201と204、コイル導体202と205、コイル導体203と206と上述したそれぞれの最終渡り導体部で折り曲げて作製してから、図5から順にコイル成形してもよい。
【0029】
更に、コイル導体202、204、206の始端を短絡する代わりにデルタ接続を行うことも可能である。
【図面の簡単な説明】
【図1】 本発明の波巻き巻線を固定子巻線に適用した三相モータの実施例における固定子の平面図である。
【図2】 図1に示す固定子の正面図である。
【図3】 図1に示す固定子の図1と異なる方向からみた平面図である。
【図4】 図3に示す固定子を用いたモータの軸方向断面図である。
【図5】 図1、図2に示す固定子コイルの作成手順を示す工程図である。
【図6】 図1、図2に示す固定子コイルの作成手順を示す工程図である。
【図7】 図1、図2に示す固定子コイルの作成手順を示す工程図である。
【図8】 図1、図2に示す固定子コイルの作成手順を示す工程図である。
【図9】 図1、図2に示す固定子コイルの作成手順を示す工程図である。
【図10】 図1、図2に示す固定子コイルの作成手順を示す工程図である。
【図11】 図1、図2に示す固定子コイルの作成手順を示す工程図である。
【図12】 図1、図2に示す固定子コイルの作成手順を示す工程図である。
【符号の説明】
1は固定子コア、2はコイル、5は温度センサ、21はスロット導体部、22は渡り導体部、22aは折り曲げ端部、22bは最終渡り導体部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotating electrical machine with a temperature sensor.
[0002]
[Prior art]
In a conventional rotating electric machine with a temperature sensor, a temperature sensor is generally provided at a coil end. This is because it is difficult to insert the temperature sensor into the slot, the coil temperature becomes considerably high among the temperatures of each part of the rotating electrical machine, and if the coil temperature exceeds a predetermined level, the insulating resin of the coil This is because the electrical insulation properties deteriorate due to deterioration.
[0003]
[Problems to be solved by the invention]
However, the conventional temperature sensor attached to the coil end has a problem that it is not easy to secure the mechanical fixing strength of the temperature sensor, and the heat transfer resistance between the coil end and the temperature sensor is large. There were two problems to be solved that further improvement in responsiveness was necessary. This will be described in more detail below.
[0004]
First, the mechanical fixing of the temperature sensor will be described. After a coil (for example, a stator coil) is wound around a core (for example, a stator core), the temperature sensor is bonded to the coil with an adhesive having good heat resistance. However, since the coil end vibrates due to cooling air, electromagnetic vibration, etc., the temperature sensor is repeatedly applied to the adhesive layer due to the fact that thermal stress repeatedly acts on the adhesive layer due to the difference in thermal expansion coefficient between the temperature sensor and the coil end. May peel off from the coil end.
[0005]
In general, a thermistor having a substantially flat plate shape is used as the temperature sensor, but the transition conductor of the coil end to which the temperature sensor is bonded is usually circular in cross section. It is difficult to increase the facing area of the contact boundary between the two, and the average thickness of the contact boundary made of the adhesive layer is also large, which makes it easy to reduce the heat transfer resistance between the temperature sensor and the coil end. There wasn't. If the heat transfer resistance between the two is large, the remaining part of the surface area of the temperature sensor is cooled by the cooling air flow, which increases the temperature detection error between the coil temperature and the temperature sensor detection temperature. This leads to a problem that a delay in tracking the temperature detected by the temperature sensor with respect to the rise in coil temperature occurs.
[0006]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a rotating electrical machine having a temperature sensor excellent in mechanical adhesion and heat transfer with a coil end.
[0007]
[Means for Solving the Problems]
The present invention relates to a slot conductor portion composed of a forward conductor portion and a return conductor portion alternately inserted into each slot of the core, and the same side end of the forward conductor portion and the return conductor portion formed integrally with the slot conductor portion. In a rotating electrical machine with a temperature sensor having a coil conductor having a connecting conductor part connecting the parts and the temperature sensor being arranged at the coil end, the coil end has a posture in which the thickness direction is substantially equal to the radial direction The transition conductor portion made of a conductor plate extended in is laminated in the radial direction of the core, and the transition conductor portion has a bent end portion that is bent and overlapped in the radial direction of the core, The temperature sensor is characterized in that it is folded and clamped between a pair of the conductor plates at the bent end portion that is bent and extends adjacent to the radial direction of the core.
According to the wave winding of the rotating electrical machine of the present invention, the temperature sensor is folded and clamped between a pair of conductor plates extending adjacent to the core in the radial direction and forming a part of the coil end. A rotating electrical machine having a temperature sensor excellent in mechanical adhesion and heat transfer between the ends can be realized.
[0008]
More specifically, in this configuration, the coil end is formed by laminating a plurality of transition conductor portions made of a conductor plate extending in a posture in which the thickness direction substantially coincides with the radial direction in the core radial direction. Therefore, first, if a temperature sensor is arranged between a pair of conductor plates adjacent to each other in the radial direction of the core, the temperature sensor is sandwiched by these conductor plates, so that it can be favorably mechanically supported by the conductor plates. Moreover, since the temperature sensor is in good contact with both conductor plates, the heat transfer resistance between them can be reduced. Furthermore, since almost the entire surface of the temperature sensor is covered with the conductor plate, the cooling air flow or the like does not hit the temperature sensor, and the temperature sensor is not unnecessarily cooled by the cooling air flow. In addition, since the conductor plates adjacent in the radial direction are fixed in the slot so as not to be relatively displaced in the radial direction, when a temperature sensor is interposed between the pair of conductor plates adjacent in the radial direction of the coil end, these conductor plates are The temperature sensor is elastically deformed in the radial direction, and as a reaction force, the temperature sensor is strongly pressed by both conductor plates, the mechanical fixing property is further improved, and the heat transfer resistance is further reduced.
[0009]
According to the configuration of the second aspect, in the rotating electric machine with the temperature sensor according to the first aspect, the pair of conductor plates sandwich the temperature sensor with a predetermined clamping pressure, so that it is not necessary to use an expensive heat-resistant adhesive. As a result, a reduction in material cost and work man-hours and a reduction in heat transfer resistance can be realized.
[0010]
According to the third aspect of the present invention, in the rotary electric machine with the temperature sensor according to the first or second aspect, the temperature sensor has a substantially flat plate shape in which the pair of main surfaces are in close contact with the two conductor plates. Further reduction in resistance and good clamping of the temperature sensor can be realized .
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the invention are illustrated by the following examples.
[0012]
[Example 1]
An embodiment of a three-phase motor in which the wave winding of the present invention is applied to a stator winding will be described. 1 shows a plan view of the stator of the motor, FIG. 2 shows a front view, FIG. 3 shows a plan view of the stator as viewed from a different side from FIG. 1, and FIG. FIG. 5 to FIG. 12 show a stator coil creation procedure.
[0013]
Reference numeral 1 denotes a stator core in which thin plate steel plates are laminated, and has a large number of slots opened on the inner diameter side. In each slot, a star-connected three-phase two-layer wave-type stator coil (hereinafter also simply referred to as a coil) 2 is wound. A plate-like wedge 4 for preventing the protrusion is fitted. An insulator 3 that insulates the coil 2 from the core 1 is inserted in the inner periphery of the slot.
[0014]
The coil 2 has a linear slot conductor portion 21 inserted into a slot and a transition conductor portion 22 formed integrally with the slot conductor portion 21, and both ends of the transition conductor portion 22 are sandwiched by two slots. They are individually connected to the same end of the pair of slot conductors 21 inserted into the slots on both sides. As shown in FIG. 1, the coil 2 is composed of three phase coils 2a, 2b, and 2c. As shown in FIG. 5, the slot conductor portion 21 is formed from the start ends 23 to 25 of the phase coils 2a, 2b, and 2c. It consists of a forward conductor portion 21a extending in the forward direction, and a return conductor portion 21b extending in the return direction approaching from the start ends 23 to 25 of the phase coils 2a, 2b, 2c. Therefore, the coil end portions 2d on both sides of the slot are precisely constituted by the end portions on both sides of the slot conductor portion 21 and the transition conductor portions 22, and each of the transition conductor portions 22 is formed of a slot conductor portion as shown in FIG. Each of the bent end portions 22a is bent in the circumferential direction with respect to 21 and is bent at the center portion of the crossover conductor portion 22 and overlapped in the radial direction. Hereinafter, the coil 2 will be described in more detail.
[0015]
As shown in FIG. 5, the coil 2 has six coil conductors 201 to 206 arranged in parallel at a distance of one slot pitch, and the coil conductors 201 and 204 constitute the phase coil 2 a, and the coil conductor 203 , 206 constitute the phase coil 2b, and the coil conductors 202, 205 constitute the phase coil 2c. Each of the coil conductors 201 to 206 has a substantially square cross-sectional shape that is thin in the radial direction of the stator core 1 and wide in the circumferential direction.
[0016]
The nth (n is an integer) slot conductor portion 21 of the mth (m is an integer) coil conductor is the (n−1) th or (n + 1) th slot conductor portion 21 of the mth coil conductor. Are accommodated in slots that are 180 degrees apart from the slots in which the electrical angle is accommodated. In addition, the slots separated by the three-slot pitch are accommodated together with the slot conductor portion 21 of the m-3th or m + 3th coil conductor.
[0017]
Further, among the starting ends of the six coil conductors 201 to 206, the second, fourth, and sixth starting ends are short-circuited with each other to become a neutral point, and the remaining first, third, and fifth starting ends are three-phase star types. It forms the terminal of each connected phase coil 2a, 2b, 2c.
A specific method for manufacturing the coil conductors 201 to 206 will be described with reference to the manufacturing procedure shown in FIGS.
[0018]
First, as shown in FIG. 5, the six coil conductors 201 to 206 are arranged in parallel by being separated by one slot pitch. The slot conductor portion 21 and the transition conductor portion 22 are each formed in a straight strip shape, and the transition conductor portion 22 is obliquely provided with respect to the slot conductor portion 21 at an appropriate angle (here, about 60 degrees). Reference numeral 23 denotes a start end of the coil conductor 201, 24 denotes a start end of the coil conductor 203, 25 denotes a start end of the coil conductor 205, 26 denotes a start end of the coil conductor 202, and 27 denotes a start end of the coil conductor 204. Yes, 28 is the starting end of the coil conductor 206.
[0019]
Next, as shown in FIG. 6, the first six crossing conductor portions 22 counted from the start ends 23 to 28 of the coil conductors 201 to 206 are the first slot conductors at the center (shown by broken lines in FIG. 5). Bend so that part 21 is at the bottom (by valley fold). In FIG. 5, the first slot conductor portion 21 and the next slot conductor portion 21, which are counted from the start ends 23 to 28 of the respective coil conductors 201 to 206, are formed at a three-slot pitch, thereby the coil conductor 201. The second slot conductor portion 21 of the coil conductor 204 overlaps with the first slot conductor portion 21 of the coil conductor 204, and similarly, the second slot conductor portion 21 of the coil conductor 202 is the first slot conductor portion 21 of the coil conductor 205. The second slot conductor portion 21 of the coil conductor 203 overlaps the first slot conductor portion 21 of the coil conductor 206.
[0020]
Next, as shown in FIG. 7, the second six crossing conductor portions 22 counted from the start ends 23 to 28 of the coil conductors 201 to 206 are arranged at the center portion (indicated by broken lines in FIG. 6). The slot conductor portion 21 is bent so as to be above the third slot conductor portion 21 (in a mountain fold, that is, in the same rotational direction as the first bending direction in the present invention). As a result, the third slot conductor portion 21 of the coil conductor 201 overlaps below the second slot conductor portion 21 of the coil conductor 204, and the third slot conductor portion 21 of the coil conductor 202 is similarly connected to the coil conductor 205. The third slot conductor portion 21 of the coil conductor 203 overlaps below the second slot conductor portion 21 of the coil conductor 206. As a result, the third slot conductor 21 is reasonably accommodated at the same depth (deepest position) in the slot as the first slot conductor 21.
[0021]
Hereinafter, as shown in FIG. 8, the six coil conductors 201 to 206 are accommodated in two layers in each slot by sequentially bending the valley fold, the mountain fold, and the valley fold in the same rotational direction. As a result, by bending the number of times of subtracting 1 from the number of magnetic poles of the rotor, each of the coil conductors 201 to 206 makes one round, and a coil for two turns is formed in two layers in the slot.
[0022]
Next, as shown in FIG. 9, the sheet is bent in the opposite direction of rotation (that is, the final folding of the first two turns is a valley fold so that it is again a valley fold). Thereby, the subsequent slot conductor portions 21 can be smoothly arranged in the third and fourth layers in the slot.
Hereinafter, as shown in FIG. 10, the six coil conductors 201 to 206 are accommodated in four layers in each slot by sequentially bending the valley fold, the mountain fold, the valley fold, and the first two turns in the opposite direction of rotation. . As a result, the coil conductors 201 to 206 perform the next round by bending the number of times obtained by subtracting 1 from the number of rotor magnetic poles, and coils for four turns are formed in four layers in the slot. . Thereafter, the necessary number of turns is produced by the same procedure as described above.
[0023]
Next, after making a predetermined turn, as shown in FIG. 10, the final transition conductor portion 22b of the coil conductors 201 to 206 is about half the length of the conventional transition conductor portion 22, and the coil The last transition conductor portion 22b of the conductors 204 to 206 is obliquely arranged in a line symmetrical direction with the other transition conductor portion 22 and the last transition conductor portion 22b. As a result, as shown in FIG. 12, the end portions of the last transition conductor portions 22b of the coil conductors 201 and 204 overlap, the end portions of the last transition conductor portions 22b of the coil conductors 202 and 205 overlap, and the coil conductors 203 and 206 The leading end portion of the final crossover conductor portion 22b overlaps, and a three-phase stator coil is formed by welding these overlapping portions. More specifically, the coil conductors 201 to 203 are bent as shown in FIG. 11, and then the coil conductors 204 to 206 are bent as shown in FIG. do it.
[0024]
Next, the coil 2 manufactured as described above is inserted into each slot of the stator core 1, and next or before the slot is inserted, the starting ends of the coil conductors 202, 204, 206 are short-circuited to obtain a neutral point.
Next, attachment of the temperature sensor 5 that characterizes this embodiment will be described below with reference to FIGS.
[0025]
The temperature sensor 5 is formed of a substantially thin disc-like thermistor, and is folded into a bent end portion 22 a formed of the tip end portion in the axial direction of one transition conductor portion 22. This folding may be performed at the time of manufacturing the corresponding bent end 22a in the coil manufacturing process shown in FIGS. 5 to 12, or may be inserted after the bent end 22a is manufactured.
In this embodiment, the temperature sensor 5 is simply sandwiched between the bent end portions 22a and does not use an adhesive, but the bent end portion 22a clamps the temperature sensor 5 so that it is mechanically firmly fixed. The heat transfer resistance from the temperature sensor 5 to the bent end 22a can also be reduced.
[0026]
A motor using the stator with the temperature sensor 5 is shown in FIG.
6 is a housing, 7 is a shaft, 8 is a rotor having a field coil 9, and 10 is a lead wire for a three-phase stator coil 2.
In this embodiment, the lead wire of the temperature sensor 5 is drawn in the same direction as that of the lead wire 10 of the three-phase stator coil 2, that is, the rear direction, so that the terminal processing becomes easy.
[0027]
[Modification]
In the above embodiment, the temperature sensor 5 is folded into the bent end portion 22a of the crossover conductor portion 22. For example, the temperature sensor 5 is inserted between a pair of crossover conductor portions 22 and 22 that are adjacent in the radial direction at the point C shown in FIG. The same effect can be achieved.
The coil conductors 201 to 206 may be bent at the time of bending to form the transition conductor part 22 instead of obliquely providing the transition conductor part 22 with respect to the slot conductor part 21 in advance.
[0028]
The six coil conductors 201 to 206 make, for example, a coil for even turns (coil group referred to in the present invention), and the other six coil conductors, for example, a coil for even turns (coil group referred to in the present invention). Alternatively, the coil groups may be connected to each other by a method of welding the overlapping conductor portions 22 having a half length.
The coil conductors 201 and 204, the coil conductors 202 and 205, the coil conductors 203 and 206, and the above-described final transition conductor portions may be bent and formed, and then the coils may be formed in order from FIG.
[0029]
Furthermore, instead of short-circuiting the starting ends of the coil conductors 202, 204, 206, it is possible to make a delta connection.
[Brief description of the drawings]
FIG. 1 is a plan view of a stator in an embodiment of a three-phase motor in which a wave winding of the present invention is applied to a stator winding.
FIG. 2 is a front view of the stator shown in FIG.
3 is a plan view of the stator shown in FIG. 1 as seen from a different direction from FIG. 1. FIG.
4 is a cross-sectional view in the axial direction of a motor using the stator shown in FIG. 3;
FIG. 5 is a process diagram showing a procedure for creating the stator coil shown in FIGS. 1 and 2;
6 is a process diagram showing a procedure for creating the stator coil shown in FIGS. 1 and 2. FIG.
7 is a process diagram showing a procedure for creating the stator coil shown in FIGS. 1 and 2. FIG.
8 is a process diagram showing a procedure for creating the stator coil shown in FIGS. 1 and 2. FIG.
FIG. 9 is a process diagram showing a procedure for creating the stator coil shown in FIGS. 1 and 2;
FIG. 10 is a process diagram showing a procedure for creating the stator coil shown in FIGS. 1 and 2;
FIG. 11 is a process diagram showing a procedure for creating the stator coil shown in FIGS. 1 and 2;
12 is a process diagram showing a procedure for creating the stator coil shown in FIGS. 1 and 2. FIG.
[Explanation of symbols]
1 is a stator core, 2 is a coil, 5 is a temperature sensor, 21 is a slot conductor, 22 is a crossover conductor, 22a is a bent end, and 22b is a final crossover conductor.

Claims (3)

コアの各スロットに交互に挿通される往き導体部及び還り導体部からなるスロット導体部と、前記スロット導体部と一体に形成されて前記往き導体部及び還り導体部の同一側端部を接続する渡り導体部とを備えるコイル導体を有し、温度センサがコイルエンドに配設されてなる温度センサ付き回転電機において、
前記コイルエンドは、厚さ方向が略径方向に一致する姿勢で延設された導体板からなる前記渡り導体部を前記コアの径方向に積層してなり、
前記渡り導体部は、折り曲げられてコアの径方向へ重なる形状をもつ折り曲げ端部を有し、
前記温度センサは、折り曲げられて前記コアの径方向に隣接して延在する前記折り曲げ端部の一対の前記導体板の間に折り込まれて締め付けられていることを特徴とする回転電機。
A slot conductor portion composed of a forward conductor portion and a return conductor portion that are alternately inserted into each slot of the core and an end portion on the same side of the forward conductor portion and the return conductor portion that are formed integrally with the slot conductor portion. In a rotating electrical machine with a temperature sensor having a coil conductor with a transition conductor portion and a temperature sensor disposed at the coil end,
The coil end is formed by laminating the transition conductor portion formed of a conductor plate extending in a posture in which the thickness direction substantially coincides with the radial direction in the radial direction of the core,
The transition conductor portion has a bent end portion that is bent and overlapped in the radial direction of the core,
The temperature sensor, the rotary electric machine, characterized by being tightened is folded into a pair of said conductor plates of the bent end portion extending adjacent to a radial direction of the core by bending.
請求項1記載の温度センサ付き回転電機において、
前記一対の導体板は前記温度センサを所定の挟圧力で接着剤を介することなく挟持することを特徴とする温度センサ付き回転電機。
In the rotary electric machine with a temperature sensor according to claim 1,
The pair of conductor plates clamps the temperature sensor with a predetermined clamping pressure without using an adhesive, and is a rotating electric machine with a temperature sensor.
請求項1又は2記載の温度センサ付き回転電機において、
前記温度センサは、一対の主面が前記両導体板に個別に密着する略平板形状を有することを特徴とする温度センサ付き回転電機
In the rotary electric machine with a temperature sensor according to claim 1 or 2,
The rotary electric machine with a temperature sensor, wherein the temperature sensor has a substantially flat plate shape in which a pair of main surfaces are in close contact with the two conductor plates .
JP23756298A 1998-08-24 1998-08-24 Rotating electric machine with temperature sensor Expired - Fee Related JP3821341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23756298A JP3821341B2 (en) 1998-08-24 1998-08-24 Rotating electric machine with temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23756298A JP3821341B2 (en) 1998-08-24 1998-08-24 Rotating electric machine with temperature sensor

Publications (2)

Publication Number Publication Date
JP2000069715A JP2000069715A (en) 2000-03-03
JP3821341B2 true JP3821341B2 (en) 2006-09-13

Family

ID=17017163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23756298A Expired - Fee Related JP3821341B2 (en) 1998-08-24 1998-08-24 Rotating electric machine with temperature sensor

Country Status (1)

Country Link
JP (1) JP3821341B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029545A (en) 2009-09-29 2012-02-09 Auto Network Gijutsu Kenkyusho:Kk Overcurrent shut-off apparatus and overcurrent detection element used for the same
JP2013051807A (en) * 2011-08-31 2013-03-14 Hitachi Automotive Systems Ltd Rotary electric machine
JP5621810B2 (en) * 2012-04-11 2014-11-12 トヨタ自動車株式会社 Rotating electric machine
JP7027473B2 (en) * 2020-03-16 2022-03-01 本田技研工業株式会社 Manufacturing method of stator unit of rotary electric machine
CN115298941A (en) * 2020-03-31 2022-11-04 平田机工株式会社 Rotating electrical machine
JP7351869B2 (en) 2021-03-26 2023-09-27 本田技研工業株式会社 Stator manufacturing method

Also Published As

Publication number Publication date
JP2000069715A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP3586186B2 (en) Rotating machine stator
JP3741031B2 (en) Electric motor stator structure
JP4293237B2 (en) stator
US11469650B2 (en) Method for manufacturing armature
JP2004229460A (en) Stator of rotary electric machine
JP2009194999A (en) Manufacturing method of stator coil
JP2011229367A (en) Stator of rotating electrical machine
US8841811B2 (en) Conductor insulation arrangement for an electric machine
US9130430B2 (en) Electric machine with fully enclosed in-slot conductors
JP3427748B2 (en) AC generator for vehicles
JP2001054244A (en) Dynamo-electric machine and manufacture thereof
US20130069474A1 (en) Composite conductor insulation
JP3897212B2 (en) Coil end contact cooling type rotating electrical machine
JP3821341B2 (en) Rotating electric machine with temperature sensor
JP3903609B2 (en) Wave winding coil of rotating electric machine and method for manufacturing the same
WO2018131640A1 (en) Stator of rotating electrical machine
JP2021180584A (en) Stator and method for manufacturing the same
JP2017093072A (en) Dynamo-electric machine stator
JP6194275B2 (en) Rotating electric machine stator
US20090218905A1 (en) Coil fixing member and electric rotary machine
CN116231905A (en) Stator core, manufacturing method thereof and motor
JP3823556B2 (en) Wave winding coil of rotating electric machine and method for manufacturing the same
JP3586201B2 (en) Rotating machine stator
JP6459301B2 (en) Rotating electric machine stator
JP2002191142A (en) Laminated core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees