JP3820772B2 - gas turbine - Google Patents

gas turbine Download PDF

Info

Publication number
JP3820772B2
JP3820772B2 JP29173198A JP29173198A JP3820772B2 JP 3820772 B2 JP3820772 B2 JP 3820772B2 JP 29173198 A JP29173198 A JP 29173198A JP 29173198 A JP29173198 A JP 29173198A JP 3820772 B2 JP3820772 B2 JP 3820772B2
Authority
JP
Japan
Prior art keywords
gas turbine
flame propagation
flow
tube
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29173198A
Other languages
Japanese (ja)
Other versions
JP2000121056A (en
Inventor
泰行 渡辺
哲男 笹田
勲 竹原
嘉一 森友
俊文 笹尾
文治 森脇
政治 繁田
和行 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29173198A priority Critical patent/JP3820772B2/en
Publication of JP2000121056A publication Critical patent/JP2000121056A/en
Application granted granted Critical
Publication of JP3820772B2 publication Critical patent/JP3820772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gas Burners (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は1基のガスタービンに対して複数の缶型の燃焼器が設けられており、該燃焼器が火炎伝播管により連結されているガスタービンに関する。
【0002】
【従来の技術】
1基のガスタービンに対して複数の缶型の燃焼器が設けられているガスタービン設備においては、通常、燃焼器はガスタービンの周囲に円環状に配置される。隣接するこれら燃焼器は火炎伝播管で相互に連結されており、燃焼器の内、1缶あるいは数缶の燃焼器に点火装置が設置される。ガスタービンの起動時には、点火装置を作動させて当該燃焼器を点火すると、燃焼ガスによって未点火の隣接燃焼器缶よりも圧力が高くなるから、火炎伝播管を通って火炎が順次隣接する燃焼器缶に流入し、最終的に全燃焼器缶を点火することができる。
【0003】
火炎伝播管は、上記の操作を確実に行わせるために必要な構成部品であり、これに関する従来技術としては、特開昭57−142423号公報,特開昭62−200112号公報,特開平3−158619 号公報に記載されている。
【0004】
【発明が解決しようとする課題】
火炎伝播管は、燃焼器の点火時に隣接燃焼器間に発生する圧力差により火炎を管内に通過させるものである。したがって、全燃焼器缶が点火を終了すれば圧力差が無くなり、火炎伝播管を通した流れは無くなるはずである。しかし、実際には各燃焼器缶毎に空気流量や燃料流量圧力にバラツキが生じるため、隣接する燃焼器間に圧力差が生じる場合がある。火炎伝播管は、この様な場合においても高温の燃焼ガスが火炎伝播管を通過して損傷を与えることがないように冷却空気が適切に流れるようにしてある。
【0005】
一般的に、圧縮機を出た空気は複数の燃焼器に分配されるが、燃焼器はその圧力損失が一定範囲に入る様に製作され、管理されるから、各燃焼器に流入する空気の入口圧力はほぼ均一になる。したがって平均的には各燃焼器缶の燃焼空気流量はほぼ同一になっている。しかし、圧縮機出口の圧力分布は時間的に常に一定ではなく、突発的に変化することがありうる。例えば燃料の発熱量変化により燃焼器毎に燃焼温度が異なる時間帯が生じると燃焼器内圧力が変化し、燃焼器に流入する空気の圧力分布も変化する。また、燃焼器への空気流路にある構造物から剥離渦が放出される場合には、流れの乱れにより局所的に圧力分布の時間変動が起きうる。燃焼器が外筒で周囲を覆われている火炎伝播管により接続されているガスタービンにおいては、このような原因で隣接する燃焼器缶の前記外筒部分に圧力差が生じると、該外筒の内壁と前記火炎伝播管の外壁との間隙が流路になるから、当該間隙に空気が流れることになる。この結果、平均的には各燃焼器缶に流入する空気流量が均一になっていても、実際の燃焼場に到達する前に火炎伝播管の外壁とそれを覆う外筒の内壁との間隙で燃焼空気の移動があるために、燃焼器缶毎に燃焼場では局所的な空気のアンバランスが生じることになる。
【0006】
近年、排ガス中の窒素酸化物(NOx)を低減するために燃焼器に予混合バーナを使用するケースが多くなっており、年々予混合燃焼比率が増大している。しかし、予混合燃焼は拡散燃焼に比べて安定燃焼できる燃空比(燃料流量と空気流量の比率)範囲が狭く、火炎の吹き消えや燃焼振動を起こしやすい。したがって、予混合バーナの燃空比管理は木目細かく実施されるが、前述の様に火炎伝播管の外筒の内壁と火炎伝播管の外壁との間隙を通って空気が隣接燃焼器缶に流れると、燃焼場での燃空比が設定値を外れて不安定燃焼範囲に入る場合がある。特に、火炎伝播管が予混合バーナの燃焼室に連結されている場合には、必然的に予混合バーナの空気流入部分は火炎伝播管外部より下流側に位置するから、前記間隙を流れる空気流量が局所的に予混合バーナの燃空比に影響を及ぼす。
【0007】
本発明の目的は、燃焼器缶の燃空比を所定の安定燃焼範囲に保持できるガスタービンを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は複数の缶型の燃焼器が設けられており、前記燃焼器が火炎伝播管により連結されているガスタービンにおいて、前記火炎伝播管と、該火炎伝播管の外周を覆う外筒との間隙を流れうる流体の流量を低減する円筒状のブロック又はリング状の仕切板からなる流量低減手段を前記外筒の内周壁に配置したことを特徴とするものである。
【0009】
また、上記目的を達成するために、本発明は予混合バーナを有する複数の缶型の燃焼器が設けられており、前記燃焼器が火炎伝播管により連結されているガスタービンにおいて、前記火炎伝播管と、該火炎伝播管の外周を覆う外筒との間隙を流れうる流体の流量を低減する円筒状のブロック又はリング状の仕切板からなる流量低減手段を前記外筒の内周壁に配置したことを特徴とするものである。
【0010】
また、前記ガスタービンにおいて、前記流量低減手段として、流体の流れの抵抗となる複数の溝を設けた円筒状のブロックを用いたことを特徴とする。
【0011】
また、前記ガスタービンにおいて、前記流量低減手段として、前記間隙が形成する流体の流路に対して直角方向にその配置位置が移動可能で流体の流れの抵抗となる仕切を用いたことを特徴とする。
【0012】
【発明の実施の形態】
図1に本発明によるガスタービンの一実施例を示す。ガスタービンを構成する缶型の燃焼器1aは、拡散燃焼用の燃料10を燃焼室2を構成する内筒19内に噴射する燃料ノズル3を有する拡散バーナ7と、予混合燃焼用の燃料11を予混合器4に噴射する燃料ノズル5を有する予混合バーナ8を備えている。
【0013】
燃焼用空気12は、図示しない圧縮機から燃焼室2の内筒19と、該内筒19の外周を覆う外筒21との間に形成される流路32を通って燃焼器1aに供給される。拡散バーナ7では、燃焼用空気12と燃料ノズル3から供給された燃料10は旋回器6により内筒19の燃焼室2内に燃焼ガスの循環渦を形成し、安定な拡散火炎となる。一方、予混合器4に流入した燃焼用空気12は、旋回器9により燃料ノズル5から噴射された燃料と混合し、内筒19の燃焼室2に噴射され燃焼する。予混合バーナ8の下流側に位置する燃焼室2の壁面には、隣接する燃焼器1bと接続する火炎伝播管20が配置される。火炎伝播管20は、外筒21の一部である外筒21aによりその周囲を覆われている。火炎伝播管20の外壁と外筒21との間には流路22が形成されるが、この流路22には具体的に後述する流量低減手段30が配置される。
【0014】
図2に示すように、本実施例による缶型の燃焼器1a〜1nは、図示しない1基のガスタービンの周囲に例えば14缶の燃焼器が配置され、それぞれ火炎伝播管20a〜20n(図示せず)とこの火炎伝播管20a〜20nを覆う外筒21a〜21nとで接続されている。ガスタービンの起動時には、例えば燃焼器1m,1nに設けられた点火栓13を作動させ、図1に示す燃焼器の燃焼室2に火炎を形成すると、内筒19内の当該燃焼室2の圧力が上昇するから、火炎伝播管20の内部を通って燃焼ガスが隣接缶1aあるいは1lに流れ次々に隣接燃焼器缶1b〜1kを点火させる。こうして、全燃焼器1a〜1nの点火が完了すると、燃焼器間の差圧は小さくなるので、火炎伝播管20の内部を通る燃焼ガスは実質的に無くなる。
【0015】
一方、図1で説明した様に、火炎伝播管20の外壁とこれを覆う外筒21aの内壁の間隙には流路22が形成される。このため、仮に圧縮機から燃焼器に供給される空気流量が各燃焼器缶1a〜1nで均一であっても、流れの乱れ等の原因によって燃焼室2の内筒19と外筒21との間の流路である外側の流路32に周方向に圧力分布の差が生じると、前記流路32と連通した前記流路22に燃焼用空気が流れることになる。この結果、最終的に各燃焼器に流入する空気量は局所的にアンバランスを生じる。本実施例の様に予混合バーナ8が燃焼室2を構成する内筒19内の内壁側に配置される場合には、火炎伝播管20の部分に生じる空気流量の局所的なアンバランスは、予混合バーナ8に流入する空気流量に影響を及ぼすから、空気流量のアンバランスが大きくなれば予混合バーナ8の燃空比が設定している安定燃焼範囲を外れ、不安定燃焼領域に入る恐れがある。そこで、本実施例では、燃焼室2の外側の流路32に周方向の圧力分布が生じても流路22に流れる空気流量を低減できる手段30が配置される。
【0016】
図3に、図1に示した流量低減手段30の具体的な一実施例を示す。本実施例では、隣接する燃焼器缶の燃焼室2を構成する内筒19を連結する火炎伝播管20の外周を覆う環状の外筒21aの内側に、複数の環状の溝41を設けた円筒状のブロック40が配置される。ここで、流路22に設置されたブロック40の内周壁と火炎伝播管20の外壁との間隙dの距離は1〜5mmに設定される。ブロック40の内壁側に複数の環状溝41を設けることによって、流路22に燃焼用空気が流入しブロック40の内周壁に沿う流れが生じた時に溝41に渦が生じて流体抵抗となるから、溝41を設けない場合に比べて、同じ間隙dの距離と燃焼器間の差圧に対して流れる空気流量を低減できる。したがって、間隙dの距離を比較的大きく設定できるので、ブロック40を設けることによる火炎伝播管20を組み立てる際の作業性の低下を最小限に止めることができる。また、ガスタービンの運転中に、熱伸びや振動によりブロック40が火炎伝播管20に接触し、摩耗や場合によっては損傷する可能性も回避することができる。
【0017】
尚、本実施例では溝41を設けたブロック40を外筒21aの内周壁に配置したが、火炎伝播管20の外周壁に前記ブロック40を配置しても同様な効果が得られるのは明白である。
【0018】
本実施例によれば、火炎伝播管20とそれを覆う外筒21aとの間の流路に流れうる空気流量を低減する手段について、火炎伝播管を組み立てる際の作業性を悪化させず、また、ガスタービンの運転中の熱伸びや振動によっても火炎伝播管等の部品の損傷を回避できる。したがって、ガスタービン燃焼器の各缶毎に燃焼器流入空気流路に異なる圧力分布が生じ、火炎伝播管20を覆う外筒21a間に差圧が生じても各缶の空気流量を均一に保持できるから、各缶の燃空比を燃焼安定範囲の設定値に管理することができる効果がある。
【0019】
図4に、前記流路低減手段30の具体的な他の実施例を示す。本実施例では、火炎伝播管20の外壁とそれを覆う外筒21aの内壁との間に形成される流路22に、流路22に対して直角方向にその位置を移動でき、流路22を流れる空気の流れの抵抗となる仕切板50を配置する。また、移動出来る仕切板50を保持するために仕切板50を挟むように支持板51が外筒21aの内壁に配置される。ここで、仕切板50の中心側には図5,図6に示すように、火炎伝播管20を通すことができる孔52が開けられており、火炎伝播管20を燃焼器の燃焼室2に配置すると孔52が火炎伝播管20の外壁で塞がり、流路22を実質的に塞ぐことができる。また、仕切板50は流路22に対して直角方向に移動できるようになっているから、火炎伝播管20の組み立ての際には火炎伝播管20を容易に仕切板50の孔52に差し込むことができ、組み立ての作業性を悪化させることは無い。また、ガスタービン運転中の熱伸びや振動があっても過度の応力がこれら構成部品にかかるのを回避できる。なお、前記仕切板50としては円周方向に分割され全体でリング状となる分割仕切板を用いても良い。
【0020】
本実施例では、前記支持板50と前記火炎伝播管20との間隙をできる限り小さくするとより確実に当該流路22を流れる空気流量を低減できる。しかし、余り小さくすると接触面が摩耗する恐れがあり、また、通常は圧力差あるいは重力により仕切板50は上下の支持板51のどちらかに接触するから、過度に当該間隙を小さくしなくても実質的にこの部分を閉止することになる。したがって、当該間隙は、望ましくは0.5〜3mm に設定される。また、接触面に耐摩耗性のコーティングを施すのが望ましい。
【0021】
本実施例によれば、火炎伝播管の組み立ての作業性を悪化させず、また、ガスタービン運転中の熱伸びや振動による構成部品の応力発生を回避して、火炎伝播管の外壁とそれを覆う外筒の内壁との間隙を実質的に閉止することができ、当該間隙を流れる空気流量を低減できる効果がある。
【0022】
【発明の効果】
本発明により、火炎伝播管と該火炎伝播管を覆う外筒との間隙を流れる空気流量を低減して、各燃焼器缶の燃空比を所定の安定燃焼範囲に保持できるガスタービンを実現できるという効果が達成される。
【図面の簡単な説明】
【図1】本発明の一実施例であるガスタービンに配置される燃焼器の断面図。
【図2】本発明に係るガスタービンに配置される複数の燃焼器缶の構成図。
【図3】本発明の一実施例である火炎伝播管部分の断面図。
【図4】本発明の他の実施例である火炎伝播管部分の断面図。
【図5】図4に示す火炎伝播管部分の立体図。
【図6】図5に示す仕切板の断面図。
【符号の説明】
1a〜1n…燃焼器、2…燃焼室、3…拡散燃料ノズル、4…予混合器、5…予混合燃料ノズル、6…旋回器、7…拡散バーナ、8…予混合バーナ、9…旋回器、10,11…燃料、12…空気、13…点火栓、19…内筒、20…火炎伝播管、21,21a…外筒、22,32…流路、30…空気流量低減手段、40…ブロック、41…溝、50…仕切板、51…支持板、52…孔、d…間隙。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas turbine in which a plurality of can-type combustors are provided for one gas turbine, and the combustors are connected by a flame propagation tube.
[0002]
[Prior art]
In a gas turbine facility in which a plurality of can-type combustors are provided for one gas turbine, the combustors are usually arranged in an annular shape around the gas turbine. Adjacent combustors are connected to each other by a flame propagation tube, and an ignition device is installed in one or several of the combustors. When starting the gas turbine, when the combustor is ignited by activating the ignition device, the pressure becomes higher than the unignited adjacent combustor can by the combustion gas. It can flow into the can and eventually ignite the entire combustor can.
[0003]
The flame propagation tube is a component necessary for reliably performing the above-described operation, and conventional techniques related to this are disclosed in JP-A-57-142423, JP-A-62-200112, and JP-A-3. -158619.
[0004]
[Problems to be solved by the invention]
The flame propagation tube allows the flame to pass through the tube due to a pressure difference generated between adjacent combustors when the combustor is ignited. Thus, once all combustor cans have ignited, there should be no pressure differential and no flow through the flame propagation tube. However, in practice, there is a variation in the air flow rate and the fuel flow rate pressure for each combustor can, and thus there may be a pressure difference between adjacent combustors. In such a case, the flame propagation tube is adapted to allow the cooling air to flow appropriately so that the high-temperature combustion gas does not pass through the flame propagation tube and cause damage.
[0005]
Generally, the air leaving the compressor is distributed to a plurality of combustors, and the combustors are manufactured and managed so that their pressure loss falls within a certain range, so that the air flowing into each combustor The inlet pressure is almost uniform. Therefore, on average, the combustion air flow rate of each combustor can is substantially the same. However, the pressure distribution at the compressor outlet is not always constant in time, and may change suddenly. For example, when a time zone in which the combustion temperature differs for each combustor due to a change in the calorific value of the fuel, the pressure in the combustor changes, and the pressure distribution of air flowing into the combustor also changes. Further, when the separation vortex is released from the structure in the air flow path to the combustor, the time distribution of the pressure distribution may locally occur due to the flow disturbance. In a gas turbine in which a combustor is connected by a flame propagation tube whose periphery is covered with an outer cylinder, when the pressure difference occurs in the outer cylinder portion of an adjacent combustor can due to such a cause, the outer cylinder Since the gap between the inner wall and the outer wall of the flame propagation tube becomes a flow path, air flows through the gap. As a result, on average, even if the flow rate of air flowing into each combustor can is uniform, the gap between the outer wall of the flame propagation tube and the inner wall of the outer cylinder covering it before reaching the actual combustion field. Due to the movement of the combustion air, a local air imbalance occurs in the combustion field for each combustor can.
[0006]
In recent years, in order to reduce nitrogen oxide (NOx) in exhaust gas, a premix burner is frequently used in a combustor, and a premix combustion ratio is increasing year by year. However, premixed combustion has a narrower range of fuel-air ratio (ratio of fuel flow rate to air flow rate) that allows stable combustion than diffusion combustion, and tends to cause flame blowout and combustion vibration. Therefore, the fuel-air ratio management of the premixed burner is performed finely, but as described above, air flows to the adjacent combustor can through the gap between the inner wall of the flame propagation tube outer wall and the outer wall of the flame propagation tube. In some cases, the fuel-air ratio at the combustion field deviates from the set value and enters the unstable combustion range. In particular, when the flame propagation tube is connected to the combustion chamber of the premixing burner, the air inflow portion of the premixing burner is inevitably located downstream from the outside of the flame propagation tube. Locally affects the fuel-air ratio of the premix burner.
[0007]
An object of the present invention is to provide a gas turbine capable of maintaining the fuel-air ratio of a combustor can within a predetermined stable combustion range.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is provided with a plurality of can-type combustors, and in the gas turbine in which the combustors are connected by a flame propagation tube, the flame propagation tube and the flame propagation tube that the flow reduction means comprising a cylindrical block or ring-shaped partition plate to reduce the flow rate of fluid between can flow the gap between the outer tube covering the outer periphery of which is characterized in that disposed on the inner peripheral wall of the outer cylinder It is.
[0009]
In order to achieve the above object, the present invention is provided with a plurality of can-type combustors having a premix burner, and the flame propagation in the gas turbine in which the combustors are connected by a flame propagation tube. arranged a tube, a flow reduction means comprising a cylindrical block or ring-shaped partition plate to reduce the flow rate of fluid between can flow the gap between the outer tube covering the outer periphery of the flame propagation pipe to the inner wall of the outer cylinder it is characterized in that the.
[0010]
Further, the gas turbine is characterized in that a cylindrical block provided with a plurality of grooves serving as resistance to fluid flow is used as the flow rate reducing means.
[0011]
Further, in the gas turbine, as the flow rate reducing means, a partition plate that is movable in a direction perpendicular to the fluid flow path formed by the gap and that serves as a fluid flow resistance is used. And
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a gas turbine according to the present invention. A can-type combustor 1a constituting a gas turbine includes a diffusion burner 7 having a fuel nozzle 3 for injecting a fuel 10 for diffusion combustion into an inner cylinder 19 constituting a combustion chamber 2, and a fuel 11 for premixed combustion. Is provided with a premix burner 8 having a fuel nozzle 5 for injecting the fuel into the premixer 4.
[0013]
Combustion air 12 is supplied to a combustor 1 a from a compressor (not shown) through a flow path 32 formed between an inner cylinder 19 of the combustion chamber 2 and an outer cylinder 21 covering the outer periphery of the inner cylinder 19. The In the diffusion burner 7, the combustion air 12 and the fuel 10 supplied from the fuel nozzle 3 form a circulation vortex of combustion gas in the combustion chamber 2 of the inner cylinder 19 by the swirler 6 to form a stable diffusion flame. On the other hand, the combustion air 12 flowing into the premixer 4 is mixed with the fuel injected from the fuel nozzle 5 by the swirler 9 and injected into the combustion chamber 2 of the inner cylinder 19 to burn. A flame propagation pipe 20 connected to the adjacent combustor 1b is disposed on the wall surface of the combustion chamber 2 located on the downstream side of the premixing burner 8. The flame propagation tube 20 is covered with an outer cylinder 21 a that is a part of the outer cylinder 21. A flow path 22 is formed between the outer wall of the flame propagation tube 20 and the outer cylinder 21, and a flow rate reducing means 30 to be specifically described later is disposed in the flow path 22.
[0014]
As shown in FIG. 2, in the can-type combustors 1a to 1n according to the present embodiment, for example, 14 cans are disposed around one gas turbine (not shown), and flame propagation tubes 20a to 20n (see FIG. 2). (Not shown) and outer cylinders 21a to 21n covering the flame propagation tubes 20a to 20n. When the gas turbine is started, for example, when a spark plug 13 provided in the combustors 1m and 1n is operated to form a flame in the combustion chamber 2 of the combustor shown in FIG. Therefore, the combustion gas flows through the inside of the flame propagation tube 20 to the adjacent can 1a or 1l and ignites the adjacent combustor cans 1b to 1k one after another. Thus, when the ignition of all the combustors 1a to 1n is completed, the pressure difference between the combustors becomes small, so that the combustion gas passing through the inside of the flame propagation tube 20 is substantially eliminated.
[0015]
On the other hand, as described with reference to FIG. 1, the flow path 22 is formed in the gap between the outer wall of the flame propagation tube 20 and the inner wall of the outer cylinder 21a covering the outer wall. For this reason, even if the flow rate of air supplied from the compressor to the combustor is uniform in each of the combustor cans 1a to 1n, the inner cylinder 19 and the outer cylinder 21 of the combustion chamber 2 may be caused by a cause such as flow disturbance. When a difference in pressure distribution occurs in the circumferential direction in the outer flow path 32, the combustion air flows in the flow path 22 communicating with the flow path 32. As a result, the amount of air finally flowing into each combustor locally unbalances. When the premix burner 8 is arranged on the inner wall side in the inner cylinder 19 constituting the combustion chamber 2 as in the present embodiment, the local unbalance of the air flow rate generated in the flame propagation tube 20 is Since the flow rate of air flowing into the premix burner 8 is affected, if the air flow unbalance increases, the fuel / air ratio of the premix burner 8 may fall outside the set stable combustion range and enter an unstable combustion region. There is. Therefore, in this embodiment, means 30 that can reduce the flow rate of air flowing in the flow path 22 even if a circumferential pressure distribution is generated in the flow path 32 outside the combustion chamber 2 is disposed.
[0016]
FIG. 3 shows a specific embodiment of the flow rate reducing means 30 shown in FIG. In the present embodiment, a cylinder provided with a plurality of annular grooves 41 inside an annular outer cylinder 21a covering the outer periphery of a flame propagation tube 20 connecting the inner cylinders 19 constituting the combustion chamber 2 of the adjacent combustor can. A block 40 is arranged. Here, the distance d between the inner peripheral wall of the block 40 installed in the flow path 22 and the outer wall of the flame propagation pipe 20 is set to 1 to 5 mm. By providing a plurality of annular grooves 41 on the inner wall side of the block 40, when the combustion air flows into the flow path 22 and a flow along the inner peripheral wall of the block 40 is generated, a vortex is generated in the groove 41 to provide fluid resistance. Compared with the case where the groove 41 is not provided, the flow rate of air flowing with respect to the same gap d distance and the differential pressure between the combustors can be reduced. Accordingly, since the distance d of the gap d can be set relatively large, it is possible to minimize a decrease in workability when assembling the flame propagation tube 20 by providing the block 40. Further, during operation of the gas turbine, it is possible to avoid the possibility that the block 40 comes into contact with the flame propagation tube 20 due to thermal expansion or vibration and is worn or damaged in some cases.
[0017]
In this embodiment, the block 40 provided with the groove 41 is arranged on the inner peripheral wall of the outer cylinder 21a. However, it is obvious that the same effect can be obtained even if the block 40 is arranged on the outer peripheral wall of the flame propagation pipe 20. It is.
[0018]
According to the present embodiment, the means for reducing the air flow rate that can flow in the flow path between the flame propagation tube 20 and the outer cylinder 21a covering the flame propagation tube 20 does not deteriorate the workability when assembling the flame propagation tube. Also, damage to the components such as the flame propagation tube can be avoided by thermal elongation and vibration during operation of the gas turbine. Therefore, a different pressure distribution is generated in the combustor inflow air flow path for each can of the gas turbine combustor, and even if a differential pressure is generated between the outer cylinders 21a covering the flame propagation tube 20, the air flow rate of each can is kept uniform. Therefore, there is an effect that the fuel-air ratio of each can can be managed to the set value of the stable combustion range.
[0019]
FIG. 4 shows another specific example of the flow path reducing means 30. In the present embodiment, the position of the flow path 22 formed between the outer wall of the flame propagation tube 20 and the inner wall of the outer cylinder 21a covering the flame propagation pipe 20 can be moved in a direction perpendicular to the flow path 22. A partition plate 50 serving as resistance to the flow of air flowing through is disposed. A support plate 51 is arranged on the inner wall of the outer cylinder 21a so as to hold the partition plate 50 in order to hold the movable partition plate 50. Here, as shown in FIGS. 5 and 6, a hole 52 through which the flame propagation tube 20 can be passed is formed in the center side of the partition plate 50, and the flame propagation tube 20 is formed in the combustion chamber 2 of the combustor. When arranged, the hole 52 is closed by the outer wall of the flame propagation tube 20, and the flow path 22 can be substantially closed. Further, since the partition plate 50 can move in a direction perpendicular to the flow path 22, the flame propagation tube 20 can be easily inserted into the hole 52 of the partition plate 50 when the flame propagation tube 20 is assembled. Can be made, and assembly workability is not deteriorated. Further, even if there is thermal elongation or vibration during the operation of the gas turbine, it is possible to avoid applying excessive stress to these components. The partition plate 50 may be a divided partition plate that is divided in the circumferential direction and has a ring shape as a whole.
[0020]
In the present embodiment, the flow rate of air flowing through the flow path 22 can be more reliably reduced by making the gap between the support plate 50 and the flame propagation tube 20 as small as possible. However, if it is too small, the contact surface may be worn, and the partition plate 50 contacts either the upper or lower support plate 51 due to a pressure difference or gravity, so that the gap need not be excessively reduced. This part is substantially closed. Therefore, the gap is desirably set to 0.5 to 3 mm. It is also desirable to provide a wear resistant coating on the contact surface.
[0021]
According to this embodiment, the workability of the assembly of the flame propagation tube is not deteriorated, and stress generation of components due to thermal elongation and vibration during gas turbine operation is avoided, and the outer wall of the flame propagation tube and The gap with the inner wall of the outer cylinder to be covered can be substantially closed, and the flow rate of air flowing through the gap can be reduced.
[0022]
【The invention's effect】
According to the present invention, a gas turbine capable of reducing the flow rate of air flowing through a gap between a flame propagation tube and an outer cylinder covering the flame propagation tube and maintaining the fuel-air ratio of each combustor can within a predetermined stable combustion range can be realized. The effect is achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a combustor disposed in a gas turbine according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a plurality of combustor cans arranged in a gas turbine according to the present invention.
FIG. 3 is a cross-sectional view of a flame propagation tube portion that is an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a flame propagation tube portion that is another embodiment of the present invention.
FIG. 5 is a three-dimensional view of a flame propagation tube portion shown in FIG. 4;
6 is a cross-sectional view of the partition plate shown in FIG.
[Explanation of symbols]
1a to 1n: combustor, 2 ... combustion chamber, 3 ... diffusion fuel nozzle, 4 ... premixer, 5 ... premix fuel nozzle, 6 ... swirler, 7 ... diffusion burner, 8 ... premix burner, 9 ... swirl , 10, 11 ... fuel, 12 ... air, 13 ... spark plug, 19 ... inner cylinder, 20 ... flame propagation pipe, 21, 21a ... outer cylinder, 22, 32 ... flow path, 30 ... air flow reduction means, 40 ... Block, 41 ... Groove, 50 ... Partition plate, 51 ... Support plate, 52 ... Hole, d ... Gap.

Claims (4)

複数の缶型の燃焼器が設けられており、前記燃焼器が火炎伝播管により連結されているガスタービンにおいて、前記火炎伝播管と、該火炎伝播管の外周を覆う外筒との間隙を流れうる流体の流量を低減する円筒状のブロック又はリング状の仕切板からなる流量低減手段を前記外筒の内周壁に配置したことを特徴とするガスタービン。A plurality of can-type combustor is provided, in a gas turbine wherein the combustor is connected by cross-fire tube, and the fire tube, between gap the outer tube covering the outer periphery of the flame propagation pipe A gas turbine characterized in that a flow rate reducing means comprising a cylindrical block or ring-shaped partition plate for reducing the flow rate of a fluid that can flow is disposed on an inner peripheral wall of the outer cylinder . 予混合バーナを有する複数の缶型の燃焼器が設けられており、前記燃焼器が火炎伝播管により連結されているガスタービンにおいて、前記火炎伝播管と、該火炎伝播管の外周を覆う外筒との間隙を流れうる流体の流量を低減する円筒状のブロック又はリング状の仕切板からなる流量低減手段を前記外筒の内周壁に配置したことを特徴とするガスタービン。In a gas turbine provided with a plurality of can-type combustors having a premix burner, and the combustors are connected by a flame propagation tube, the outer tube that covers the flame propagation tube and the outer periphery of the flame propagation tube gas turbine characterized in that arranged on the inner peripheral wall of the outer cylinder of the flow reduction means comprising a cylindrical block or ring-shaped partition plate to reduce the flow rate of fluid between can flow the gap between. 請求項1又は2に記載のガスタービンにおいて、前記流量低減手段として、流体の流れの抵抗となる複数の溝を設けた円筒状のブロックを用いたことを特徴とするガスタービン。In the gas turbine according to claim 1 or 2, wherein the flow rate of reduction means, in the gas turbine characterized by using a plurality of cylindrical blocks having a groove serving as the fluid flow resistance. 請求項1又は2に記載のガスタービンにおいて、前記流量低減手段として、前記間隙が形成する流体の流路に対して直角方向にその配置位置が移動可能で流体の流れの抵抗となる仕切を用いたことを特徴とするガスタービン。In the gas turbine according to claim 1 or 2, as the flow rate reducing means, the partition plate is its position in the perpendicular direction becomes resistive flow of a fluid movable relative fluid flow path the gap is formed A gas turbine that is used.
JP29173198A 1998-10-14 1998-10-14 gas turbine Expired - Lifetime JP3820772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29173198A JP3820772B2 (en) 1998-10-14 1998-10-14 gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29173198A JP3820772B2 (en) 1998-10-14 1998-10-14 gas turbine

Publications (2)

Publication Number Publication Date
JP2000121056A JP2000121056A (en) 2000-04-28
JP3820772B2 true JP3820772B2 (en) 2006-09-13

Family

ID=17772677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29173198A Expired - Lifetime JP3820772B2 (en) 1998-10-14 1998-10-14 gas turbine

Country Status (1)

Country Link
JP (1) JP3820772B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590771B2 (en) * 2016-08-09 2019-10-16 三菱日立パワーシステムズ株式会社 Gas turbine combustor

Also Published As

Publication number Publication date
JP2000121056A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
KR102334882B1 (en) Combustion system with panel fuel injectors
CA2399534C (en) Gasturbine and the combustor thereof
JP4733195B2 (en) Fuel spray system for gas turbine engine
CN101672483B (en) Gas turbine
US5996352A (en) Thermally decoupled swirler for a gas turbine combustor
JP2019509458A (en) Fuel injection module for segmented annular combustion system
JP5775319B2 (en) Axial multistage premixed combustion chamber
US10228140B2 (en) Gas-only cartridge for a premix fuel nozzle
US5121608A (en) Gas turbine engine fuel burner
JP4610796B2 (en) Gas turbine combustor
JP5718796B2 (en) Gas turbine combustor with sealing member
JP3820772B2 (en) gas turbine
JPH04283315A (en) Combustor liner
KR20200064892A (en) Fin-pin flow guide for efficient transition piece cooling
JPH0828873A (en) Gas turbine combustion device
JP2001004138A (en) LOW NOx COMBUSTOR FOR GAS TURBINE
JP3951155B2 (en) Low NOx steam injection combustor
KR20000023577A (en) Multi-swirl combustor plate
JPH1114056A (en) Gas turbine combustor
JPH0230409B2 (en)
JP2003130352A (en) LOW NOx COMBUSTOR FOR GAS TURBINE
JP4622100B2 (en) Low NOx combustor for gas turbine
JPH06213447A (en) Gas turbine burner and flame stabilizer thereof
JP2002130675A (en) LOW NOx COMBUSTOR HAVING PREMIXTURE FUEL INJECTION VALVE
JP2001124310A (en) Low nox combustion method and partial premixed gas low nox burner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term