JP3817126B2 - Battery capacity calculation device considering the effect of polarization - Google Patents

Battery capacity calculation device considering the effect of polarization Download PDF

Info

Publication number
JP3817126B2
JP3817126B2 JP2000304736A JP2000304736A JP3817126B2 JP 3817126 B2 JP3817126 B2 JP 3817126B2 JP 2000304736 A JP2000304736 A JP 2000304736A JP 2000304736 A JP2000304736 A JP 2000304736A JP 3817126 B2 JP3817126 B2 JP 3817126B2
Authority
JP
Japan
Prior art keywords
voltage
current
battery
polarization
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000304736A
Other languages
Japanese (ja)
Other versions
JP2001174535A (en
Inventor
洋一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2000304736A priority Critical patent/JP3817126B2/en
Priority to PCT/JP2000/006993 priority patent/WO2001027646A1/en
Priority to DE60020821T priority patent/DE60020821T2/en
Priority to EP00964726A priority patent/EP1167987B1/en
Priority to US09/856,467 priority patent/US6661231B1/en
Publication of JP2001174535A publication Critical patent/JP2001174535A/en
Application granted granted Critical
Publication of JP3817126B2 publication Critical patent/JP3817126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、分極の誤差を考慮して正確に現在のバッテリの充電状態を推定する分極の影響を考慮した車両のバッテリの容量演算装置に関する。
【0002】
【従来の技術】
電気自動車等のバッテリコントローラは、バッテリからの放電電流及びバッテリ電圧を一定時間毎に、所定数収集して平均化し、この平均化データが所定個、集まったときに、そのデータの相関係数rを求める。次に、この相関係数rが強い負の相関を示しているときに、最小二乗法により、図5に示すようにそのデータの回帰直線(近似直線ともいう)を求め、この近似直線Y(Y=aX+b)と基準電流Ioとから現在のバッテリの推定上の開回路電圧である推定電圧Vnを推定していた。
【0003】
すなわち、電気自動車においては、走行させながら電圧、電流を収集して近似直線(V−I特性)を求めて、あとどのくらい放電(走行)できるかを推定するものである。このような方式は、電気自動車においては非常に有効であった。
【0004】
【発明が解決しようとする課題】
しかし、バッテリの放電可能容量(ある瞬間の放電状態がそのまま継続した場合、あとどのくらい放電できるかを示す)というのは、温度、放電電流(負荷)によっても変化する。
【0005】
このように変化していても、電気自動車においては、走行中にバッテリに充電される電気量が放電される電気量を上回ることがないので、電圧、電流を収集して近似直線(V−I特性)を求めて、あとどのくらい放電(走行)できるかを推定するだけであっても、あまり問題とならない。
【0006】
しかしながら、近年では高電圧車両、ハイブリッドカー等が用いられてきている。このような車両においては、走行中にバッテリに充電される電気量が放電される電気量を上回ることがあり得るので、今、バッテリにあとどのくらい電気量(充電状態)があるかを知るだけでなく、バッテリの過充電が発生しないように、その残存容量を満充電容量から差し引いた充電可能容量を正確に知る必要がある。
【0007】
この充電状態を正確に知るには、バッテリ特性による分極の影響を知る必要がある。この分極というのは、バッテリの電極付近における活性化現象や濃度変化等によって発生する電圧降下であり、放電電流が大きくなると電圧降下の発生量が増大し、逆に放電電流が小さくなると電圧降下量が解消方向に向かって減少する。
【0008】
すなわち、充電状態(どのくらい電気量が充電されているかを示す)は、分極の影響を考慮しなければならい。つまり、分極による電圧降下量を相殺しなければ正確な充電状態を得られない。
【0009】
つまり、バッテリが平衝状態(分極による電圧降下が残っていない状態)にあるときから、バッテリの電圧、電流を測定していくと、図6に示すように放電電流が増加するのに伴って分極が増加して行き、バッテリの電圧もそれに伴って低下する。また、放電電流が減少すると、分極が減少して行きバッテリの電圧もそれに伴って戻っていくが、この戻り時には、分極の解消に時間がかかるので、放電が停止しても分極が同時に解消するには至らず、電流増加に対する電圧降下量の増加のレスポンスと比べると、電流減少に対する電圧降下量の減少のレスポンスが悪い。このため、図6に示すように、行き(電流増加時)と戻り(電流減少時)とでは、同じ電流値であってもそのときの電圧値に差が生じる。
【0010】
従って、バッテリからの放電電流及びバッテリ電圧を一定時間毎に、所定数収集して平均化し、この平均化データが所定個、集まったときに、そのデータの相関係数rを求めて、この相関係数rが強い負の相関を示しているときに、最小二乗法により近似直線を求めても、バッテリからの放電電流が増加しているときに収集したのと、放電電流が減少しているときに収集したのとでは、求まる近似直線が異なるので、その近似直線は現状のバッテリのV−I特性を正しく示しているとは言い切れず、精度の高い充電状態を得ることができないという課題があった。
【0011】
また、分極によってバッテリ電圧が低下しているということは、電気量が実際に走行を可能にする分だけあるのにも係わらず、バッテリの電圧が低下していると判断されるという課題があった。
【0012】
本発明は以上の課題を解決するためになされたもので、バッテリの分極を考慮した正確な近似直線を得ることで精度の良い充電状態(どのくらい電気量が充電されているか)を得ることのできる、分極特性を考慮したバッテリ容量演算装置を得ることを目的とする。
【0013】
【課題を解決するための手段】
本発明は、車両の負荷にバッテリから放電電流を流して電圧、電流を収集して電圧−電流特性を求め、この電圧−電流特性を用いて前記バッテリの現在の推定電圧を推定し、この推定電圧からバッテリの現在の充電状態を求めるバッテリ容量演算装置において、車両の走行開始時からその後のバッテリの電圧、電流を監視し、該電流がバッテリの分極発生が最大となる大電流に最初に到達し、かつ該到達後に電流が大電流以下の所定電流値に最初に到達したとき、このときのバッテリの電圧を最大の分極の影響を残した状態の最大分極影響残存時の推定電圧とし、この最大分極影響残存時の推定電圧と走行開始時のバッテリの開回路電圧との差を用いて充電状態を補正することを特徴とすることを要旨とする。
【0014】
また、車両のイグニッションオンを検知したとき、この検知時のバッテリの電圧を該バッテリの開回路電圧として保持する開回路電圧保持部と、イグニッションオンの検知後、バッテリの電流が分極が最大となる大電流に最初に到達したか否かを判定する電流監視部と、大電流に最初に到達したと判定された後に、電流が所定電流値に最初に到達したとき、最大分極影響残存時の推定電圧と走行開始時のバッテリの開回路電圧の差を求める分極影響電圧算出部と、電圧−電流特性に基づくバッテリの現在の推定電圧にこの差電圧を加算する推定値補正部とを備えたことを要旨とする。
【0015】
【発明の実施の形態】
図1は本発明の分極特性を考慮したバッテリ容量演算装置の槻略構成図である。
【0016】
この図1に示すバッテリ容量演算装置1は、エンジン2とタイヤ3のシャフト機構4に連結されたモータジェネレータ5、このモータジェネレータ5からの電力を所定電圧(例えば42V)にして充電電流としてバッテリ6に供給し、又はモータジェネレータ5にバッテリ6からの所定の電力を供給する充放電回路部7等からなるハイブリッド機構8に用いられるもので、バッテリ6の充電状態を演算する。
【0017】
このバッテリ6には図1に示すように、電流センサ9及び電圧センサ10が設けられている。
【0018】
また、バッテリ容量演算装置1は、電流センサ9及び電圧センサ10からの検出電流I及び検出電圧Vを波形整形する入力回路部12に接続され、少なくとも以下のプログラム構成を備えている。
【0019】
バッテリ容量演算装置(マイコン)1は、図1に示すように、I−V特性算出部13と、電圧推定部14と、充電状態推定部15と、開回路電圧保持部18と、電流監視部19と、分極影響電圧算出部20と、推定値補正部21とを備えている。
【0020】
I−V特性算出部13は、入力回路部12からの検出電流(放電)と電圧を一定時間毎に、電流−電圧軸に収集する。
【0021】
電圧推定部14は、I−V特性算出部13で収集された電流I及び電圧Vが所定数集まる毎に、平均化し、この平均化データが所定個、集まったときに、そのデータの相関係数rを求め、この相関係数rが強い負の相関を示しているときに、最小二乗法により、そのデータの回帰直線(近似直線ともいう)を求め、この近似直線Y(Y=aX+b)と基準電流Ioとから現在のバッテリ6の推定電圧Vnを推定する。
【0022】
充電状態推定部15は、推定電圧Vnが求められる毎に、そのバッテリ6の推定電圧Vnと、予め設定されている放電終止電圧Veと、満充電電圧Vsとを読み、充電状態SOCを求める。
【0023】
開回路電圧保持部18は、イグニッションの投入時の電圧Vを開回路電圧OCVとしてメモリに記憶する。
【0024】
電流監視部19は、イグニッションの投入に伴うエンジン2の始動のために用いられる不図示のセルモータのスタート時からI−V特性算出部13におけるバッテリ6の電流を読み、この電流が予め記憶されているセルモータスタートに伴う分極発生が最大となる大電流Imax(例えば250A)に最初に達したかどうかを判定し、大電流Imaxに到達したときは、この到達点から戻っていく(電流が下がっていく)ときの電流Iが予め記憶されている小電流Imin(例えば35A)に最初に達したかどうかを判定する。
【0025】
ここで、図2に示すように、モータジェネレータ5の起動停止(無負荷、バッテリは平衝状態)状態からセルモータが起動を開始していくような場合は、I−V特性は開回路電圧OCVからは、放電電流が増加するに従って分極の影響によって直線的に序々に低下する。
【0026】
その後、I−V特性の電流値が最大(最大電流;例えば250A)となり、分極も最大となってI−V特性の電圧値も最大となる。そして、放電電流の増加が停止(容量がほとんど変化しない放電の場合)して放電電流が低下すると、最大となった分極の影響を残したまま電圧は序々に直線的に復帰(戻り)する。
【0027】
この戻り時には、分極の解消乃至それによる電圧降下の解消のレスポンスが悪い。例えば、分極の影響による電圧降下は、放電電流が減少し始めると放電の停止に至るまでの間にかなり解消されるが、分極の影響による電圧降下が100%解消するには1日程度かかるとされている。
【0028】
本実施の形態では、放電電流が所定の大電流から減少して開始されたI−V特性算出部13による電流I及び電圧Vの収集を終了する基準を、実務上のスペックに照らして35A程度としている。
【0029】
これに対し、分極が発生している状態でのI−V特性は、図3に示すように、分極による電圧降下が既に発生していて、その後に放電電流の増加に伴って分極が増加して次第に直線的に低下し、分極が最大となったときに電流が最大となり、ここで放電電流の増加が停止し、それに伴って電圧が直線的に復帰する。
【0030】
この場合においても、分極の影響による電圧降下は、放電電流が減少し始めると放電の停止に至るまでの間にかなり解消されるが、分極の影響による電圧降下が100%解消するには1日程度かかるとされている。
【0031】
そこで、分極が発生している状態で放電が行われた場合においても、本実施の形態では、放電電流が所定の大電流から減少して開始されたI−V特性算出部13による電流I及び電圧Vの収集を終了する基準を、実務上のスペックに照らして35A程度としている。
【0032】
分極影響電圧算出部20は、電流監視部19によって判定されたバッテリ6からの放電電流が大電流Imaxに最初に達した時点から、放電の増加の停止により放電電流が最初に35Aまで減少した時点までの間の、I−V特性算出部13による電流I及び電圧Vの収集結果を基に電圧推定部14が推定した、バッテリ6の推定電圧Vnと、開回路電圧保持部18が保持している開回路電圧OCVとの差電圧を、放電停止時における分極による残存電圧降下量を示す電圧eoとして求める。
【0033】
推定値補正部21は、分極影響電圧算出部20が電圧eoを求めた以後、分極影響電圧算出部20で求められた電圧eoを読み、電圧推定部14で求められた推定電圧Vnに電圧eoを加算する。
【0034】
すなわち、推定電圧VnはVnとeoの加算値に更新される。この加算の効果については図4を用いて詳細に後述する。
【0035】
充電状態推定部15は、電圧推定部14でバッテリ10の現在の電圧が推定される毎に、数1に示す式で充電状態SOCを求める。
【0036】
【数1】
SOC=〔(Vn2 −Ve2 )/(Vs2 −Ve2 )〕×100%
但し、Vn:バッテリの推定電圧(Vnとeo)
Ve;放電終止電圧
Vs;満充電電圧
次に、推定値補正部21の処理による作用効果を図4を用いて説明する。例えば、図4に示すように近似直線を用いて求めた現在の推定電圧VnがVnの変化直線のAiポイントであるとすると、分極による差電圧であるeoを加算すると、現在の実際の放電状態はバッテリ10が平衝状態とする特性のApに位置する。
【0037】
すなわち、実際の推定電圧はAiより高い電圧Apであることになるから、分極発生に伴う電圧降下を考慮している。
【0038】
このため、バッテリ10の実際の充電状態を求めたことになるから、過充電を防止できる。
【0039】
【発明の効果】
以上のように本発明によれば、車両の負荷に放電電流を流すバッテリの電圧、電流を収集して電圧−電流特性を求め、この電圧−電流特性を用いてバッテリの現在の推定電圧を推定し、この推定電圧からバッテリの現在の充電状態を求める一方、収集した電流がバッテリの最大の分極発生の大電流に最初に到達し、かつ該到達後に電流が大電流以下の所定電流値に最初に到達したとき、このときのバッテリの電圧を最大の分極の影響を残した状態の最大分極影響残存時の推定電圧とし、この最大分極影響残存時の推定電圧と走行開始時のバッテリの開回路電圧との差を用いて充電状態を補正する。
【0040】
このため、推定された充電状態が分極による電圧降下の残存分だけ増加するので、実際の充電状態を正確に得ることができるという効果が得られている。
【0041】
従って、電気量が実際に走行を可能にする分だけあるのにも係わらず、バッテリの電圧が低下していると判断されることが無いのでハイブリッドカー、高電圧車両でも充電状態を精度良く得ることができる。
【図面の簡単な説明】
【図1】本実施の形態のバッテリ容量演算装置の槻略構成図である。
【図2】本実施の形態の平衝状態に復帰と判断する電流値を説明する説明図である。
【図3】本実施の形態の分極発生から復帰と判定する電流値を説明する説明図である。
【図4】本実施の形態の差電圧の加算による作用効果を説明する説明囲である。
【図5】バッテリ電圧及び電流の収集を説明する説明図である。
【図6】課題を説明する説明図である。
【符号の説明】
2 エンジン
3 タイヤ
5 モータジェネレータ
8 ハイブリッド機構
13 I−V特性算出部
14 電圧推定部
15 充電状態推定部
18 開回路電圧保持部
19 電流監視部
20 分極影響電圧算出部
21 推定値補正部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle battery capacity calculation device that takes into account the influence of polarization, which accurately estimates the current state of charge of the battery in consideration of polarization errors.
[0002]
[Prior art]
A battery controller such as an electric vehicle collects and averages a predetermined number of discharge currents and battery voltages from a battery at regular intervals. When a predetermined number of averaged data are collected, a correlation coefficient r of the data is collected. Ask for. Next, when the correlation coefficient r indicates a strong negative correlation, a regression line (also referred to as an approximate line) of the data is obtained by the least square method as shown in FIG. Y = aX + b) and an estimated voltage Vn, which is an estimated open circuit voltage of the current battery, was estimated from the reference current Io.
[0003]
That is, in an electric vehicle, voltage and current are collected while running and an approximate straight line (VI characteristic) is obtained to estimate how much discharge (running) can be performed. Such a method is very effective in an electric vehicle.
[0004]
[Problems to be solved by the invention]
However, the dischargeable capacity of the battery (indicating how much can be discharged if the discharge state at a certain moment continues as it is) varies depending on the temperature and the discharge current (load).
[0005]
Even if it changes in this way, in an electric vehicle, the amount of electricity charged in the battery during traveling does not exceed the amount of electricity discharged, and therefore, an approximate straight line (V-I) is collected by collecting voltage and current. It is not so much a problem to obtain the characteristic) and estimate how much discharge (running) can be performed.
[0006]
However, in recent years, high voltage vehicles, hybrid cars, and the like have been used. In such a vehicle, the amount of electricity charged to the battery while traveling can exceed the amount of electricity discharged, so now only know how much electricity (charged state) is left in the battery. In order to prevent overcharging of the battery, it is necessary to accurately know the chargeable capacity obtained by subtracting the remaining capacity from the full charge capacity.
[0007]
To accurately know the state of charge, it is necessary to know the influence of polarization due to battery characteristics. This polarization is a voltage drop that occurs due to an activation phenomenon or concentration change in the vicinity of the battery electrode. When the discharge current increases, the amount of voltage drop increases. Conversely, when the discharge current decreases, the voltage drop increases. Decreases in the direction of elimination.
[0008]
That is, the state of charge (which indicates how much electricity is charged) must take into account the effect of polarization. That is, an accurate charge state cannot be obtained unless the voltage drop due to polarization is offset.
[0009]
That is, when the battery voltage and current are measured from when the battery is in a neutral state (a state where no voltage drop due to polarization remains), the discharge current increases as shown in FIG. The polarization increases and the battery voltage decreases accordingly. In addition, when the discharge current decreases, the polarization decreases and the battery voltage also returns accordingly, but at this return, it takes time to cancel the polarization, so the polarization is canceled at the same time even if the discharge stops. However, compared with the response of the increase in the voltage drop with respect to the increase in current, the response of the decrease in the voltage drop with respect to the decrease in current is poor. For this reason, as shown in FIG. 6, there is a difference in voltage value at that time even when the current value is the same between going (when the current is increasing) and returning (when the current is decreasing).
[0010]
Accordingly, a predetermined number of discharge currents and battery voltages from the battery are collected and averaged every predetermined time, and when a predetermined number of the averaged data is collected, a correlation coefficient r of the data is obtained and this phase is obtained. When the relational number r shows a strong negative correlation, the discharge current is reduced compared with the case where the discharge current from the battery is increased even if the approximate straight line is obtained by the least square method. Since the approximate straight line to be obtained differs from that sometimes collected, it cannot be said that the approximate straight line correctly shows the VI characteristics of the current battery, and it is impossible to obtain a highly accurate charge state. was there.
[0011]
Moreover, the fact that the battery voltage is reduced due to polarization has a problem that it is determined that the battery voltage is reduced despite the fact that the amount of electricity is actually enough to enable traveling. It was.
[0012]
The present invention has been made to solve the above-described problems, and can obtain an accurate charged state (how much electricity is charged) by obtaining an accurate approximate straight line in consideration of the polarization of the battery. An object of the present invention is to obtain a battery capacity calculation device in consideration of polarization characteristics.
[0013]
[Means for Solving the Problems]
According to the present invention, a discharge current is supplied from a battery to a vehicle load to collect voltage and current to obtain a voltage-current characteristic, and a current estimated voltage of the battery is estimated using the voltage-current characteristic. In the battery capacity calculation device that determines the current state of charge of the battery from the voltage, the battery voltage and current are monitored after the vehicle starts running, and the current first reaches a large current that maximizes the polarization of the battery. And when the current first reaches a predetermined current value that is less than or equal to the large current, the battery voltage at this time is assumed to be the estimated voltage when the maximum polarization effect remains in the state where the maximum polarization effect remains, The gist is that the state of charge is corrected using the difference between the estimated voltage when the maximum polarization effect remains and the open circuit voltage of the battery at the start of traveling.
[0014]
In addition, when the ignition on of the vehicle is detected, an open circuit voltage holding unit that holds the battery voltage at the time of detection as an open circuit voltage of the battery, and after the ignition is detected, the battery current has the maximum polarization. A current monitoring unit that determines whether or not a large current has been reached first, and an estimation of when the maximum polarization effect remains when the current first reaches a predetermined current value after it is determined that the large current has been reached first A polarization-influenced voltage calculator that calculates the difference between the voltage and the open circuit voltage of the battery at the start of traveling, and an estimated value corrector that adds this differential voltage to the current estimated voltage of the battery based on the voltage-current characteristics Is the gist.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration diagram of a battery capacity calculation apparatus considering the polarization characteristics of the present invention.
[0016]
A battery capacity calculation device 1 shown in FIG. 1 includes a motor generator 5 connected to an engine 2 and a shaft mechanism 4 of a tire 3, and a battery 6 as a charging current by setting the electric power from the motor generator 5 to a predetermined voltage (for example, 42 V). Or a hybrid mechanism 8 including a charging / discharging circuit unit 7 for supplying predetermined power from the battery 6 to the motor generator 5, and calculating a charging state of the battery 6.
[0017]
The battery 6 is provided with a current sensor 9 and a voltage sensor 10 as shown in FIG.
[0018]
The battery capacity computing device 1 is connected to an input circuit unit 12 that shapes the detected current I and the detected voltage V from the current sensor 9 and the voltage sensor 10, and has at least the following program configuration.
[0019]
As shown in FIG. 1, the battery capacity calculation device (microcomputer) 1 includes an IV characteristic calculation unit 13, a voltage estimation unit 14, a charge state estimation unit 15, an open circuit voltage holding unit 18, and a current monitoring unit. 19, a polarization influence voltage calculation unit 20, and an estimated value correction unit 21.
[0020]
The IV characteristic calculation unit 13 collects the detected current (discharge) and voltage from the input circuit unit 12 on the current-voltage axis at regular intervals.
[0021]
The voltage estimator 14 averages each time a predetermined number of currents I and voltages V collected by the IV characteristic calculator 13 are collected, and when a predetermined number of the averaged data is collected, the correlation of the data When the number r is obtained and the correlation coefficient r indicates a strong negative correlation, a regression line (also referred to as an approximate line) of the data is obtained by the least square method, and this approximate line Y (Y = aX + b) And the current estimated voltage Vn of the battery 6 are estimated from the reference current Io.
[0022]
Each time the estimated voltage Vn is obtained, the charge state estimation unit 15 reads the estimated voltage Vn of the battery 6, the preset discharge end voltage Ve, and the full charge voltage Vs, and obtains the charge state SOC.
[0023]
The open circuit voltage holding unit 18 stores the voltage V when the ignition is turned on in the memory as the open circuit voltage OCV.
[0024]
The current monitoring unit 19 reads the current of the battery 6 in the IV characteristic calculation unit 13 from the start of a cell motor (not shown) used for starting the engine 2 when the ignition is turned on, and this current is stored in advance. It is determined whether or not a large current Imax (for example, 250 A) at which the generation of polarization associated with the start of the cell motor is maximized is reached first, and when the large current Imax is reached, it returns from this reaching point (the current decreases) It is determined whether or not the current I at the first time has reached a small current Imin (for example, 35 A) stored in advance.
[0025]
Here, as shown in FIG. 2, when the cell motor starts to start from the start / stop state of the motor generator 5 (no load, the battery is in a neutral state), the IV characteristic is the open circuit voltage OCV. Is gradually decreased linearly as a result of the influence of polarization as the discharge current increases.
[0026]
Thereafter, the current value of the IV characteristic becomes maximum (maximum current; for example, 250 A), the polarization becomes maximum, and the voltage value of the IV characteristic becomes maximum. Then, when the increase in the discharge current stops (in the case of discharge in which the capacity hardly changes) and the discharge current decreases, the voltage gradually returns (returns) linearly while leaving the influence of the maximum polarization.
[0027]
At the time of this return, the response of elimination of polarization or elimination of voltage drop due thereto is poor. For example, the voltage drop due to the influence of polarization is considerably eliminated until the discharge is stopped when the discharge current starts to decrease, but it takes about one day to eliminate 100% of the voltage drop due to the influence of polarization. Has been.
[0028]
In the present embodiment, the reference for ending the collection of the current I and the voltage V by the IV characteristic calculation unit 13 started when the discharge current is decreased from a predetermined large current is about 35 A in light of practical specifications. It is said.
[0029]
On the other hand, as shown in FIG. 3, the IV characteristic in a state where polarization is occurring has already occurred in the voltage drop due to polarization, and then the polarization increases as the discharge current increases. The current gradually decreases linearly, and when the polarization becomes maximum, the current becomes maximum. Here, the increase in the discharge current is stopped, and the voltage is linearly restored.
[0030]
Even in this case, the voltage drop due to the influence of polarization is substantially eliminated until the discharge is stopped when the discharge current starts to decrease. It is said that it will take some degree.
[0031]
Therefore, even when discharge is performed in a state where polarization is occurring, in the present embodiment, the current I and IV by the IV characteristic calculation unit 13 started when the discharge current is decreased from a predetermined large current. The reference for terminating the collection of the voltage V is about 35 A in light of practical specifications.
[0032]
The polarization influence voltage calculation unit 20 starts when the discharge current from the battery 6 determined by the current monitoring unit 19 first reaches the large current Imax and when the discharge current first decreases to 35 A due to the stop of the increase in discharge. The estimated voltage Vn of the battery 6 estimated by the voltage estimation unit 14 based on the collection result of the current I and the voltage V by the IV characteristic calculation unit 13 and the open circuit voltage holding unit 18 A difference voltage from the open circuit voltage OCV is obtained as a voltage eo indicating a residual voltage drop due to polarization when the discharge is stopped.
[0033]
The estimated value correcting unit 21 reads the voltage eo obtained by the polarization affecting voltage calculating unit 20 after the polarization affecting voltage calculating unit 20 obtains the voltage eo, and supplies the voltage eo to the estimated voltage Vn obtained by the voltage estimating unit 14. Is added.
[0034]
That is, the estimated voltage Vn is updated to an added value of Vn and eo. The effect of this addition will be described later in detail with reference to FIG.
[0035]
Each time the voltage estimation unit 14 estimates the current voltage of the battery 10, the charge state estimation unit 15 obtains the charge state SOC using the equation shown in Equation 1.
[0036]
[Expression 1]
SOC = [(Vn 2 −Ve 2 ) / (Vs 2 −Ve 2 )] × 100%
Where Vn: estimated battery voltage (Vn and eo)
Ve; End-of-discharge voltage Vs; Full-charge voltage Next, the operational effects of the processing of the estimated value correction unit 21 will be described with reference to FIG. For example, if the current estimated voltage Vn obtained using an approximate line as shown in FIG. 4 is the Ai point of the change line of Vn, the current actual discharge state is obtained by adding eo, which is a voltage difference due to polarization. Is located at Ap of the characteristic that the battery 10 is in a neutral state.
[0037]
That is, since the actual estimated voltage is a voltage Ap higher than Ai, the voltage drop accompanying the occurrence of polarization is taken into consideration.
[0038]
For this reason, since the actual charge state of the battery 10 is obtained, overcharge can be prevented.
[0039]
【The invention's effect】
As described above, according to the present invention, the voltage and current of the battery that flows the discharge current to the vehicle load are collected to obtain the voltage-current characteristic, and the current estimated voltage of the battery is estimated using this voltage-current characteristic. The current state of charge of the battery is determined from the estimated voltage, while the collected current first reaches the large current at which the battery has the maximum polarization, and after that, the current first reaches a predetermined current value that is less than or equal to the large current. The battery voltage at this time is assumed to be the estimated voltage when the maximum polarization effect remains with the maximum polarization effect remaining, and the estimated voltage when the maximum polarization effect remains and the open circuit of the battery at the start of traveling The state of charge is corrected using the difference from the voltage.
[0040]
For this reason, the estimated state of charge increases by the amount of residual voltage drop due to polarization, so that the actual state of charge can be obtained accurately.
[0041]
Therefore, it is not determined that the voltage of the battery has dropped despite the fact that the amount of electricity is enough to actually travel, so that the charging state can be accurately obtained even in hybrid cars and high voltage vehicles. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a battery capacity calculation device according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram for explaining current values determined to return to a neutral state according to the present embodiment;
FIG. 3 is an explanatory diagram illustrating a current value that is determined to return from the occurrence of polarization according to the present embodiment.
FIG. 4 is an explanatory box for explaining the effect of addition of the difference voltage according to the present embodiment.
FIG. 5 is an explanatory diagram illustrating collection of battery voltage and current.
FIG. 6 is an explanatory diagram illustrating a problem.
[Explanation of symbols]
2 Engine 3 Tire 5 Motor generator 8 Hybrid mechanism 13 IV characteristic calculation unit 14 Voltage estimation unit 15 Charging state estimation unit 18 Open circuit voltage holding unit 19 Current monitoring unit 20 Polarization influence voltage calculation unit 21 Estimated value correction unit

Claims (2)

車両の負荷にバッテリから放電電流を流して電圧、電流を収集して電圧−電流特性を求め、この電圧−電流特性を用いて前記バッテリの現在の推定電圧を推定し、この推定電圧から前記バッテリの現在の充電状態を求めるバッテリ容量演算装置において、
前記車両の走行開始時からその後の前記バッテリの電圧、電流を監視し、該電流が前記バッテリの分極発生が最大となる大電流に最初に到達し、
かつ該到達後に前記電流が前記大電流以下の所定電流値に最初に到達したとき、このときの前記バッテリの電圧を前記最大の分極の影響を残した状態の最大分極影響残存時の推定電圧とし、
この最大分極影響残存時の推定電圧と前記走行開始時の前記バッテリの開回路電圧との差を用いて前記充電状態を補正することを特徴とする分極による影響を考慮したバッテリ容量演算装置。
A discharge current is supplied from a battery to a vehicle load to collect voltage and current to obtain a voltage-current characteristic, and the current estimated voltage of the battery is estimated using the voltage-current characteristic, and the battery is estimated from the estimated voltage. In the battery capacity calculation device for determining the current charging state of
The battery voltage and current are monitored thereafter from the start of travel of the vehicle, and the current first reaches a large current that maximizes the polarization of the battery,
And when the current first reaches a predetermined current value equal to or less than the large current after the arrival, the voltage of the battery at this time is set as the estimated voltage when the maximum polarization influence remains in the state where the influence of the maximum polarization remains. ,
A battery capacity calculation device considering the influence of polarization, wherein the charged state is corrected using a difference between the estimated voltage when the maximum polarization influence remains and the open circuit voltage of the battery at the start of traveling.
前記車両のイグニッションオンを検知したとき、この検知時の前記バッテリの電圧を該バッテリの開回路電圧として保持する開回路電圧保持部と、
前記イグニッションオンの検知後、前記バッテリの電流が前記分極が最大となる大電流に最初に到達したか否かを判定する電流監視部と、
前記大電流に最初に到達したと判定された後に、前記電流が前記所定電流値に最初に到達したとき、前記最大分極影響残存時の推定電圧と前記走行開始時の前記バッテリの開回路電圧の差を求める分極影響電圧算出部と、
前記電圧−電流特性に基づくバッテリの現在の推定電圧にこの差電圧を加算する推定値補正部と
からなることを特徴とする請求項1記載の分極による影響を考慮したバッテリ容量演算装置。
An open circuit voltage holding unit for holding the voltage of the battery at the time of detection as an open circuit voltage of the battery when the ignition on of the vehicle is detected;
A current monitoring unit that determines whether or not the current of the battery first reaches a large current at which the polarization is maximized after detection of the ignition on;
After it is determined that the large current has been reached first, when the current first reaches the predetermined current value, the estimated voltage when the maximum polarization effect remains and the open circuit voltage of the battery at the start of traveling A polarization influence voltage calculation unit for obtaining a difference;
2. The battery capacity calculation device considering the influence of polarization according to claim 1, further comprising an estimated value correction unit that adds the difference voltage to a current estimated voltage of the battery based on the voltage-current characteristics.
JP2000304736A 1999-10-08 2000-10-04 Battery capacity calculation device considering the effect of polarization Expired - Fee Related JP3817126B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000304736A JP3817126B2 (en) 1999-10-08 2000-10-04 Battery capacity calculation device considering the effect of polarization
PCT/JP2000/006993 WO2001027646A1 (en) 1999-10-08 2000-10-06 Battery capacity calculating method and device therefor
DE60020821T DE60020821T2 (en) 1999-10-08 2000-10-06 METHOD FOR CALCULATING THE CAPACITY OF A BATTERY AND DEVICE THEREFOR
EP00964726A EP1167987B1 (en) 1999-10-08 2000-10-06 Battery capacity calculating method and device therefor
US09/856,467 US6661231B1 (en) 1999-10-08 2000-10-06 Battery capacity calculating method and device therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28876899 1999-10-08
JP11-288768 1999-10-08
JP2000304736A JP3817126B2 (en) 1999-10-08 2000-10-04 Battery capacity calculation device considering the effect of polarization

Publications (2)

Publication Number Publication Date
JP2001174535A JP2001174535A (en) 2001-06-29
JP3817126B2 true JP3817126B2 (en) 2006-08-30

Family

ID=26557323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000304736A Expired - Fee Related JP3817126B2 (en) 1999-10-08 2000-10-04 Battery capacity calculation device considering the effect of polarization

Country Status (1)

Country Link
JP (1) JP3817126B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506988B2 (en) 2012-11-05 2016-11-29 Gs Yuasa International Ltd. Condition estimation device and method of estimating condition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4097182B2 (en) * 2001-12-27 2008-06-11 パナソニックEvエナジー株式会社 Secondary battery polarization voltage estimation method, secondary battery remaining capacity estimation method and apparatus, and battery pack system
CN112349977B (en) * 2020-09-30 2022-03-29 天能电池集团股份有限公司 Method for improving charging qualification rate of returned battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506988B2 (en) 2012-11-05 2016-11-29 Gs Yuasa International Ltd. Condition estimation device and method of estimating condition

Also Published As

Publication number Publication date
JP2001174535A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
EP3112888B1 (en) Secondary-battery system
EP2579381B1 (en) System and method for determination of deterioration of lithium ion secondary battery
US10838011B2 (en) Method for estimating state of charge and on-vehicle battery system
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
JP2018185259A (en) Onboard battery system and method for estimating aged deterioration of battery
JP5840116B2 (en) Secondary battery state estimation apparatus and method
US8000915B2 (en) Method for estimating state of charge of a rechargeable battery
EP2847026B1 (en) Electrical storage system and equalizing method
US20050269991A1 (en) Battery state-of-charge estimator
JP2001021628A (en) Apparatus for measuring capacity of battery with rechargeable capacity calculation function by using temperature sensor
JP2000150003A (en) Method and device for charged amount calculation for hybrid vehicle
US20140111214A1 (en) Electric storage condition detecting apparatus
WO2012140776A1 (en) Charging control device
US11598819B2 (en) Method for ascertaining a charge state of a battery system, battery system
JP2012104239A (en) Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
WO2019184842A1 (en) Method and apparatus for calculating soc of power battery pack, and electric vehicle
JP2000069606A (en) Battery control unit
JP3817126B2 (en) Battery capacity calculation device considering the effect of polarization
JP2004031123A (en) Capacity calculation method and device for battery pack connected in parallel
JP3692192B2 (en) Battery remaining capacity detector
EP2587622B1 (en) Charge capacity parameter estimation system of electric storage device
KR102515759B1 (en) Diagnostic apparatus for secondary battery and soc unevenness detection method
JP2018085278A (en) Control system
JP4127256B2 (en) SOC measurement method for lead acid battery
JP2001176563A (en) Battery capacity operation device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees