JP3817095B2 - Construction method of non-embedded column base of steel reinforced concrete structure - Google Patents

Construction method of non-embedded column base of steel reinforced concrete structure Download PDF

Info

Publication number
JP3817095B2
JP3817095B2 JP19809099A JP19809099A JP3817095B2 JP 3817095 B2 JP3817095 B2 JP 3817095B2 JP 19809099 A JP19809099 A JP 19809099A JP 19809099 A JP19809099 A JP 19809099A JP 3817095 B2 JP3817095 B2 JP 3817095B2
Authority
JP
Japan
Prior art keywords
column
foundation
reinforced concrete
embedded
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19809099A
Other languages
Japanese (ja)
Other versions
JP2001020296A (en
Inventor
憲一郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP19809099A priority Critical patent/JP3817095B2/en
Publication of JP2001020296A publication Critical patent/JP2001020296A/en
Application granted granted Critical
Publication of JP3817095B2 publication Critical patent/JP3817095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉄筋コンクリート造の基礎に埋設されたアンカーボルトと柱鉄骨の脚部とを接合させ、前記基礎に埋設された柱主筋を前記柱鉄骨の周囲に配筋して鉄骨鉄筋コンクリート柱を形成し、この鉄骨鉄筋コンクリート柱の応力を前記基礎へ伝達するする鉄骨鉄筋コンクリート造の非埋め込み型柱脚部に関する。
【0002】
【従来の技術】
鉄骨鉄筋コンクリート造の柱脚部は、図4に示すように、柱4の受ける力を基礎Fに伝える部分である。基礎Fは鉄筋コンクリートでつくられるので、柱脚部は柱鉄骨6と鉄筋コンクリートとを接合する部分となる。すなわち、図5に示すように、鉄筋コンクリート造の基礎Fには予めアンカーボルト8や柱主筋9を埋め込んでおき、下端部にベースプレート7を溶接した柱鉄骨6を立てて、ベースプレート7をアンカーボルト8にナット締めして柱鉄骨6と鉄筋コンクリート部分とを接合する。なお、ベースプレート7は基礎Fの天端に一段高く平らに形成されたベースモルタル上に載置されている。そして、柱鉄骨6を接合した後、柱主筋9にフープ筋10を巻きコンクリートを打設して柱下部を包んでいる。また、2本以上の柱を立てる場合は基礎Fと基礎Fとの間に地中梁筋11とスターラップ12を配筋してコンクリートを打設したコンクリート造のつなぎ梁(地中梁)5を設けている。
【0003】
かかる鉄骨鉄筋コンクリート構造の柱脚部は、非埋め込み形式と埋め込み形式に大別される。
非埋め込み型柱脚部は、図5(a)に示すように、柱鉄骨6aを基礎F内部に埋め込むのではなく、柱鉄骨6aを地中梁5天端位置でアンカーボルト8と接合し、柱鉄骨6a周囲に多数の柱主筋9やフープ筋10を配置してベースプレート7より下部を鉄筋コンクリート構造とするものである。
【0004】
埋め込み型柱脚部は、図5(b)に示すように、柱鉄骨6bを地中梁5内まで延長して基礎F内部でアンカーボルト8と接合し、柱鉄骨6a周囲に多数の柱主筋9やフープ筋10を配置して柱脚部を鉄骨鉄筋コンクリート構造とするものである。
【0005】
【発明が解決しようとする課題】
ところで、兵庫県南部地震においては、非埋め込み型柱脚部が破壊した事例が見られた。そして、兵庫県南部地震において被害を受けた非埋め込み型柱脚の調査によると、柱脚部の被害は主に地震時の大きな引っ張り力と圧縮力の繰り返しによると考えられている。すなわち、地震の際に鉄筋等が引っ張り降伏して塑性延び量が急激に増大し、周囲の基礎(コンクリート)に引っ張りひび割れが発生し、コンクリートが円錐状に引き抜かれて破壊(コーン破壊)する。このコーン破壊によりベースプレート下のベースモルタルが破壊し、ベースモルタル上にベースプレートを介して垂設されていた柱鉄骨6から基礎Fへ応力伝達ができなくなり、柱脚部が破壊されたと考えられている。
【0006】
従って、兵庫県南部地震後においては柱脚部を設計する場合、埋め込み型柱脚部を採用することが一般的となり、従来の非埋め込み型柱脚部は採用されないでいる。
【0007】
しかしながら、埋め込み型柱脚部においては、柱鉄骨6bが地中梁5内まで配置されるため地中梁主筋11が柱鉄骨6bと交差する構造となる。このため、地中梁5に水平ハンチをつけるなど、地中梁主筋11が鉄骨柱にぶつかるのを防ぐ工夫が必要となるが、地中梁5に水平ハンチを設けると、配筋や型枠が複雑となり施工性が悪いといった問題が生じる。
【0008】
また、埋め込み型柱脚部においては、第一節の柱鉄骨6bは地中梁5施工前に製作する必要があり、施工工程を段取りする上で大変面倒な事態を引き起こしていた。
【0009】
そこで、施工性の良い非埋め込み型柱脚部を改良し、兵庫県南部地震規模の地震に耐えうる強度の構造にすることが待望されていた。以上から本発明は、前記課題に鑑みて創案されたものであり、柱鉄骨から基礎への応力伝達が確実に行えて、柱脚部の施工性も容易である鉄骨鉄筋コンクリート造の非埋め込み型柱脚部の施工方法を提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明の鉄骨鉄筋コンクリート造の非埋め込み型柱脚部は、上記課題を解決するために以下の手段を採用した。
【0011】
すなわち、本発明の鉄骨鉄筋コンクリート造の非埋め込み型柱脚部の施工方法は、鉄筋コンクリート造の基礎の天端に先端部を残して埋設されたアンカーボルトと柱鉄骨の脚部に一体的に設けられたベースプレートとを前記基礎の天端において接合させると共に、前記基礎に埋設された柱主筋を前記柱鉄骨の周囲に配筋して鉄骨鉄筋コンクリート柱を形成し、この鉄骨鉄筋コンクリート柱の応力を前記基礎へ伝達する鉄骨鉄筋コンクリート造の非埋め込み型柱脚部の施工方法において、
前記柱主筋を前記基礎に埋設する際、前記柱主筋と前記基礎のコンクリートとが前記基礎の天端から所定深さだけ付着しないようにする工程を含むことを特徴とする。
【0012】
この発明によれば、コーン破壊が生じ易い基礎の天端から所定深さだけ柱主筋と基礎(鉄筋コンクリート)とが付着しないようにする工程を含むように構成し、地震の際に発生する柱主筋等の降伏による塑性伸びが生じても、基礎の天端から所定深さは柱主筋と基礎(鉄筋コンクリート)とが付着していないので、周囲のコンクリートに引っ張りひび割れが発生することはない。従って、柱脚部破壊の引き金となる基礎の天端より下方のコンクリートの引っ張り力によるコーン破壊を無くすことができ、結果として、地震による柱脚部の破壊が防止でき、上部の鉄骨鉄筋コンクリート柱から基礎への応力伝達ができなくなることはないから、非埋め込み型柱脚部の構造性能を改良できる。
【0013】
また、本発明の鉄骨鉄筋コンクリート造の非埋め込み型柱脚部の施工方法において、前記付着しないようにする所定深さの範囲は、前記基礎の天端から前記基礎に配筋されたスターラップ表面までの距離以上であって、かつ前記基礎の天端から前記柱主筋の鉄筋径の3倍の距離とする構成も例示できる。さらに、本発明の鉄骨鉄筋コンクリート造の非埋め込み型柱脚部の施工方法において、前記所定深さだけ付着しないようにする工程は、前記柱主筋に接着切断材を前記所定深さだけ被覆する工程である構成も例示できる。
【0014】
この例示によれば、コーン破壊が発生する基礎の天端から基礎に配筋された鉄筋(地中梁のスターラップ)までの距離において付着しないようにするのであるが、付着しないようにする範囲が大きすぎると柱脚部の剛性が低下してしまうので、付着しないようにする範囲は基礎の天端から前記柱主筋の鉄筋径の3倍程度の距離以内とした。なお、前記柱主筋の鉄筋径の3倍程度の距離の根拠は、柱主筋の鉄筋径の3倍程度の距離の深さにおいて30°〜40°の角度を有する円錐状のコーン破壊が発生し易く、それ以降の深さにおいてはコーン破壊が発生しないという実験結果による(図2および図3参照)。
【0015】
また、柱主筋と基礎のコンクリートとが基礎の天端から所定深さだけ付着しないようにする方法としては、ゴムテープ等を柱主筋に巻き付ける方法や、柱主筋をビニールチューブ等で覆うなどの方法が作業の容易な方法として例示できる。
【0016】
【発明の実施の形態】
以下、本発明の一実施の形態にかかる鉄骨鉄筋コンクリート造の非埋め込み型柱脚部を図1乃至図4に基づき説明する。
【0017】
本発明の鉄骨鉄筋コンクリート造の非埋め込み型柱脚部は、図4に示すように、鉄骨鉄筋コンクリート柱4の受ける力(応力)を基礎Fに伝える部分である。
基礎Fは基礎本体とこの基礎本体に水平2字方向より接合するつなぎ梁(地中梁)5とから形成され、鉄筋コンクリート造である。
【0018】
基礎本体は割ぐり石20の上に捨てコンクリート21を敷き詰め、捨てコンクリート21上にベース筋22、ベース斜め筋23、配力筋24、柱主筋9、およびフープ筋10を配筋して後コンクリートを打設して鉄筋コンクリート造としたものである。
【0019】
地中梁5は基礎本体を水平2字方向より貫通する地中梁主筋11を上下2本ずつ配筋すると共に、地中梁主筋11を巻回するスターラップ12を配筋して後コンクリートを打設して鉄筋コンクリート造としたものである。なお、この実施の形態では基礎本体及び地中梁5の上端が基礎Fの天端となる。
【0020】
基礎Fは、図1に示すように、基礎本体上部に一段高くかつ平らに形成された矩形のベースモルタル13を有している。このベースモルタル13上に柱鉄骨6の脚部に一体的に設けられたベースプレート7を載置する。
【0021】
柱鉄骨6はH型鋼であり、その下端部には矩形のベースプレート7が溶着されている。
ベースプレート7はベースモルタル13の平面外形よりやや小さめな矩形の鉄板であり、4箇所の取付け孔が穿設されている。
【0022】
また、基礎Fにはアンカーボルト8がベースモルタル13上に先端ネジ部を覗かせた状態で4本埋め込まれている。4本のアンカーボルト8の配置はベースプレート7の4箇所の取付け孔に対応している。そして、柱鉄骨6及びベースプレート7は、取付け孔に挿入されたアンカーボルト8のネジ部にナットを螺合することによって基礎Fに固定される。
【0023】
更に、基礎Fには柱主筋9が基礎本体及び地中梁5上(基礎Fの天端)に先端部を覗かせ、ベースモルタル13を等間隔で囲むように8本埋め込まれている。この柱主筋9はD25(直径25mmの異形鉄筋)を使用している。
【0024】
柱主筋9は、図1および図4に示すように、フープ筋10が巻回され配筋されている。そして、配筋した柱主筋9およびフープ筋10にコンクリートを打設して柱4が形成される。
【0025】
柱主筋9は基礎Fのコンクリートが基礎Fの天端から所定深さLだけ付着しないように接着切断材(ゴムテープ)14が巻き付けられてから基礎Fに埋設されている。付着しないようにする所定深さLの範囲は、地中梁5上面(基礎Fの天端)から地中梁5に配筋されたスターラップ12表面までの距離以上であって、かつ地中梁5上面から柱主筋の鉄筋径(25mm)の3倍程度(75mm)の距離が好ましく、この実施の形態では所定深さLを75mmとする。
【0026】
次に、柱主筋9を基礎Fに埋設する際、柱主筋9と基礎Fのコンクリートとが基礎Fの天端から所定深さLだけ付着しないようにする理由を説明する。図2および図3は一辺が900mmの立方体のコンクリートブロック1の中心にD41(直径41mmの異形鉄筋)の柱主筋2を上端を覗かせた状態で根本まで埋設した試験片を示したものであり、図2は平面図、図3はA−A断面図である。
【0027】
また、図2及び図3はコンクリートブロック1と柱主筋2を別々に固定し、柱主筋2を引っ張り降伏させて延び量を急激に増大させた後の状態を示している。なお、地震の時にはこのような大きな伸長・圧縮力が交互に繰り返し生じると考えられている。
【0028】
実験によると、図2に示すように、柱主筋2の周囲のコンクリートに引っ張りひび割れ3が発生し、コンクリートが円錐状に引き抜かれてコーン破壊する。そして、コーン破壊は、図3に示すように、コンクリート表面から定着する柱主筋2の直径(41mm)の2倍乃至3倍程度(約80mm)の深さから、30°〜40°の角度で円錐状に破壊されることが判った。
【0029】
従って、コーン破壊が発生し易い基礎Fの天端から所定深さLだけ柱主筋9と基礎Fのコンクリートとが付着しないようにする工程を含むように構成することで、伸長・圧縮力が交互に繰り返えされても、柱主筋9の降伏による塑性伸びが周囲の基礎(コンクリート)Fに伝達されない構造にして、柱脚部破壊の引き金となる基礎Fの天端より下方のコンクリートの引っ張り力によるひび割れを防止できる。
【0030】
しかし、付着しないようにする範囲が大きすぎると、柱脚部の剛性が低下し、地震時の建物の変形が増大するおそれがある。そこで、実験結果に示すように、ひび割れが円錐状に発生する地中梁5上面から柱主筋9の鉄筋径(25mm)の3倍程度(75mm)の距離だけ付着しないようにする必要がある。
【0031】
以上が柱主筋9を基礎Fに埋設する際、柱主筋9と基礎Fのコンクリートとが基礎Fの天端から所定深さLだけ付着しないようにする根拠である。次に、この実施の形態の作用を説明する。
【0032】
この実施の形態によれば、柱主筋9と基礎Fとの付着を基礎Fの天端より下方へ特定の範囲で取り除いたので、地震の際に発生する柱主筋等の降伏による塑性伸びが生じても周囲のコンクリートに引っ張りひび割れが発生しない。従って、柱脚部破壊の引き金となる基礎Fの天端より下方のコンクリートの引っ張り力によるコーン破壊を無くすことができ、結果として、地震による柱脚部の破壊が防止でき、上部の鉄骨鉄筋コンクリート柱4からの応力の伝達ができなくなることはないから、非埋め込み型柱脚部の構造性能を大幅に改良できる。従って、この実施の形態によれば、埋め込み型柱脚で問題となる地中梁主筋と柱鉄骨の納まりを解決でき、地中梁5の水平ハンチも不要となり、施工性も大幅に改良できる。
【0033】
また、この実施の形態によれば、柱鉄骨6は地中梁5より上部だけとなるため地中梁施工期間だけ鉄骨製作に余裕ができる。更に、この実施の形態によれば、柱主筋9を付着しないようにする作業は、付着しない範囲も小さく、ゴムテープで柱主筋を覆うだけなので、作業が容易で施工性が良い。
【0034】
なお、この実施の形態では、柱主筋9からコンクリートの付着を取り除く方法としては、ゴムテープを柱主筋9に巻き付ける方法で説明したが、柱主筋9をビニールチューブ等で覆うなど作業の容易な方法で行っても良い。
【0035】
また、類似の場合として、鉄骨造柱脚部を鉄筋コンクリートで根巻きした場合も本発明が適用できる。
【0036】
【発明の効果】
本発明により、以下の効果が得られる。この発明によれば、コーン破壊が生じ易い基礎の天端から所定深さだけ柱主筋と基礎(鉄筋コンクリート)とが付着しないようにする工程を含むように構成し、地震の際に発生する柱主筋等の降伏による塑性伸びが生じても、基礎の天端から所定深さは柱主筋と基礎(鉄筋コンクリート)とが付着していないので、周囲のコンクリートに引っ張りひび割れが発生することはない。従って、柱脚部破壊の引き金となる基礎の天端より下方のコンクリートの引っ張り力によるコーン破壊を無くすことができ、結果として、地震による柱脚部の破壊が防止でき、上部の鉄骨鉄筋コンクリート柱から基礎への応力伝達ができなくなることはないから、非埋め込み型柱脚部の構造性能を大幅に改良できる。従って、本発明によれば、埋め込み型柱脚で問題となる地中梁主筋と柱鉄骨の納まりを解決でき、地中梁の水平ハンチも不要となり、施工性も大幅に改良できる。
【0037】
また、本発明によれば、柱鉄骨は地中梁より上部だけとなるため地中梁施工期間だけ鉄骨製作に余裕ができる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる鉄骨鉄筋コンクリート造の非埋め込み型柱脚部の縦断面図である。
【図2】鉄筋のコンクリートへの定着実験における、コンクリートの円錐状破壊(コーン破壊)の状況を示す平面図である。
【図3】鉄筋のコンクリートへの定着実験における、コンクリートの円錐状破壊(コーン破壊)の状況を示す、図2のA−A断面図である。
【図4】鉄骨鉄筋コンクリート造の柱脚部の斜視図である。
【図5】従来の非埋め込み型柱脚部の縦断面図であり、図5(a)は非埋め込み型柱脚部を示し、図5(b)は埋め込み型柱脚部を示す。
【符号の説明】
1…コンクリートブロック(試験片)
2…柱主筋
3…ひび割れ
4…柱
5…地中梁
6…柱鉄骨
6a〜6b…柱鉄骨
7…ベースプレート
8…アンカーボルト
9…柱主筋
10…フープ筋
11…地中梁主筋
12…スターラップ
13…ベースモルタル
14…接着切断材
[0001]
BACKGROUND OF THE INVENTION
The present invention joins an anchor bolt embedded in a reinforced concrete foundation and a leg portion of a column steel frame, and arranges a column main reinforcement embedded in the foundation around the column steel frame to form a steel reinforced concrete column. Further, the present invention relates to a non-embedded column base of a steel reinforced concrete structure that transmits the stress of the steel reinforced concrete column to the foundation.
[0002]
[Prior art]
As shown in FIG. 4, the steel column reinforced concrete column base is a portion that transmits the force received by the column 4 to the foundation F. Since the foundation F is made of reinforced concrete, the column base is a portion that joins the column steel 6 and the reinforced concrete. That is, as shown in FIG. 5, anchor bolts 8 and column main reinforcing bars 9 are embedded in a reinforced concrete foundation F in advance, and a column steel frame 6 with a base plate 7 welded to the lower end portion is erected, and the base plate 7 is fixed to the anchor bolts 8. The column steel frame 6 and the reinforced concrete part are joined with a nut. The base plate 7 is placed on a base mortar that is formed one level higher on the top end of the base F. And after joining the column steel frame 6, the hoop reinforcement 10 is wound around the column main reinforcement 9, and concrete is laid, and the column lower part is wrapped. When two or more pillars are erected, a concrete connecting beam (underground beam) 5 in which concrete is placed by placing underground beam 11 and stirrup 12 between foundation F and foundation F. Is provided.
[0003]
The column base of such a steel reinforced concrete structure is roughly classified into a non-embedded type and an embedded type.
As shown in FIG. 5 (a), the non-embedded column base part does not embed the column steel 6a in the foundation F, but joins the column steel 6a to the anchor bolt 8 at the top end position of the underground beam 5; A large number of column main bars 9 and hoop bars 10 are arranged around the column steel frame 6a, and the lower part of the base plate 7 has a reinforced concrete structure.
[0004]
As shown in FIG. 5 (b), the embedded column base portion extends the column steel frame 6b into the underground beam 5 and joins it to the anchor bolt 8 inside the foundation F, and a large number of column main bars around the column steel frame 6a. 9 and the hoop bars 10 are arranged so that the column bases have a steel reinforced concrete structure.
[0005]
[Problems to be solved by the invention]
By the way, in the Hyogoken-Nanbu Earthquake, there were cases where the non-embedded column bases were destroyed. According to the survey of non-embedded column bases damaged by the Hyogoken-Nanbu Earthquake, the damage to the column bases is thought to be mainly due to repeated large tensile and compressive forces during the earthquake. That is, in the event of an earthquake, the reinforcing bars, etc. pull and yield, and the amount of plastic elongation increases rapidly, tensile cracks occur in the surrounding foundation (concrete), and the concrete is pulled out in a conical shape and destroyed (cone destruction). It is thought that the base mortar under the base plate was destroyed by this cone breakage, the stress transfer from the column steel frame 6 suspended on the base mortar via the base plate to the foundation F became impossible, and the column base was destroyed. .
[0006]
Therefore, after the Hyogoken-Nanbu Earthquake, when designing the column base, it is common to use the embedded column base, and the conventional non-embedded column base is not used.
[0007]
However, in the embedded column base, the column steel frame 6b is disposed up to the underground beam 5, so that the underground beam main bar 11 intersects the column steel frame 6b. For this reason, it is necessary to devise measures to prevent the underground beam main reinforcement 11 from colliding with the steel column, such as by attaching a horizontal haunch to the underground beam 5. Becomes complicated and the workability is poor.
[0008]
Further, in the embedded column base, the first-stage column steel frame 6b needs to be manufactured before the underground beam 5 is constructed, causing a very troublesome situation in setting up the construction process.
[0009]
Therefore, there was a long-awaited desire to improve the non-embedded column base with good workability and to have a structure that can withstand earthquakes of the magnitude of the Hyogoken-Nanbu Earthquake. As described above, the present invention has been made in view of the above-mentioned problems, and it is possible to reliably transmit stress from the column steel to the foundation, and the workability of the column base is easy. It aims at providing the construction method of a leg part.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the following means are adopted in the non-embedded column base of the steel reinforced concrete structure of the present invention.
[0011]
In other words, the construction method of the non-embedded type column base of steel reinforced concrete of the present invention is provided integrally with the leg portion of the anchor bolt and the bar steel embedded leaving the tip end portion to the crest of the foundation of reinforced concrete causes joined at top end of the base and a base plate which is, by Haisuji the embedded set by pillars main reinforcement to the foundation around the pillar steel forming a steel reinforced concrete column, the stress in the steel reinforced concrete columns In the construction method of the non-embedded column base of the steel reinforced concrete structure transmitted to the foundation,
When embedding the pillar main reinforcement to the foundation, and wherein it to contain a step of the concrete of the foundation and the pillar main reinforcement is prevented from adhering predetermined depth from the top end of the previous SL foundation.
[0012]
According to the present invention, the column main reinforcement is configured to include a step of preventing the column main reinforcement and the foundation (reinforced concrete) from adhering to each other by a predetermined depth from the top of the foundation where the cone breakage is likely to occur. Even if plastic elongation occurs due to yielding, etc., the column main reinforcement and the foundation (reinforced concrete) are not attached to each other at a predetermined depth from the top of the foundation, so that there is no tension cracking in the surrounding concrete. Therefore, it is possible to eliminate the cone destruction due to the pulling force of the concrete below the top of the foundation that triggers the column base part destruction. As a result, it is possible to prevent the column base part from being destroyed by the earthquake, and from the upper steel reinforced concrete column. Since the stress cannot be transmitted to the foundation, the structural performance of the non-embedded column base can be improved.
[0013]
Further, in the method of constructing the non-embedded type column base of steel reinforced concrete of the present invention, a predetermined depth in the range to avoid the deposition until Haisuji been stirrup surface from crest to said foundation of said foundation It is also possible to exemplify a configuration in which the distance is equal to or greater than the distance from the top of the foundation and is three times the diameter of the reinforcing bar of the column main bar. Furthermore, in the construction method of the non-embedded column base portion of the steel reinforced concrete structure of the present invention, the step of preventing the adhesion to the predetermined depth is a step of covering the column main bar with the adhesive cutting material by the predetermined depth. Some configurations can also be illustrated.
[0014]
According to this example, but it is to avoid attachment at a distance from the top end of foundation cone fracture occurs until foundation Haisuji the rebar (underground beams stirrups) range to not adhere If it is too large, the rigidity of the column base will be reduced. Therefore, the range in which it does not adhere is within a distance of about 3 times the diameter of the reinforcing bar of the column main bar from the top of the foundation. Incidentally, distance basis about 3 times the rebar diameter of the pillar main reinforcement is conical cone fracture having an angle of 30 ° to 40 ° in about three times the distance the depth of the reinforcing bar diameter pillar main reinforcement It is easy to occur, and it is based on the experimental result that cone destruction does not occur at the depth after that (refer to FIG. 2 and FIG. 3).
[0015]
In addition, as a method to prevent the column main reinforcement and the concrete of the foundation from adhering to the base top by a predetermined depth, there are a method of wrapping rubber tape etc. around the column main reinforcement and a method of covering the column main reinforcement with a vinyl tube etc. It can be illustrated as an easy work method.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a non-embedded column base portion of a steel reinforced concrete structure according to an embodiment of the present invention will be described with reference to FIGS.
[0017]
The steel column reinforced concrete non-embedded column base of the present invention is a part that transmits the force (stress) received by the steel reinforced concrete column 4 to the foundation F as shown in FIG.
The foundation F is formed of a foundation main body and a connecting beam (underground beam) 5 joined to the foundation main body from a horizontal two-character direction, and is reinforced concrete.
[0018]
The foundation main body is laid with a discarded concrete 21 on a granite stone 20, and a base concrete 22, a diagonal base 23, a laying reinforcement 24, a column main reinforcement 9, and a hoop reinforcement 10 are arranged on the discarded concrete 21, and the rear concrete. Reinforced concrete structure by placing
[0019]
The underground beam 5 has two underground beam main bars 11 penetrating the foundation main body from the horizontal two-letter direction, and two stirrups 12 for winding the underground beam main bars 11 are arranged to arrange the rear concrete. It is cast and reinforced concrete. In this embodiment, the upper ends of the foundation main body and the underground beam 5 are the top ends of the foundation F.
[0020]
As shown in FIG. 1, the foundation F has a rectangular base mortar 13 which is formed one step higher and flat on the upper part of the foundation body. On this base mortar 13, the base plate 7 provided integrally with the leg portion of the column steel frame 6 is placed.
[0021]
The column steel frame 6 is H-shaped steel, and a rectangular base plate 7 is welded to the lower end portion thereof.
The base plate 7 is a rectangular iron plate that is slightly smaller than the planar outer shape of the base mortar 13, and has four mounting holes.
[0022]
Further, four anchor bolts 8 are embedded in the base F in a state where the tip screw portion is seen on the base mortar 13. The arrangement of the four anchor bolts 8 corresponds to the four mounting holes of the base plate 7. The column steel frame 6 and the base plate 7 are fixed to the foundation F by screwing nuts into the threaded portions of the anchor bolts 8 inserted into the mounting holes.
[0023]
Further, eight column main bars 9 are embedded in the foundation F so as to have the tip portion look into the foundation main body and the underground beam 5 (the top end of the foundation F) and surround the base mortar 13 at equal intervals. This column main reinforcing bar 9 uses D25 (deformed bar having a diameter of 25 mm).
[0024]
As shown in FIGS. 1 and 4, the column main reinforcement 9 is arranged by winding a hoop reinforcement 10. The column 4 is formed by placing concrete on the column main reinforcement 9 and the hoop reinforcement 10 that have been arranged.
[0025]
The column main reinforcement 9 is embedded in the foundation F after the adhesive cutting material (rubber tape) 14 is wound so that the concrete of the foundation F does not adhere from the top end of the foundation F by a predetermined depth L. The range of the predetermined depth L to prevent adhesion is greater than the distance from the upper surface of the underground beam 5 (the top end of the foundation F) to the surface of the stirrup 12 arranged in the underground beam 5, and distance is preferably about three times the rebar diameter pillar main reinforcement from the beam 5 top (25mm) (75mm), in this embodiment, it is 75mm predetermined depth L.
[0026]
Next, the reason for preventing the column main reinforcement 9 and the concrete of the foundation F from adhering from the top end of the foundation F by a predetermined depth L when the column main reinforcement 9 is embedded in the foundation F will be described. 2 and 3 show a test piece in which a column main reinforcing bar 2 of D41 (a deformed reinforcing bar with a diameter of 41 mm) is buried in the center of a cubic concrete block 1 with a side of 900 mm, and is embedded to the root. 2 is a plan view, and FIG. 3 is a cross-sectional view taken along the line AA.
[0027]
2 and 3 show a state after the concrete block 1 and the column main reinforcement 2 are separately fixed, the column main reinforcement 2 is pulled and yielded, and the extension amount is rapidly increased. In addition, it is thought that such a large extension / compression force occurs alternately during an earthquake.
[0028]
According to the experiment, as shown in FIG. 2, the tensile crack 3 is generated in the concrete around the columnar reinforcement 2, and the concrete is pulled out in a conical shape to break the cone. Then, as shown in FIG. 3, the cone breakage occurs at an angle of 30 ° to 40 ° from a depth of about 2 to 3 times (about 80 mm) of the diameter (41 mm) of the column main reinforcement 2 fixed from the concrete surface. It was found to be destroyed in a conical shape.
[0029]
Therefore, by including a step of preventing the column main reinforcement 9 and the concrete of the foundation F from adhering by a predetermined depth L from the top edge of the foundation F where the cone breakage is likely to occur , the extension and compression forces are alternated. Even if repeated, the structure is such that the plastic elongation due to the yielding of the column main reinforcement 9 is not transmitted to the surrounding foundation (concrete) F, and the concrete is pulled below the top edge of the foundation F that triggers the destruction of the column base. Can prevent cracking due to force.
[0030]
However, if the range for preventing adhesion is too large, the rigidity of the column base portion may be reduced, and the deformation of the building during an earthquake may increase. Therefore, as shown in the experimental results, it is necessary to prevent the cracks from adhering from the upper surface of the underground beam 5 where the cracks occur in a conical shape by a distance of about 3 times (75 mm) the diameter of the reinforcing bar (25 mm) of the column main reinforcing bars 9.
[0031]
The above is the basis for preventing the column main reinforcement 9 and the concrete of the foundation F from adhering to the base F by a predetermined depth L when the column main reinforcement 9 is embedded in the foundation F. Next, the operation of this embodiment will be described.
[0032]
According to this embodiment, since the adhesion between the column main reinforcement 9 and the foundation F is removed in a specific range downward from the top end of the foundation F, the plastic elongation due to the yield of the column reinforcement generated in the event of an earthquake occurs. However, there is no tension cracking in the surrounding concrete. Therefore, it is possible to eliminate the cone destruction due to the pulling force of the concrete below the top of the foundation F that triggers the destruction of the column base. As a result, the column base can be prevented from being destroyed by the earthquake, and the upper steel reinforced concrete column can be prevented. Since the stress cannot be transmitted from 4, the structural performance of the non-embedded column base can be greatly improved. Therefore, according to this embodiment, it is possible to solve the problem of the underground beam main reinforcement and the column steel frame, which is a problem in the embedded column base, the horizontal hunch of the underground beam 5 is unnecessary, and the workability can be greatly improved.
[0033]
Moreover, according to this embodiment, since the column steel frame 6 is only above the underground beam 5, it is possible to afford to manufacture the steel frame only during the underground beam construction period. Furthermore, according to this embodiment, operations to avoid adhering the pillar main reinforcement 9, a range that does not adhere is small, since only covering the pillar main reinforcement in rubber tape, work is good easy workability.
[0034]
In this embodiment, the method of removing the adhesion of concrete from the column main reinforcement 9 has been described by the method of wrapping the rubber tape around the column main reinforcement 9. However, the column main reinforcement 9 is covered with a vinyl tube or the like so that the work is easy. You can go.
[0035]
Further, as a similar case, the present invention can also be applied to a case where a steel column base is rooted with reinforced concrete.
[0036]
【The invention's effect】
According to the present invention, the following effects can be obtained. According to the present invention, the column main reinforcement is configured to include a step of preventing the column main reinforcement and the foundation (reinforced concrete) from adhering to each other by a predetermined depth from the top of the foundation where the cone breakage is likely to occur. Even if plastic elongation occurs due to yielding, etc., the column main reinforcement and the foundation (reinforced concrete) do not adhere to each other at a predetermined depth from the top edge of the foundation, so that tensile cracks do not occur in the surrounding concrete. Therefore, it is possible to eliminate cone destruction due to the tensile force of the concrete below the top of the foundation that triggers column base destruction, and as a result, it is possible to prevent the column base from being destroyed by an earthquake, and from the upper steel reinforced concrete column Since the stress cannot be transmitted to the foundation, the structural performance of the non-embedded column base can be greatly improved. Therefore, according to the present invention, it is possible to solve the problem of the underground beam main bar and the column steel frame, which is a problem in the embedded column base, the need for a horizontal haunch for the underground beam, and the workability can be greatly improved.
[0037]
In addition, according to the present invention, since the column steel frame is only above the underground beam, it is possible to afford to manufacture the steel frame only during the underground beam construction period.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a non-embedded column base portion of a steel reinforced concrete structure according to an embodiment of the present invention.
FIG. 2 is a plan view showing a state of conical fracture (cone fracture) of concrete in an experiment of fixing reinforcing bars to concrete.
FIG. 3 is a cross-sectional view taken along line AA of FIG. 2 showing a state of concrete conical fracture (cone fracture) in an experiment of fixing reinforcing bars to concrete.
FIG. 4 is a perspective view of a column base part of a steel reinforced concrete structure.
5A and 5B are longitudinal sectional views of a conventional non-embedded column base, FIG. 5A shows a non-embedded column base, and FIG. 5B shows an embedded column base.
[Explanation of symbols]
1 ... Concrete block (test piece)
2 ... Column reinforcement 3 ... Crack 4 ... Column 5 ... Underground beam 6 ... Column steel frames 6a-6b ... Column steel frame 7 ... Base plate 8 ... Anchor bolt 9 ... Column main reinforcement 10 ... Hoop muscle 11 ... Underground beam main reinforcement 12 ... Stirrup 13 ... Base mortar 14 ... Adhesive cutting material

Claims (3)

鉄筋コンクリート造の基礎の天端に先端部を残して埋設されたアンカーボルトと柱鉄骨の脚部に一体的に設けられたベースプレートとを前記基礎の天端において接合させると共に、前記基礎に埋設された柱主筋を前記柱鉄骨の周囲に配筋して鉄骨鉄筋コンクリート柱を形成し、この鉄骨鉄筋コンクリート柱の応力を前記基礎へ伝達する鉄骨鉄筋コンクリート造の非埋め込み型柱脚部の施工方法において、
前記柱主筋を前記基礎に埋設する際、前記柱主筋と前記基礎のコンクリートとが前記基礎の天端から所定深さだけ付着しないようにする工程を含むことを特徴とする鉄骨鉄筋コンクリート造の非埋め込み型柱脚部の施工方法
Causes joined at top end of the base and a base plate which is provided integrally with the leg portion of the buried anchor bolt and the bar steel leaving the tip end portion to the crest of the foundation of reinforced concrete, embedded in the foundation In the construction method of the non-embedded column base of the steel reinforced concrete structure in which the column main reinforcement is arranged around the column steel to form a steel reinforced concrete column, and the stress of the steel reinforced concrete column is transmitted to the foundation.
When embedding the pillar main reinforcement to the foundation, the pillar main reinforcement and of the foundation concrete and is steel reinforced concrete, characterized in it to contain steps to avoid adhering by a predetermined depth from the top end of the previous SL foundation Non-embedded column base construction method .
前記付着しないようにする所定深さの範囲は、前記基礎の天端から前記基礎に配筋されたスターラップ表面までの距離以上であって、かつ前記基礎の天端から前記柱主筋の鉄筋径の3倍の距離とする請求項1記載の鉄骨鉄筋コンクリート造の非埋め込み型柱脚部の施工方法Predetermined depth range to avoid the adhesion, rebar diameter of the pillar main reinforcement from crest of the foundation be more than the distance to Haisuji been stirrup surface to the foundation, and the crest of the foundation The construction method of the non-embedded type column base part of the steel-framed reinforced concrete structure of Claim 1 set to the distance of 3 times . 前記所定深さだけ付着しないようにする工程は、前記柱主筋に接着切断材を前記所定深さだけ被覆する工程である請求項1または2に記載の鉄骨鉄筋コンクリート造の非埋め込み型柱脚部の施工方法 The non-embedded column base part of steel reinforced concrete structure according to claim 1 or 2, wherein the step of preventing the adhesion to the predetermined depth is a step of covering the column main reinforcing bar with an adhesive cutting material by the predetermined depth. Construction method .
JP19809099A 1999-07-12 1999-07-12 Construction method of non-embedded column base of steel reinforced concrete structure Expired - Fee Related JP3817095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19809099A JP3817095B2 (en) 1999-07-12 1999-07-12 Construction method of non-embedded column base of steel reinforced concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19809099A JP3817095B2 (en) 1999-07-12 1999-07-12 Construction method of non-embedded column base of steel reinforced concrete structure

Publications (2)

Publication Number Publication Date
JP2001020296A JP2001020296A (en) 2001-01-23
JP3817095B2 true JP3817095B2 (en) 2006-08-30

Family

ID=16385342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19809099A Expired - Fee Related JP3817095B2 (en) 1999-07-12 1999-07-12 Construction method of non-embedded column base of steel reinforced concrete structure

Country Status (1)

Country Link
JP (1) JP3817095B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587501A (en) * 2011-01-18 2012-07-18 王广武 Connecting structure for column section bars and concrete foundation embedded steel plate
CN102966113A (en) * 2012-11-06 2013-03-13 清华大学 Shallow buried steel column base and construction method thereof
CN114215088A (en) * 2021-12-29 2022-03-22 湖北荆城银都杭萧钢构有限公司 Prefabricated foundation with shock resistance for assembled hospital house

Also Published As

Publication number Publication date
JP2001020296A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
JP5258099B2 (en) Prestressed concrete pile, method for manufacturing the same, and method for connecting pile head and footing
JP5408595B1 (en) PC seismic joint structure and PC seismic joint method for columns and beams using steel pins
KR101328045B1 (en) Reinforced concrete composite columns using precast high-performance fiber-reinforced cement
JP2007211449A (en) Structure and construction method for joining steel-frame beam and concrete body together
KR20110027022A (en) Connecting structure between footing and hybrid concrete pile having various cross-section
JP3817095B2 (en) Construction method of non-embedded column base of steel reinforced concrete structure
JP7028728B2 (en) Joint structure of foundation pile and foundation slab
JP6543077B2 (en) Construction method of structure
KR100922121B1 (en) Construction Structure of Footing using Hybrid Pile having Various Cross-section
JP2003227236A (en) Permanent and emergent aseismatic reinforcement method for column with wall
JP2003306908A (en) Connecting structure of superstructure work and substructure work of bridge and its construction method
JP5325709B2 (en) Method of constructing steel exposed column base structure
JP4607801B2 (en) Manufacturing method of bi-directional pretension member
JP2007277913A (en) Joining structure of column base part and its construction method
JP5613383B2 (en) Structure
JPH0232417B2 (en)
JP2004270416A (en) Pile with large-diameter bearing plate, and structure for joining pile head thereof
JP3187347B2 (en) Column and beam joining method and joint structure
JP2002013297A (en) Earthquake resistant reinforcing method
JP6114071B2 (en) Seismic isolation method for existing buildings and temporary structure under construction
CN110872868B (en) Enhanced anchor-pulling type plate column node connecting device
JP2000297480A (en) Reinforcing method for steel-pipe structure column base section
JP3622100B2 (en) How to reinforce existing beams
JP6340467B1 (en) Ramen structure using sleeve wall and joining method thereof
JP3590561B2 (en) Precast concrete block joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees