JP3816544B2 - Wave spring - Google Patents

Wave spring Download PDF

Info

Publication number
JP3816544B2
JP3816544B2 JP03982994A JP3982994A JP3816544B2 JP 3816544 B2 JP3816544 B2 JP 3816544B2 JP 03982994 A JP03982994 A JP 03982994A JP 3982994 A JP3982994 A JP 3982994A JP 3816544 B2 JP3816544 B2 JP 3816544B2
Authority
JP
Japan
Prior art keywords
spring
peak
circumferential direction
valley
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03982994A
Other languages
Japanese (ja)
Other versions
JPH07248035A (en
Inventor
一郎 流石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP03982994A priority Critical patent/JP3816544B2/en
Publication of JPH07248035A publication Critical patent/JPH07248035A/en
Application granted granted Critical
Publication of JP3816544B2 publication Critical patent/JP3816544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、例えば自動車のオートマチックトランスミッションの多板クラッチ機構をはじめとして、各種機器に使われる波形ばねに関する。
【0002】
【従来の技術】
自動車等のオートマチックトランスミッションの多板クラッチ機構部には、クラッチ板のリターン用あるいはクラッチ接続時のショック吸収用として、ばねが内蔵されている。このばねには、皿ばねや波形ばねのようなリング状のばねが使われていたが、従来の皿ばねや波形ばねは、円周方向に切断面のない完全リングであるため、その製造はプレスによる打抜き・成形によるものであった。このため材料歩留まりがきわめて悪く、コストアップの原因となっていた。
【0003】
上記の問題を解決するための手段として、帯状のばね材料をC形に成形し、このばね材の円周方向に山部と谷部を交互に成形したばね(いわゆる波形ばね)が開発された。この種のばねは、適宜長さに切断された帯状のばね材を用いることができるため、従来のプレス打抜きによるばねに比べて材料歩留まりが著しく向上するが、以下に述べるような問題があった。
【0004】
【発明が解決しようとする課題】
従来の波形ばねは、図13に模式的に示す波形ばね1のように、山部2と谷部3が交互に成形されており、山部2と谷部3との間の中間部分(ばね有効部4)がなだらかなカーブを描いて山部2と谷部3とに連続している。このような波形ばね1は、山部2と谷部3の曲率半径rがかなり大きなものとなっている。
【0005】
上記波形ばね1が使用される際には、図14に示すように、波形ばね1の厚み方向から互いに平行な一対の相手部品5,6によって荷重が負荷される。この場合、荷重の増加に伴って一方の相手部品5と山部2との接触部の長さが増加するとともに、他方の相手部品6と谷部3との接触部の長さも増加するため、ばね有効部4の長さが相対的に減少する。このためこの波形ばね1は、図15に示すような非線形の荷重−変位特性を示すようになる。
【0006】
このため従来の波形ばね1は、山部2や谷部3の形状によっては、必要以上に極端な非線形特性となってしまい、要求される荷重−変位特性を満足できないことがあるばかりでなく、実用に適さないこともありえる。
【0007】
また上記波形ばね1は、図16に示すように円周方向の一部が切れているために、切れ目のない完全リングのばねに比べて、円周方向両端部7,8において剛性が不連続となっている。しかも円周方向の一部が切れている波形ばね1の場合には、荷重が負荷された時に両端部7,8以外の箇所ではばね有効部4が両端から曲げモーメントを受けるのに対し、両端部7,8付近においてはこのような曲げモーメントが生じないため、両端部7,8付近の荷重が低くなり、円周上の荷重分布にアンバランスを生じている。
【0008】
これらの理由から、各山部2の反力と各谷部3の反力の合力の中心がばね1の中心軸から偏心することがある。こうした荷重分布のアンバランスが生じると、波形ばね1が例えばクラッチ板付勢用ばねとして用いられる場合などにおいて、波形ばね1を付勢するクラッチ作動用油圧ピストンがシリンダに対して傾いてしまい、ピストンの動きが阻害されるなどして、作動不良の原因になることがあった。
【0009】
また、波形ばねに荷重が負荷されて変位する時に、このばねは密着状態に近付くにつれて周長が伸びようとするため、通常は外径が拡大する方向の変位を生じる。ところがこの波形ばねの外周側が相手部品などによって囲まれていて外周側が拘束されるような使われ方をする場合には、波形ばねの周長が伸びようとしても径方向には変位できず、周方向でしか変位できない。このため周方向に自由度がないと、ばねが剛となって急激な荷重増加を生じることになり、最悪の場合はばねが折損する。
【0010】
従って本発明の目的は、波形ばねの荷重−変位特性が極端な非線形特性になることを回避でき、荷重分布を均一化に近付けることができ、また、変位量が大きい時の周長の増加分を吸収できるような波形ばねを提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を果たすために開発された本発明の波形ばねは、円環状に形成されかつ円周方向の一部で切れている偏平なばね材からなり、側面方向から見て円弧状の山部と円弧状の谷部とこれら山部と谷部をつなぐ直線状のばね有効部とがばね材の円周方向に交互に設けられており、しかも無荷重状態における山部の湾曲内側の曲率半径R1 が山部の高さH1 よりも小さくかつ谷部の湾曲内側の曲率半径R2 が谷部の深さH2 よりも小さく、上記ばね材の板厚をt、山部の湾曲内側の曲率半径をR1 、谷部の湾曲内側の曲率半径をR2 としたとき、t≦R1 ≦5t,t≦R2 ≦5tであり、しかもこのばね材の円周方向両端部に近い位置にある山部の高さを、円周方向両端部から遠い位置にある山部の高さよりも大きくしたことを特徴とする。また本発明では、ばね材の円周方向両端部に近い位置にある山部と谷部のピッチを、円周方向両端部から遠い位置にある山部と谷部のピッチよりも小さくしたことも特徴とする。
【0012】
【作用】
請求項1に記載された本発明の波形ばねは、従来の波形ばねに比べて山部と谷部がエッジ状に近付くことにより、荷重負荷時における相手部品と波形ばねとの接触域の増加が防止され、ばね有効部の減少が回避される。
【0013】
また、R1 とR2 をばね材の板厚t以上とすることで、山部あるいは谷部における過剰な応力の発生を防いでいる
【0015】
また、請求項に記載した波形ばねでは、円周方向両端部に近い位置(ばねの切れ目付近)にある山部の高さを、円周方向両端部から遠い位置にある山部の高さよりも大きくしたことにより、このばねを相手部品によって変位させた時に円周方向両端部におけるばね有効部の変位量を大きくして、切れ目付近の荷重低下を補うようにしている。また、請求項に記載の波形ばねでは、ばねの切れ目付近における山部と谷部の密度が高くなることにより、円周方向両端部が受ける荷重を増して円周上の荷重分布のバランスをとるようにしている。
【0016】
【実施例】
以下に本発明の第1実施例について、図1〜図8を参照して説明する。
図4に示す波形ばね10は、平面形状が円環状をなす偏平なばね材11からなる。ばね材11は、帯板状のばね鋼である。この波形ばね10は、図1ないし図3に示すように、側面方向から見て円弧状の山部15と、円弧状の谷部16と、これら山部15と谷部16をつなぐ直線状のばね有効部17を、ばね材11の円周方向に交互に設けたものである。図示例の山部15と谷部16は、ばね材11の円周方向におおむね等ピッチで設けられている。
【0017】
この波形ばね10は、図1に模式的に示したように、無荷重状態における山部15の湾曲内側の曲率半径R1 が山部15の高さH1 よりも小さく、かつ、谷部16の湾曲内側の曲率半径R2 が谷部16の深さH2 よりも小さい。ばね有効部17は山部15の円弧と谷部16の円弧の接線方向に直線状に延びている。
【0018】
この波形ばね10は、図2に示すように、互いに平行な相手部品20,21の間に挟まれた状態で使用されるが、相手部品20,21の距離を近付けて荷重を増加させたとき、山部15と谷部16の接触域が増加することを防ぐために、山部15の曲率半径R1 と谷部16の曲率半径R2 を、ばね材11の板厚tの5倍以下としている。
【0019】
図1中の破線mは従来の波形ばねの輪郭を示しており、従来の波形ばねに比べると本実施例の波形ばね10は山部15と谷部16がエッジ状であって、ばね有効部17のふくらみが無くなった形状になっている。このように山部15と谷部16の形状をエッジ状に近付けることによって、荷重増加時にばね有効部17の長さが減少することを防いでいる。これにより、荷重−変位特性が極端な非線形特性になることを回避できるようになった。このような山部15と谷部16のエッジ形状は、円周方向に切れ目のない完全リング状の波形ばねにおいても同様の効果が認められた。
【0020】
なお、山部15と谷部16の曲率半径R1 ,R2 が小さくなるにつれて、山部15と谷部16の応力が増加する傾向がある。このことも考慮に入れて、有限要素解析の結果により、R1 ,R2 をいずれもばね材11の板厚t以上とした。
【0021】
図3に示すように、ばね材11は円周方向の一部で切れているから、そのままでは円周方向両端部30,31付近において荷重分布がアンバランスになる可能性がある。そこでこの実施例では図5に一方の端部30を代表して示すように、端部30に近い位置にある山部15aの高さT1 を、端部30から遠い位置にある山部15の高さT2 よりも高くしている。この場合、相手部品20,21間の距離を近付けて波形ばね10を変位させた時に、円周方向両端部30,31付近のばね有効部17aの撓みが他の部位のばね有効部17の撓みよりも大きくなるため、円周方向両端部30,31付近の荷重低下を補うことができる。
【0022】
これにより、円周上の荷重分布のアンバランスを少なくすることができ、各山部15の反力と各谷部16の反力の合力の中心がこのばね10の中心軸上に位置するようになるため、例えば多板クラッチ機構のクラッチ付勢用波形ばねなどにおいて、ばねを押す油圧ピストンがシリンダに対して傾くことがなくなり、作動不良の原因を解消できた。
【0023】
なお、円周上の荷重分布のアンバランスを解消する手段として、図6に示すように、ばね材11の円周方向両端部30,31に近い位置にある山部15bと谷部16bのピッチを、円周方向両端部30,31から遠い位置にある山部15と谷部16のピッチよりも小さくすることにより、両端部30,31付近の単位長さ当りの波数を多くして荷重低下を補うようにしてもよい。
【0024】
また、ばね材11の円周方向両端部30,31には、図7に示すように、両端部30,31が互いに厚み方向に重なった状態でばね材11の円周方向に相対移動できるような逃げ部32が設けられている。この逃げ部32は一方の端部30を曲げ加工したものである。逃げ部32を設けたことにより、波形ばね10の外周側が拘束された状態で使われても、ばね10の変位による周長の伸びを両端部30,31において吸収することが可能となり、両端部30,31同志の干渉による影響も回避されてスムーズな特性を得ることができた。
【0025】
なお、図8に示した逃げ部32のように、ばね材11の円周方向両端部30,31が互いに重なることができるように、潰し加工によって両端部30,31の板厚に段差を設けることにより、両端部30,31が重なった状態でも円周方向に自由度をもたせるようにしてもよい。
【0026】
図9は、本発明の他の実施例を示している。この波形ばね10は、図10に模式的に示すように、山部15と谷部16にそれぞれ半円状突起50,51を設けており、山部15の半円状突起50の基部と谷部16の半円状突起51の基部とが直線状のばね有効部17によってつながれている。
【0027】
図11に示すようにこの波形ばね10も相手部品20,21の間に挟まれた状態で使用されるが、荷重を負荷した時に荷重の増加に伴って山部15と谷部16の接触域が増加することを防ぐために、前記実施例と同様に、無荷重状態における山部15の湾曲内側の曲率半径R1 を山部15の高さH1 よりも小さくし、かつ、谷部16の湾曲内側の曲率半径R2 を谷部16の深さH2 よりも小さくしているとともに、山部15の曲率半径R1 と谷部16の曲率半径R2 をばね材11の板厚tの5倍以下としている。
【0028】
この場合も、山部15と谷部16の曲率半径R1 ,R2 が小さくなり過ぎると山部15と谷部16の応力が増加するため、応力増加も考慮して、有限要素解析の結果により、R1 ,R2 をいずれもばね材11の板厚t以上とした。
上記のような半円状突起50,51を採用したことにより、荷重増加時にばね有効部17が減少することを更に効果的に回避できるようになり、荷重−変位特性をほぼ直線な特性に近付けることができた。
【0029】
この実施例のばね材11も円周方向の一部で切れており、図12に示すようにばね材11の円周方向両端部30,31に前記実施例と同様の逃げ部32が設けられているとよい。また、円周方向の荷重分布のアンバランスを解消することを目的として、図5または図6に示す実施例と同様の構造が採用される。
【0030】
【発明の効果】
請求項1に記載した本発明によれば、波形ばねの荷重−変位特性が極端な非線形特性になることを抑制できる。また、適宜長さに切断された帯状のばね材を用いることができるため、プレス打抜きによって製作するものに比べて材料歩留まりが著しく向上する。また、山部と谷部の応力が過剰になることを回避できかつ所望の山部と谷部のエッジ形状が得られる
【0031】
求項と請求項に記載の波形ばねは、ばね材が円周方向の一部で切れていても荷重分布を均一化に近付けることができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す波形ばねの一部を模式的に示す側面図。
【図2】図1に示された波形ばねに荷重を加えた状態の側面図。
【図3】本発明の一実施例を示す波形ばねの一部の断面図。
【図4】図3に示された波形ばねの全体の平面図。
【図5】波形ばねの端部の断面図。
【図6】波形ばねの山部と谷部のピッチを円周方向に変化させた例を示す平面図。
【図7】波形ばねの両端部が重なった状態の断面図。
【図8】波形ばねの両端部の変形例を示す断面図。
【図9】本発明の他の実施例を示す波形ばねの一部の断面図。
【図10】図9に示された波形ばねの一部を模式的に示す側面図。
【図11】図10に示された波形ばねに荷重を加えた状態の側面図。
【図12】図10に示された波形ばねの両端部が重なった状態の断面図。
【図13】従来の波形ばねを模式的に示す側面図。
【図14】図13に示された従来の波形ばねに荷重を加えた状態の側面図。
【図15】従来の波形ばねの荷重と変位の関係を示す図。
【図16】従来の波形ばねの平面図。
【符号の説明】
10…波形ばね 11…ばね材
15…山部 16…谷部
17…ばね有効部 30,31…円周方向両端部
32…逃げ部 50,51…半円状突起
[0001]
[Industrial application fields]
The present invention relates to a wave spring used in various devices including, for example, a multi-plate clutch mechanism of an automatic transmission of an automobile.
[0002]
[Prior art]
In a multi-plate clutch mechanism of an automatic transmission such as an automobile, a spring is incorporated for returning a clutch plate or absorbing a shock when the clutch is engaged. Ring springs such as disc springs and wave springs were used for this spring, but conventional disc springs and wave springs are complete rings with no cut surface in the circumferential direction. This was due to stamping and molding by a press. For this reason, the material yield was extremely poor, which caused an increase in cost.
[0003]
As a means for solving the above problems, a spring (so-called wave spring) was developed in which a strip-shaped spring material was formed into a C shape, and peaks and valleys were alternately formed in the circumferential direction of the spring material. . Since this type of spring can use a strip-shaped spring material cut to an appropriate length, the material yield is remarkably improved as compared with a conventional press punching spring, but there are problems as described below. .
[0004]
[Problems to be solved by the invention]
In the conventional wave spring, like the wave spring 1 schematically shown in FIG. 13, the crests 2 and the troughs 3 are alternately formed, and an intermediate portion (spring) between the crests 2 and the troughs 3 is formed. The effective part 4) draws a gentle curve and continues to the peak part 2 and the valley part 3. In such a wave spring 1, the radii of curvature r of the crest 2 and trough 3 are considerably large.
[0005]
When the wave spring 1 is used, as shown in FIG. 14, a load is applied by a pair of mating parts 5 and 6 parallel to each other from the thickness direction of the wave spring 1. In this case, as the load increases, the length of the contact portion between one counterpart component 5 and the peak portion 2 increases, and the length of the contact portion between the other counterpart component 6 and the valley portion 3 also increases. The length of the spring effective portion 4 is relatively reduced. For this reason, the wave spring 1 exhibits a non-linear load-displacement characteristic as shown in FIG.
[0006]
For this reason, the conventional wave spring 1 has an extremely nonlinear characteristic more than necessary depending on the shape of the peak part 2 and the valley part 3 and may not satisfy the required load-displacement characteristic. It may not be suitable for practical use.
[0007]
Further, since the wave spring 1 is partially cut in the circumferential direction as shown in FIG. 16, the rigidity is discontinuous at both ends 7 and 8 in the circumferential direction as compared with the spring of a complete ring without a break. It has become. In addition, in the case of the wave spring 1 having a part cut in the circumferential direction, the spring effective portion 4 receives bending moments from both ends when the load is applied, whereas the spring effective portion 4 receives bending moments from both ends. Since such a bending moment does not occur in the vicinity of the portions 7 and 8, the load in the vicinity of the both end portions 7 and 8 becomes low, causing an imbalance in the load distribution on the circumference.
[0008]
For these reasons, the center of the resultant force of the reaction force of each peak 2 and the reaction force of each valley 3 may be eccentric from the center axis of the spring 1. When such an imbalance of load distribution occurs, when the wave spring 1 is used as, for example, a clutch plate biasing spring, the clutch operating hydraulic piston that biases the wave spring 1 is inclined with respect to the cylinder, and the piston In some cases, the movement was hindered, causing malfunction.
[0009]
Further, when the wave spring is displaced with a load applied, the spring tends to increase in circumference as it approaches the close contact state, so that the outer diameter usually increases in displacement. However, when the outer periphery of the wave spring is surrounded by the other parts and the outer periphery is constrained, the wave spring cannot be displaced in the radial direction even if the circumference of the wave spring is extended. Can only be displaced in the direction. For this reason, if there is no degree of freedom in the circumferential direction, the spring becomes stiff and a sudden load increase occurs, and in the worst case, the spring breaks.
[0010]
Therefore, the object of the present invention is to avoid the load-displacement characteristic of the wave spring from becoming an extremely nonlinear characteristic, to approximate the load distribution to be uniform, and to increase the circumferential length when the displacement amount is large. It is in providing the wave spring which can absorb.
[0011]
[Means for Solving the Problems]
The corrugated spring of the present invention developed to achieve the above object is formed of a flat spring material that is formed in an annular shape and cut at a part in the circumferential direction, and has an arcuate peak when viewed from the side. And arcuate troughs and linear spring effective parts connecting these crests and troughs are alternately provided in the circumferential direction of the spring material, and the radius of curvature inside the crest of the crest when no load is applied R1 is smaller than the height H1 of the peak and the radius of curvature R2 inside the valley is smaller than the depth H2 of the valley, the thickness of the spring material is t, and the radius of curvature inside the curve of the peak is R1, when the radius of curvature of the curved inner valley was R2, t ≦ R1 ≦ 5t, Ri t ≦ R2 ≦ 5t der, and with high mountain portion at a position closer to the circumferential ends of the spring member The height is made larger than the height of the peak portion at a position far from both ends in the circumferential direction. Further, in the present invention, the pitch between the peak portion and the valley portion located near the both circumferential ends of the spring material is made smaller than the pitch between the peak portion and the valley portion located far from both circumferential ends. Features.
[0012]
[Action]
The corrugated spring according to the first aspect of the present invention has an increase in the contact area between the mating component and the corrugated spring when a load is applied, as compared to the conventional corrugated spring, the peak and trough approach the edge. This prevents the reduction of the effective spring portion.
[0013]
Further, by setting R1 and R2 to be equal to or greater than the plate thickness t of the spring material, generation of excessive stress at the peak or valley is prevented .
[0015]
Further, in the wave spring according to claim 1 , the height of the crest at a position close to both ends in the circumferential direction (near the break of the spring) is higher than the height of the crest at a position far from both ends in the circumferential direction. As a result, the amount of displacement of the spring effective portion at both ends in the circumferential direction is increased when the spring is displaced by the mating part to compensate for the load drop near the break. Further, in the wave spring according to claim 2 , the density of the crests and troughs in the vicinity of the spring break increases, so that the load received at both ends in the circumferential direction is increased to balance the load distribution on the circumference. I try to take it.
[0016]
【Example】
A first embodiment of the present invention will be described below with reference to FIGS.
The wave spring 10 shown in FIG. 4 is composed of a flat spring material 11 whose planar shape forms an annular shape. The spring material 11 is a strip-shaped spring steel. As shown in FIGS. 1 to 3, the wave spring 10 includes an arcuate peak portion 15, an arcuate valley portion 16, and a linear shape connecting the peak portion 15 and the valley portion 16 when viewed from the side. The spring effective portions 17 are provided alternately in the circumferential direction of the spring material 11. The crests 15 and troughs 16 in the illustrated example are provided at substantially equal pitches in the circumferential direction of the spring material 11.
[0017]
As schematically shown in FIG. 1, the wave spring 10 has a curvature radius R 1 on the inner side of the peak portion 15 in an unloaded state that is smaller than the height H 1 of the peak portion 15 and the curvature of the valley portion 16. The inner radius of curvature R2 is smaller than the depth H2 of the valley 16. The spring effective portion 17 extends linearly in the tangential direction of the arc of the peak portion 15 and the arc of the valley portion 16.
[0018]
As shown in FIG. 2, the wave spring 10 is used in a state of being sandwiched between the counterpart parts 20 and 21 parallel to each other, but when the distance between the counterpart parts 20 and 21 is reduced and the load is increased. In order to prevent the contact area between the peak 15 and the valley 16 from increasing, the curvature radius R1 of the peak 15 and the curvature radius R2 of the valley 16 are set to be not more than 5 times the plate thickness t of the spring material 11.
[0019]
The broken line m in FIG. 1 shows the outline of a conventional wave spring. Compared with the conventional wave spring, the wave spring 10 of this embodiment has a crest 15 and a valley 16 that are edge-shaped, and the spring effective portion. 17 has no bulge. Thus, by approaching the shapes of the peak portion 15 and the valley portion 16 to the edge shape, the length of the spring effective portion 17 is prevented from decreasing when the load increases. As a result, the load-displacement characteristic can be prevented from becoming an extremely nonlinear characteristic. Such edge shapes of the peak portion 15 and the valley portion 16 have the same effect even in a complete ring-shaped wave spring having no cut in the circumferential direction.
[0020]
As the radii of curvature R1 and R2 of the peaks 15 and valleys 16 become smaller, the stresses at the peaks 15 and valleys 16 tend to increase. Taking this into consideration, both R1 and R2 are set to be equal to or greater than the plate thickness t of the spring material 11 according to the result of finite element analysis.
[0021]
As shown in FIG. 3, since the spring material 11 is cut at a part in the circumferential direction, the load distribution may become unbalanced in the vicinity of both circumferential ends 30 and 31 as it is. Therefore, in this embodiment, as shown in FIG. 5 as representative of one end portion 30, the height T1 of the peak portion 15a located near the end portion 30 is set to the height of the peak portion 15 located far from the end portion 30. The height is higher than T2. In this case, when the wave spring 10 is displaced with the distance between the mating parts 20 and 21 close, the deflection of the spring effective portion 17a in the vicinity of both circumferential ends 30 and 31 is the deflection of the spring effective portion 17 in the other part. Therefore, it is possible to compensate for a decrease in load in the vicinity of both circumferential ends 30 and 31.
[0022]
Thereby, the imbalance of the load distribution on the circumference can be reduced, and the center of the resultant force of the reaction force of each peak portion 15 and the reaction force of each valley portion 16 is located on the central axis of this spring 10. Therefore, for example, in a clutch energizing wave spring of a multi-plate clutch mechanism, the hydraulic piston that presses the spring is not inclined with respect to the cylinder, and the cause of the malfunction can be solved.
[0023]
As a means for eliminating the imbalance of the load distribution on the circumference, as shown in FIG. 6, the pitch between the peak portions 15b and the valley portions 16b located near the circumferential ends 30 and 31 of the spring material 11 is shown. Is made smaller than the pitch of the crests 15 and troughs 16 located far from the circumferential ends 30 and 31, thereby increasing the wave number per unit length near the ends 30 and 31 and reducing the load. You may make it supplement.
[0024]
In addition, as shown in FIG. 7, the circumferential end portions 30 and 31 of the spring member 11 can be relatively moved in the circumferential direction of the spring member 11 in a state where the end portions 30 and 31 overlap each other in the thickness direction. An escape portion 32 is provided. The escape portion 32 is formed by bending one end portion 30. By providing the escape portion 32, even when the outer peripheral side of the wave spring 10 is constrained, it is possible to absorb the elongation of the circumferential length due to the displacement of the spring 10 at both end portions 30, 31. The effects of the interference between 30 and 31 were also avoided, and smooth characteristics could be obtained.
[0025]
In addition, like the escape portion 32 shown in FIG. 8, a step is provided in the plate thickness of the both end portions 30, 31 by crushing so that the circumferential end portions 30, 31 of the spring material 11 can overlap each other. Thus, even in a state where both end portions 30 and 31 are overlapped, a degree of freedom may be provided in the circumferential direction.
[0026]
FIG. 9 shows another embodiment of the present invention. As schematically shown in FIG. 10, the wave spring 10 is provided with semicircular protrusions 50 and 51 on the crest 15 and the trough 16, respectively. The base and trough of the semicircular protrusion 50 of the crest 15 are provided. The base portion of the semicircular protrusion 51 of the portion 16 is connected by a linear spring effective portion 17.
[0027]
As shown in FIG. 11, the wave spring 10 is also used in a state of being sandwiched between the counterpart parts 20 and 21, but when the load is applied, the contact area between the peak portion 15 and the valley portion 16 increases with the load. In order to prevent the increase in the radius of curvature, the curvature radius R1 of the inner side of the peak portion 15 in the no-load state is made smaller than the height H1 of the peak portion 15 and the inner side of the valley portion 16 is bent. The radius of curvature R2 is smaller than the depth H2 of the valley portion 16, and the curvature radius R1 of the peak portion 15 and the curvature radius R2 of the valley portion 16 are set to be not more than five times the plate thickness t of the spring material 11.
[0028]
Also in this case, if the radii of curvature R1 and R2 of the peaks 15 and valleys 16 become too small, the stresses at the peaks 15 and valleys 16 increase. R1 and R2 are both equal to or greater than the plate thickness t of the spring material 11.
By adopting the semicircular protrusions 50 and 51 as described above, it becomes possible to more effectively avoid the decrease in the effective spring portion 17 when the load increases, and the load-displacement characteristic is brought close to a substantially linear characteristic. I was able to.
[0029]
The spring material 11 of this embodiment is also cut at a part in the circumferential direction, and as shown in FIG. 12, relief portions 32 similar to those of the above-described embodiment are provided at both circumferential ends 30 and 31 of the spring material 11. It is good to have. Further, for the purpose of eliminating the imbalance of the load distribution in the circumferential direction, the same structure as that of the embodiment shown in FIG. 5 or FIG. 6 is adopted.
[0030]
【The invention's effect】
According to the first aspect of the present invention, it is possible to suppress the load-displacement characteristic of the wave spring from becoming an extremely nonlinear characteristic. Moreover, since the strip-shaped spring material cut | disconnected suitably in length can be used, a material yield improves remarkably compared with what is manufactured by press punching. In addition, it is possible to avoid an excessive stress at the peaks and valleys, and a desired peak shape at the peaks and valleys can be obtained .
[0031]
Wave spring according to claim 2 and Motomeko 1, the spring member can be brought close to uniform load distribution even broken in some circumferential direction.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing a part of a wave spring according to an embodiment of the present invention.
2 is a side view showing a state in which a load is applied to the wave spring shown in FIG. 1; FIG.
FIG. 3 is a partial cross-sectional view of a wave spring showing an embodiment of the present invention.
4 is an overall plan view of the wave spring shown in FIG. 3; FIG.
FIG. 5 is a cross-sectional view of an end portion of a wave spring.
FIG. 6 is a plan view showing an example in which the pitches of the peak and valley portions of the wave spring are changed in the circumferential direction.
FIG. 7 is a sectional view showing a state in which both end portions of the wave spring are overlapped with each other.
FIG. 8 is a cross-sectional view showing a modification of both end portions of the wave spring.
FIG. 9 is a sectional view of a part of a wave spring showing another embodiment of the present invention.
10 is a side view schematically showing a part of the wave spring shown in FIG. 9; FIG.
11 is a side view showing a state in which a load is applied to the wave spring shown in FIG. 10;
12 is a cross-sectional view showing a state in which both end portions of the wave spring shown in FIG. 10 are overlapped.
FIG. 13 is a side view schematically showing a conventional wave spring.
14 is a side view showing a state in which a load is applied to the conventional wave spring shown in FIG. 13; FIG.
FIG. 15 is a diagram showing the relationship between the load and displacement of a conventional wave spring.
FIG. 16 is a plan view of a conventional wave spring.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Wave spring 11 ... Spring material 15 ... Mountain part 16 ... Valley part 17 ... Spring effective part 30, 31 ... Circumferential direction both ends 32 ... Escape part 50, 51 ... Semicircular protrusion

Claims (2)

円環状に形成されかつ円周方向の一部で切れている偏平なばね材からなり、
側面方向から見て円弧状の山部と円弧状の谷部とこれら山部と谷部をつなぐ直線状のばね有効部とがばね材の円周方向に交互に設けられており、
しかも無荷重状態における山部の湾曲内側の曲率半径R1 が山部の高さH1 よりも小さくかつ谷部の湾曲内側の曲率半径R2 が谷部の深さH2 よりも小さく、上記ばね材の板厚をt、山部の湾曲内側の曲率半径をR1 、谷部の湾曲内側の曲率半径をR2 としたとき、t≦R1 ≦5t,t≦R2 ≦5tであり、しかもこのばね材の円周方向両端部に近い位置にある山部の高さを、円周方向両端部から遠い位置にある山部の高さよりも大きくしたことを特徴とする波形ばね。
It consists of a flat spring material that is formed in an annular shape and cut at a part in the circumferential direction.
Arc-shaped crests, arc-shaped troughs, and linear spring effective parts that connect these crests and troughs are alternately provided in the circumferential direction of the spring material when viewed from the side direction,
In addition, the radius of curvature R1 inside the peak of the peak in an unloaded state is smaller than the height H1 of the peak, and the radius of curvature R2 inside the curved of the valley is smaller than the depth H2 of the valley, the thickness t, the radius of curvature of the curved inner crest R1, when the curvature radius of the curved inner valley and R2, t ≦ R1 ≦ 5t, Ri t ≦ R2 ≦ 5t der, moreover circle of the spring member A wave spring characterized in that the height of a peak portion located at a position near both ends in the circumferential direction is made larger than the height of a peak portion located at a position far from both ends in the circumferential direction .
円環状に形成されかつ円周方向の一部で切れている偏平なばね材からなり、
側面方向から見て円弧状の山部と円弧状の谷部とこれら山部と谷部をつなぐ直線状のばね有効部とがばね材の円周方向に交互に設けられており、
しかも無荷重状態における山部の湾曲内側の曲率半径R1 が山部の高さH1 よりも小さくかつ谷部の湾曲内側の曲率半径R2 が谷部の深さH2 よりも小さく、上記ばね材の板厚をt、山部の湾曲内側の曲率半径をR1 、谷部の湾曲内側の曲率半径をR2 としたとき、t≦R1 ≦5t,t≦R2 ≦5tであり、しかもこのばね材の円周方向両端部に近い位置にある山部と谷部のピッチを、円周方向両端部から遠い位置にある山部と谷部のピッチよりも小さくしたことを特徴とする波形ばね。
It consists of a flat spring material that is formed in an annular shape and cut at a part in the circumferential direction.
Arc-shaped crests, arc-shaped troughs, and linear spring effective parts that connect these crests and troughs are alternately provided in the circumferential direction of the spring material when viewed from the side direction,
In addition, the radius of curvature R1 inside the peak of the peak in an unloaded state is smaller than the height H1 of the peak, and the radius of curvature R2 inside the curved of the valley is smaller than the depth H2 of the valley, the thickness t, the radius of curvature of the curved inner crest R1, when the curvature radius of the curved inner valley and R2, t ≦ R1 ≦ 5t, Ri t ≦ R2 ≦ 5t der, moreover circle of the spring member A wave spring characterized in that a pitch between peaks and valleys at positions close to both ends in the circumferential direction is smaller than a pitch between peaks and valleys at positions far from both ends in the circumferential direction .
JP03982994A 1994-03-10 1994-03-10 Wave spring Expired - Lifetime JP3816544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03982994A JP3816544B2 (en) 1994-03-10 1994-03-10 Wave spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03982994A JP3816544B2 (en) 1994-03-10 1994-03-10 Wave spring

Publications (2)

Publication Number Publication Date
JPH07248035A JPH07248035A (en) 1995-09-26
JP3816544B2 true JP3816544B2 (en) 2006-08-30

Family

ID=12563867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03982994A Expired - Lifetime JP3816544B2 (en) 1994-03-10 1994-03-10 Wave spring

Country Status (1)

Country Link
JP (1) JP3816544B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3120049B2 (en) * 1996-03-12 2000-12-25 三菱製鋼株式会社 Coiled wave spring and manufacturing method thereof
FR2746470B1 (en) * 1996-03-25 2001-10-19 Valeo ASSEMBLING THE RELEASE STOP
FR2747441B1 (en) * 1996-03-25 1999-12-10 Valeo ASSEMBLY OF THE RELEASE STOP
US5906255A (en) * 1997-06-18 1999-05-25 Deltrans, Inc. Automatic transmission clutch drum assembly with waved ring spring
DE102004018711A1 (en) * 2004-04-17 2005-11-17 Muhr Und Bender Kg Wave spring with defined progressive spring characteristic
JP4770920B2 (en) 2008-11-26 2011-09-14 トヨタ自動車株式会社 Wave spring clamping structure and friction engagement device
WO2019163953A1 (en) * 2018-02-26 2019-08-29 日本発條株式会社 Wave spring
CN110397701A (en) * 2019-06-17 2019-11-01 华为技术有限公司 A kind of isolation mounting, vibrating isolation system and the vehicles
CN114810884A (en) * 2022-06-27 2022-07-29 常州三众弹性技术有限公司 Linear wave spring

Also Published As

Publication number Publication date
JPH07248035A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
US4602708A (en) Clutch cover assembly
JP3816544B2 (en) Wave spring
EP0373239B1 (en) Tolerance ring and shim
JPS592337Y2 (en) clutch cover assembly
CA1088006A (en) Belleville damper for torque transmitting coupling device
JPH0616728U (en) Clutch cover assembly
JPH0631226Y2 (en) Clutch disc
US4646899A (en) Torsion damper disc
US4671399A (en) Friction facing assembly
US4697683A (en) Clutch friction disk
EP0126822A1 (en) Multiple disc clutch device
US5927460A (en) Clutch disk with a double facing spring
EP0191578B1 (en) Diaphragm spring clutch cover assembly
US6622841B2 (en) Clutch disk
US7073637B2 (en) Double-wrap brake band apparatus
JPH0567838U (en) Annular wave spring
JP4327103B2 (en) Plate torsion spring
JPH0932874A (en) Waved spring device
JP2576046Y2 (en) Wave coil spring
JP2006132548A (en) Sealing device
WO2003087606A1 (en) Clutches
JP3683924B2 (en) Coil spring for damper
JP3835501B2 (en) Elastic coupling
EP1035348B1 (en) Undulated spring and damper mechanism
WO2017141699A1 (en) Clutch cover assembly

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040212

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term