JPH0932874A - Waved spring device - Google Patents

Waved spring device

Info

Publication number
JPH0932874A
JPH0932874A JP18184995A JP18184995A JPH0932874A JP H0932874 A JPH0932874 A JP H0932874A JP 18184995 A JP18184995 A JP 18184995A JP 18184995 A JP18184995 A JP 18184995A JP H0932874 A JPH0932874 A JP H0932874A
Authority
JP
Japan
Prior art keywords
spring device
curvature
recessions
projections
peaks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18184995A
Other languages
Japanese (ja)
Other versions
JP3935979B2 (en
Inventor
Kenjiro Kawanabe
賢治郎 川鍋
Yutaka Nishida
豊 西田
Noritoshi Takamura
典利 高村
Ichiro Sasuga
一郎 流石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP18184995A priority Critical patent/JP3935979B2/en
Publication of JPH0932874A publication Critical patent/JPH0932874A/en
Application granted granted Critical
Publication of JP3935979B2 publication Critical patent/JP3935979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a waved spring device which allows the use in a close contact and secures sufficient strength by forming projections and recessions on a circular base with a specified pitch in a circumferential direction, and satisfying a specified formula regarding the minimum radius of curvature of each of the projections and recessions. SOLUTION: A waved spring device has a circular base 5 on which a plurality of projections and recessions 6 are formed with a specified pitch. The projections and recessions 6 are prepared by continuously and alternate forming circular arcs, that is, projections 6a and recessions 6b each having the same radius of curvature. A minimum radius of curvature R1 of the projections and recessions 6 satisfies a formula 1. With such structure, the device can be arranged in a small space since the projections 6a and recessions 6b, being compressed to be flat, are not broken, allowing high load application. In the case that a strip-like material is bent to form the device, an abutting surface of the waved spring device can be arranged parallely to an object to be abutted. Surface abutting is allowed, so that increase of the pressure generated between both is suppressed, while both the device and the object are prevented from breaking.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば自動車の
オートマチックトランスミッション装置等に用いられる
波形ばね装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wave spring device used in, for example, an automatic transmission device of an automobile.

【0002】[0002]

【従来の技術】例えば、自動車の変速装置やクラッチ機
構には、クラッチ板等を付勢するためのスプリングとし
て波形ばね装置を組み込んでなるものがある。この波形
ばね装置は、例えば図10に示すようなものであり、リ
ング状の金属製ばね基体1に周方向に沿って所定の間隔
で複数の山谷部2…が設けられてなる。
2. Description of the Related Art For example, some transmissions and clutch mechanisms of automobiles incorporate a wave spring device as a spring for urging a clutch plate or the like. This corrugated spring device is, for example, as shown in FIG. 10, and has a ring-shaped metal spring base 1 provided with a plurality of peaks and valleys 2 at predetermined intervals along the circumferential direction.

【0003】この波形ばねの製造方法としては、従来は
金属板材料から直接上記リング状の基体を打ち抜くこと
により行われていた。しかし、このような方法であると
材料の歩留まりが非常に悪いことから、最近では図11
(a)に示すような帯状の金属板素材3を用い、これを
同図(b)に示すようなC字リング状、あるいは同図
(c)に示すようなコイル状(多層)に曲成することで
波形ばね装置を形成する方法が一般に行われている。
As a method of manufacturing this wave spring, conventionally, the ring-shaped base is directly punched out from a metal plate material. However, since the yield of the material is very poor with such a method, recently, as shown in FIG.
A strip-shaped metal plate material 3 as shown in (a) is used, and this is bent into a C-ring shape as shown in (b) of the figure or a coil shape (multilayer) as shown in (c) of the figure. By doing so, a method of forming a wave spring device is generally performed.

【0004】このような波形ばね装置については、さら
に改良が進められており、例えば、実開平4−7524
3号公報には上記コイル状の波形ばね装置の山谷部の形
状を台形状にすることによって上下層の山谷部のずれを
防止したものが開示されている。また、特開平6−28
0912号公報には上記山谷部をクロソイド曲線形状と
することによって直線的な荷重・撓み特性を得るように
したものが開示されている。
Further improvements have been made on such a wave spring device.
Japanese Patent Publication No. 3 discloses a coil-shaped wave spring device in which the peaks and valleys are trapezoidal to prevent the peaks and valleys of the upper and lower layers from being displaced. In addition, JP-A-6-28
Japanese Patent No. 0912 discloses that the peaks and valleys have a clothoid curve shape to obtain linear load / deflection characteristics.

【0005】さらに、実開昭60−3327号公報に
は、山谷部の内周側の曲率半径を外周側の曲率半径より
も大きく形成して内外周の応力の均一化を図ったものが
開示されている。
Further, Japanese Utility Model Laid-Open No. 60-3327 discloses that the radius of curvature on the inner peripheral side of the peaks and valleys is made larger than the radius of curvature on the outer peripheral side in order to make the stress on the inner and outer peripheral sides uniform. Has been done.

【0006】[0006]

【発明が解決しようとする課題】ところで、前述した各
種の波形ばね装置は、いずれも完全な線形特性状態での
使用のみが想定されている。すなわち、一般に、上記波
形ばね装置の特性の解析は、上記山谷部2の頂部を点支
持されてなる真直梁の連続体に近似して行われており、
上記山谷部2が完全に押しつぶされて平板状になり対象
物に密着する状態(密着状態)については全く考慮され
ていない。
By the way, each of the above-mentioned various wave spring devices is supposed to be used only in a completely linear characteristic state. That is, in general, the analysis of the characteristics of the wave spring device is performed by approximating a straight beam continuum in which the tops of the peaks 2 are point-supported.
No consideration is given to the state in which the ridges and valleys 2 are completely crushed into a flat plate shape and come into close contact with an object (close contact state).

【0007】例えば、前記クロソイド曲線を採用した波
形ばね装置(特開平6−280912号公報)は、荷重
特性の直線性を保つことに重点を置いており、上記密着
状態については全く言及していない。また、ばねの内外
周部の曲率半径についての出願(実開昭60−332
7)においても、やはり密着時についての考慮はなく最
適形状を明らかにしていない。
For example, the corrugated spring device employing the clothoid curve (Japanese Patent Laid-Open No. 6-280912) focuses on maintaining the linearity of the load characteristics, and does not mention the contact state at all. . In addition, an application regarding the radius of curvature of the inner and outer peripheral portions of the spring (Actually published Japanese Utility Model Sho 60-332
In 7) as well, the optimum shape has not been clarified since there is no consideration for the time of contact.

【0008】さらに、前記台形状の山谷部を有するもの
(実開昭60−3327号公報)は、コイル状の波形ば
ね装置のみが想定され、上下層のずれを防止するために
お互いの山谷部をはじめから密着させたものであり、使
用時の変形による密着状態を想定したものではない。
Further, in the device having the trapezoidal ridges and valleys (Japanese Utility Model Laid-Open No. 60-3327), only a coiled wave spring device is assumed, and the ridges and valleys of each other are prevented in order to prevent the upper and lower layers from being displaced. The above is a close contact from the beginning, and does not assume a close contact state due to deformation during use.

【0009】一方、最近の自動車のオートマチックトラ
ンスミッション装置等では、省スペース化および軽量化
等の点から、この波形ばね装置を線形特性状態から前記
密着状態(略板厚近く)にまで圧縮して使用することが
要求されており、このような条件の下で最適形状を有す
る波形ばね装置が必要となってきているという事情があ
る。
On the other hand, in recent automobile automatic transmission devices and the like, the wave spring device is used after being compressed from the linear characteristic state to the close contact state (near the plate thickness) in order to save space and reduce weight. There is a circumstance that a corrugated spring device having an optimum shape is needed under such conditions.

【0010】一方、他の問題として上記波形ばね装置の
断面形状の変形の問題がある。すなわち、前述したよう
に帯状の素材3(図11(a))を曲成することで波形
ばね装置の基体1を形成しようとすると、曲成前は図1
2(a)に示すような矩形状の断面を有していたもの
が、曲成時に内周側で圧縮応力が働き外周側では引張応
力が働くために、曲成後は歪みによって同図(b)に示
すように内周側の厚さが外周側の厚さよりも大きくなっ
てしまい、上記基体1の対象物に当接する面1a、1b
が傾斜面となってしまうということがある。
On the other hand, as another problem, there is a problem that the cross-sectional shape of the corrugated spring device is deformed. That is, when the base material 1 of the corrugated spring device is formed by bending the band-shaped material 3 (FIG. 11A) as described above, the bending is performed as shown in FIG.
The one having a rectangular cross section as shown in Fig. 2 (a) has a compressive stress on the inner peripheral side during bending and a tensile stress on the outer peripheral side. As shown in b), the thickness of the inner peripheral side becomes larger than the thickness of the outer peripheral side, and the surfaces 1a and 1b of the base body 1 that come into contact with the target object.
May become an inclined surface.

【0011】一般に、断面内における最大応力は断面の
中立軸(同図にTで示す)から最も遠い位置に生じるこ
とが知られている。したがって、上記波形ばね装置に生
じる内部応力は断面内で不均一となり、最大の内部応力
は板厚の最も厚い部分すなわち内周側に生じることとな
る。このため、この部分から波形ばね装置の損壊が生じ
るおそれがある。
It is generally known that the maximum stress in a cross section occurs at a position farthest from the neutral axis (indicated by T in the figure) of the cross section. Therefore, the internal stress generated in the corrugated spring device becomes uneven in the cross section, and the maximum internal stress occurs in the thickest part of the plate, that is, the inner peripheral side. Therefore, the wave spring device may be damaged from this portion.

【0012】また、このような形状では、上記波形ばね
装置の山谷部2を幅方向全幅に亘ってを対象物に密着さ
せることができないから、高さ寸法が増大するのみなら
ず、接触部分(図にAで示す)の圧力が異常に上昇し、
この波形ばね装置のみならず対象物にも及ぶおそれがあ
る。
Further, with such a shape, since the peaks and valleys 2 of the above-mentioned wave spring device cannot be brought into close contact with the object over the entire width in the width direction, not only the height dimension increases but also the contact portion ( Pressure (shown as A in the figure) rises abnormally,
Not only this wave spring device but also the object may be reached.

【0013】この発明は、このような事情に鑑みてなさ
れたものであり、密着状態の使用が十分に想定され、か
つ十分な強度を有する波形ばね装置を提供することを目
的とするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a corrugated spring device which is sufficiently assumed to be used in a close contact state and has sufficient strength. .

【0014】[0014]

【課題を解決するための手段】この発明の第1の手段
は、環状をなす基体と、この基体に沿って周方向に所定
のピッチで設けられた山谷部とを有する波形ばね装置に
おいて、上記山谷部の最小曲率半径R1 が次式を満足す
ることを特徴とする波形ばね装置である。
A first means of the present invention is a corrugated spring device having a ring-shaped base and peaks and valleys provided at a predetermined pitch in the circumferential direction along the base. The wave spring device is characterized in that the minimum radius of curvature R1 of the mountain valley portion satisfies the following expression.

【0015】[0015]

【数3】 (Equation 3)

【0016】第2の手段は、上記第1の手段の波形ばね
装置において、上記環状の基体は、帯状の素材をこの素
材の板厚方向と平行な軸線回りに曲成することで形成さ
れたものであり、この帯状の素材は、上記基体の内周側
となる部位の板厚および外周側となる部位の板厚が次式
を満たすことを特徴とする波形ばね装置である。
A second means is the wave spring device according to the first means, wherein the annular base body is formed by bending a band-shaped material around an axis parallel to the plate thickness direction of the material. This strip-shaped material is a wave spring device characterized in that the plate thickness of the portion on the inner peripheral side of the base body and the plate thickness of the portion on the outer peripheral side thereof satisfy the following equation.

【0017】[0017]

【数4】 (Equation 4)

【0018】第1の手段によれば、この波形ばね装置を
略板厚にまで押し縮め、上記山谷部を対象物に対して略
平坦状に密着させることができ、この場合でも内部に生
じる応力を低く抑えることができるから、この波形ばね
装置が破損することを有効に防止することができる。
According to the first means, the corrugated spring device can be compressed to a substantially plate thickness so that the peaks and valleys can be brought into close contact with the object in a substantially flat shape. Since it can be kept low, it is possible to effectively prevent the wave spring device from being damaged.

【0019】第2の手段によれば、この波形ばね装置が
帯状の素材を曲成して形成するものである場合に、曲成
後もその断面形状を略矩形状に保つことができる。した
がって、圧縮された場合に対象物に対して面状に密着す
ることができるから、この波形ばね装置および上記対象
物に加わる単位面積当たりの圧力を低く抑えることがで
きる。
According to the second means, when the corrugated spring device is formed by bending a band-shaped material, the cross-sectional shape can be kept substantially rectangular even after the bending. Therefore, when compressed, it can come into close contact with the object in a planar manner, so that the pressure per unit area applied to the corrugated spring device and the object can be suppressed low.

【0020】[0020]

【発明の実施の形態】以下、この発明の一実施形態を図
面を参照して説明する。図1(a)は、この発明の波形
ばね装置を示す斜視図である。この波形ばね装置は、リ
ング状(環状)の基体5を有し、この基体5には所定の
ピッチPで複数の山谷部6…が形成されている。この山
谷部6は、同一曲率半径を有する2つの円弧(山部6a
および谷部6b)を凸方向を逆にして互いに連結してな
る形状をなす。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1A is a perspective view showing the wave spring device of the present invention. This corrugated spring device has a ring-shaped (annular) base 5, and a plurality of peaks and valleys 6 ... Are formed on the base 5 at a predetermined pitch P. The peaks and valleys 6 are two arcs (peaks 6a) having the same radius of curvature.
And the valleys 6b) are connected to each other with the convex directions reversed.

【0021】また、図1(b)はこの波形ばね装置を乗
用車のオートマチックトランスミッション装置に設けた
状態を示す側面図である。同図に7、8で示すのは上記
オートマチックトランスミッション装置に設けられた一
方および他方の押圧体である。オートマチックトランス
ミッション装置においては、上記一対の押圧体7、8が
互いに近接する方向(図に白抜き矢印で示す方向)に押
圧されて上記波形ばね装置(山谷部6)を圧縮するよう
になっている。
FIG. 1 (b) is a side view showing a state in which this wave spring device is provided in an automatic transmission device of a passenger car. In the figure, reference numerals 7 and 8 represent one and the other pressing bodies provided in the automatic transmission device. In the automatic transmission device, the pair of pressing bodies 7 and 8 are pressed in a direction in which they are close to each other (a direction indicated by a white arrow in the figure) to compress the wave spring device (mountain valley portion 6). .

【0022】図2(a)〜(c)は、上記波形ばね装置
の谷部6bの頂部を拡大して示す側面図である。なお、
山部6aについては、この谷部6bと同形状であるの
で、その説明は省略する。
2 (a) to 2 (c) are side views showing the top of the valley portion 6b of the wave spring device in an enlarged manner. In addition,
The crests 6a have the same shape as the troughs 6b, and the description thereof will be omitted.

【0023】同図(a)は非圧縮の状態を示すものであ
り、このとき上記谷部6bの曲率半径はR1 である。ま
た同図に8で示すのは上記他方の押圧体である。また同
図(b)は、上記波形ばね装置が上記一方および他方の
押圧体7、8によって挟まれて圧縮が開始された状態を
示す拡大図である。このとき、上記谷部6bには、図に
矢印(イ)で示す外力が入力され、上記他方の押圧体8
に接した上記谷部6bの頂部に最も高い応力が生じる。
FIG. 5A shows a non-compressed state, in which the radius of curvature of the valley portion 6b is R1. The other pressing body is shown at 8 in the same figure. Further, FIG. 7B is an enlarged view showing a state where the waveform spring device is sandwiched by the one and the other pressing bodies 7 and 8 and the compression is started. At this time, an external force indicated by an arrow (a) in the figure is input to the valley portion 6b, and the other pressing body 8 is
The highest stress is generated at the top of the valley 6b in contact with.

【0024】この応力の大きさは一般に次のように解析
される。すなわち、上記波形ばね装置はこの部分を点支
持されてなる真直梁の連続体に近似され、材料力学の公
式からこの部分の最大応力は次式(1)で表される。
The magnitude of this stress is generally analyzed as follows. That is, the wave spring device is approximated to a continuous body of straight beams in which this portion is point-supported, and the maximum stress of this portion is expressed by the following equation (1) from the material mechanics formula.

【0025】[0025]

【数5】 (Equation 5)

【0026】ただし、ここでEはヤング率、tは材料板
厚、nは一巻あたりの山数、Dはばねの径、δは変位で
ある。なお、上記式(1)は、上記波形ばね装置が上記
谷部6b(山部6a)の頂部で点支持されている状態で
のみ成り立つ式であるが、大きな圧縮力により上記波形
ばね装置がさらに圧縮されると、図2(c)に示すよう
に、上記谷部6bの曲率半径は圧縮力の増大と共に無限
大となる。
Here, E is the Young's modulus, t is the material plate thickness, n is the number of peaks per turn, D is the diameter of the spring, and δ is the displacement. The above formula (1) is a formula that holds only when the wave spring device is point-supported at the apex of the valley portion 6b (ridge portion 6a), but the wave spring device is further increased by a large compression force. When compressed, as shown in FIG. 2C, the radius of curvature of the valley portion 6b becomes infinite as the compressive force increases.

【0027】ここで曲率半径が無限大とは、同図に示す
ように上記谷部6bが平板状となって他方の押圧体8に
密着することを意味し、それ以上曲率半径が変化しない
状態をいう。このとき上記谷部6b(密着部分)の内部
に生じている応力σは、それまでの曲率半径の変化量
(R1 →無限大)から次式(2)で表される。そしてこ
のときの応力σが上記波形ばね装置に生じる実質的な最
大応力値となる。したがって材料の許容応力をσB とす
ると、採りうる曲率半径の最小値は次式(3)のように
なる。
Here, the infinite radius of curvature means that the valley portion 6b becomes a flat plate shape as shown in the same figure and comes into close contact with the other pressing body 8, and the radius of curvature does not change any more. Say. At this time, the stress σ generated inside the valley portion 6b (close contact portion) is expressed by the following equation (2) from the change amount of the radius of curvature (R1 → infinity) up to that point. The stress σ at this time becomes a substantial maximum stress value generated in the wave spring device. Therefore, assuming that the allowable stress of the material is σ B, the minimum value of the radius of curvature that can be taken is given by the following expression (3).

【0028】[0028]

【数6】 (Equation 6)

【0029】一方、上記波形ばね装置の形状(曲率半
径)はスペース的な条件や荷重特性によっても制限され
る。まず、荷重特性からばね径(D)、山数(n)等が
定まる。また、上記2つの押圧体7、8間のスペース
(図1(b)参照)から有効山高さ(自由高さ)(h)
が定まると、図3に示す図形を描くことができ、上記谷
部6b(山部6a)が採りうる最大の曲率半径Rを幾何
学的に求めることができる。すなわち、上記条件におい
て、山部6aおよび谷部6bの曲率を図に示す以上に大
きくすると、山部6aと谷部6bの接続部分がずれてこ
の部分の曲率半径が上記式(3)で示す値よりも小さく
なるおそれがあるからである。この図より以下の条件式
(4)を導くことができる。
On the other hand, the shape (radius of curvature) of the wave spring device is also limited by space conditions and load characteristics. First, the spring diameter (D), the number of peaks (n), etc. are determined from the load characteristics. In addition, the effective mountain height (free height) (h) from the space between the two pressing bodies 7 and 8 (see FIG. 1B).
3 is drawn, the maximum radius of curvature R that can be taken by the valley portion 6b (peak portion 6a) can be geometrically determined. That is, under the above conditions, if the curvature of the peaks 6a and the valleys 6b is made larger than shown in the figure, the connecting portion between the peaks 6a and the valleys 6b is displaced, and the radius of curvature of this portion is expressed by the above formula (3). This is because it may be smaller than the value. From this figure, the following conditional expression (4) can be derived.

【0030】[0030]

【数7】 そして、この式(4)と、上記式(3)とから、上記波
形ばね装置の谷部6b(山部6a)の曲率半径R1 は、
次式(5)で示す範囲にあれば良いこととなる。
(Equation 7) From this equation (4) and the above equation (3), the radius of curvature R1 of the valley portion 6b (peak portion 6a) of the wave spring device is
It suffices if it is within the range shown by the following equation (5).

【0031】[0031]

【数8】 (Equation 8)

【0032】なお、一般(従来)の波形ばね装置におい
ては、変形状態においても常に上記山谷部の頂部は押圧
体と点接触している必要があることから、図4や図5に
示すように、山谷部の頂部の曲率半径(図にRa、Rb
で示す)がかなり小さく設定されている。一方、この発
明の波形ばね装置は以上に述べたように上記山谷部6が
平板状になって各押圧体7、8に密着することを想定し
ているから、採りうる最小の曲率半径はEt/2σB 以
上と、後述するように従来の波形ばね装置の最小曲率半
径よりもかなり大きい。
In a general (conventional) corrugated spring device, the peaks of the peaks and valleys need to be in point contact with the pressing body at all times even in a deformed state. Therefore, as shown in FIGS. , Radius of curvature at the top of the mountain valley (Ra, Rb in the figure
(Shown by) is set to a fairly small value. On the other hand, in the wave spring device of the present invention, as described above, it is assumed that the peaks and valleys 6 are flat and come into close contact with the pressing bodies 7 and 8. Therefore, the minimum radius of curvature that can be taken is Et. This is / 2σB or more, which is considerably larger than the minimum radius of curvature of the conventional wave spring device as will be described later.

【0033】また、この発明の波形ばね装置において
は、上記山部6aと谷部6bの接続部分の形状(図3に
Bで示す部位の形状)も曲率半径Et/2σB 以上でな
ければならない。この条件を満たせばこの接続部分の形
状は特に問われず、直線形状であっても良い。
Further, in the wave spring device of the present invention, the shape of the connecting portion between the peak portion 6a and the valley portion 6b (the shape of the portion indicated by B in FIG. 3) must also be not less than the radius of curvature Et / 2σB. If this condition is satisfied, the shape of this connecting portion is not particularly limited, and may be a linear shape.

【0034】この発明の好ましい実施例の寸法を図6の
表に示す。また同表に、同一設計条件(ばね径、板幅、
山数、自由高さ)で設計された従来品1および従来品2
の諸現を示す。従来品1は、前記式(1)(従来の設計
理想式)の下で本発明品と同荷重(340kgf)で撓
み量(厚さ2.15mm)が等しくなるように頂部にお
ける曲率半径(最小曲率半径)および板厚を定めたもの
であり、従来品2は、板厚を含めて略全ての寸法が本発
明品と等しくなるように上記頂部における曲率半径を定
めたものである。なお、本発明品の上記山谷部6の曲線
形状は同一曲率半径の円弧を直線部で接続してなる形状
をなし、従来品1、2は共に上記山谷部の曲線形状が正
弦曲線(図4に示すものに似た形状)なすものである。
The dimensions of the preferred embodiment of the invention are shown in the table of FIG. In addition, the same design conditions (spring diameter, plate width,
Conventional product 1 and conventional product 2 designed with the number of peaks and free height
Shows the facts of. Conventional product 1 has a radius of curvature (minimum) at the top so that the amount of bending (thickness: 2.15 mm) is equal under the same load (340 kgf) as the product of the present invention under the formula (1) (conventional design ideal formula). The radius of curvature) and the plate thickness are determined, and in the conventional product 2, the radius of curvature at the apex is determined so that almost all dimensions including the plate thickness are equal to those of the product of the present invention. The curved shape of the peaks and valleys 6 of the product of the present invention is a shape in which arcs having the same radius of curvature are connected by a straight line portion. In both the conventional products 1 and 2, the curved shape of the peaks and valleys is a sine curve (see FIG. The shape is similar to that shown in.

【0035】同表に示すように、本発明の最小曲率半径
は上記式(5)の下で算出された最も小さい値であり1
74.6mmとなっているのに対して、従来品1、2で
はこれよりもかなり小さく、それぞれ57.6mm、9
8.7mmとなっている。また、同表の最下段には、同
一の荷重(340kgf)を加えた際の上記山谷部6に
おける内部応力の最大値を示した。
As shown in the table, the minimum radius of curvature of the present invention is the smallest value calculated under the above equation (5) and is 1
While it is 74.6 mm, the conventional products 1 and 2 are considerably smaller than these, and are 57.6 mm and 9 respectively.
It is 8.7 mm. Further, the lowermost part of the table shows the maximum value of the internal stress in the valley portion 6 when the same load (340 kgf) is applied.

【0036】本発明品の場合、上記荷重(340kg
f)を加えた場合、その厚さは、板厚(2.05mm)
に近く、上記山谷部6は、図2(c)に示すように略押
しつぶされて押圧体に密着している。一方、従来の方法
で設計された従来品1は、上記表に示すように同じ荷重
で同じ撓み量ではあるが、内部応力が本発明品よりも2
0パーセントも大きくなっている。
In the case of the product of the present invention, the above load (340 kg
When f) is added, the thickness is the plate thickness (2.05 mm)
2c, the peaks and valleys 6 are substantially crushed and are in close contact with the pressing body as shown in FIG. On the other hand, the conventional product 1 designed by the conventional method has the same load and the same bending amount as shown in the above table, but the internal stress is 2 more than that of the product of the present invention.
It is 0% bigger.

【0037】また、この従来品1よりも板厚が大きく本
発明品と同じ板厚寸法を有する従来品2についても、同
じ荷重を加えた場合には、本発明品よりも17パーセン
トも大きな内部応力が生じている。
Further, regarding the conventional product 2 having a plate thickness larger than that of the conventional product 1 and having the same plate thickness dimension as the product of the present invention, when the same load is applied, the internal content is 17% larger than the product of the present invention. There is stress.

【0038】すなわち、本発明品と従来品1の応力特性
を調べると、図7のグラフに示すようになり、従来品1
の応力特性が極限状態まで直線性を有するのに対して、
本発明品は比較的低い荷重で上記山谷部6が押しつぶさ
れて平板状になるから応力の上昇が飽和し、同じ荷重を
加えた場合でも内部応力の上昇が抑えられるのである。
That is, when the stress characteristics of the product of the present invention and the conventional product 1 are examined, the results are shown in the graph of FIG.
While the stress characteristic of has linearity up to the limit state,
In the product of the present invention, since the peaks and valleys 6 are crushed into a flat plate shape with a relatively low load, the increase in stress is saturated, and the increase in internal stress is suppressed even when the same load is applied.

【0039】このような構成によれば、以下に説明する
効果を得ることができる。すなわち、波形ばね装置の山
谷部6の最小曲率半径を、この山谷部6を略完全に押し
つぶして押圧体7、8に密着させることを想定して設定
するようにしたことで、この波形ばね装置を板厚近くに
まで押しつぶした場合でも、内部の応力値を従来品に比
較してかなり低減することができる。
With this structure, the effects described below can be obtained. That is, the minimum radius of curvature of the peaks and valleys 6 of the wave spring device is set on the assumption that the peaks and valleys 6 are almost completely crushed and brought into close contact with the pressing bodies 7 and 8. Even when is crushed to near the plate thickness, the internal stress value can be considerably reduced compared to the conventional product.

【0040】したがって、上記のような使用状態におい
て波形ばね装置の耐久性を向上させることができ、その
分、設計の自由度が高くなる。すなわち、従来の波形ば
ね装置と比較して板厚を薄くしたり、板幅を狭くするこ
とができるため、波形ばね装置の占有スペースを小さく
できる他、軽量化も図ることができる。
Therefore, the durability of the corrugated spring device can be improved in the above-mentioned usage state, and the degree of freedom in designing can be increased accordingly. That is, as compared with the conventional wave spring device, the plate thickness can be made thinner and the plate width can be made smaller, so that the space occupied by the wave spring device can be reduced and the weight can be reduced.

【0041】このことにより、近年小型、省スペース化
が要望されている乗用車のオートマチックトランスミッ
ション装置にも十分に対応することができ、装置の小型
化等の目的の達成に寄与しうる。
As a result, the automatic transmission device for passenger cars, which has recently been required to be compact and space-saving, can be sufficiently dealt with, which can contribute to the achievement of the object such as the miniaturization of the device.

【0042】また、上述したように、この発明の波形ば
ね装置は耐久荷重がかなり高いので、従来、複数の波形
ばね装置で荷重を受けていたところを、1個の波形ばね
装置に置換することが可能も可能である。
Further, as described above, the waveform spring device of the present invention has a considerably high endurance load. Therefore, a place where a plurality of waveform spring devices are conventionally loaded is replaced with one waveform spring device. It is also possible.

【0043】このことにより、従来複数の波形ばね装置
を用いていた製品において、部品点数が減少し、また組
み立ても容易になる。なお、この発明の波形ばね装置
は、従来例の項で説明したように、帯状の素材を曲成す
ることで形成することも可能である。この場合、この発
明では、曲成後の波形ばね装置の板厚が全幅に亘って略
一定となるように、素材の断面形状を整形しておく。
As a result, the number of parts in the product which conventionally uses a plurality of wave spring devices is reduced, and the assembly is facilitated. The wave spring device of the present invention can also be formed by bending a band-shaped material as described in the section of the conventional example. In this case, in the present invention, the cross-sectional shape of the material is shaped so that the plate thickness of the corrugated spring device after bending is substantially constant over the entire width.

【0044】すなわち、従来例の項で説明したように、
上記帯状の素材を曲成する際、この素材の内周側に圧縮
応力、外周側に引張応力が作用するので、成形後の波形
ばね装置の断面形状が図12(b)に示すように歪んで
しまう。
That is, as explained in the section of the conventional example,
When the band-shaped material is bent, a compressive stress acts on the inner peripheral side of the material and a tensile stress acts on the outer peripheral side thereof, so that the sectional shape of the wave spring device after molding is distorted as shown in FIG. 12 (b). I will get out.

【0045】従来品のように、上記山谷部が押しつぶさ
れない範囲内で使用する場合には、この山谷部とこの山
谷部が当接する対象物との間に生じる圧力はさほど大き
くないので、図12(b)に示すような断面形状であっ
てもあまり大きな影響はない。しかし、この発明の波形
ばね装置の場合には、前述したようにより大きな荷重を
加えて使用することが予想されるので、前記のような断
面形状では、山谷部と押圧体との間に生じる単位面積当
たりの圧力がかなり高くなるということがある。このた
め、この波形ばね装置や上記押圧体の破損につながるお
それがある。
When the product is used within a range in which the peaks and valleys are not crushed as in the conventional product, the pressure generated between the peaks and valleys and the object with which the peaks and valleys contact is not so large. The cross-sectional shape as shown in FIG. 12 (b) does not have a great influence. However, in the case of the corrugated spring device of the present invention, it is expected that a larger load will be applied as described above. Therefore, in the cross-sectional shape as described above, the unit generated between the peaks and valleys and the pressing body is The pressure per area can be quite high. Therefore, this wave spring device or the pressing body may be damaged.

【0046】そこで、この発明では、図8(a)に示す
ように、上記帯状の素材10の、形成後に基体5の外周
側となる部位の厚さto を、形成後に内周側となる部位
の厚さti よりも大きく形成しておくようにした。この
ことで、曲成時に外周側に引張応力、内周側に圧縮応力
が加わることで、曲成後は図8(b)に示すようにこの
波形ばね装置の断面形状が矩形状となる。このために
は、材料力学の公式から、上記to 及びti を次式
(6)に示すような値に設定しておけば良い。
Therefore, in the present invention, as shown in FIG. 8 (a), the thickness to of the portion of the strip-shaped material 10 on the outer peripheral side of the base 5 after formation is set to the portion on the inner peripheral side after formation. The thickness is set to be larger than the thickness t i. As a result, a tensile stress is applied to the outer peripheral side and a compressive stress is applied to the inner peripheral side during bending, so that the sectional shape of this wavy spring device becomes rectangular after bending as shown in FIG. 8B. For this purpose, it is sufficient to set the above-mentioned to and ti to the values shown in the following formula (6) from the formula of material mechanics.

【0047】[0047]

【数9】 なお、ここで、Do は波形ばね装置の外径、Wは板幅、
tc は素材10の平均板厚(基体5の設計板厚)であ
る。
[Equation 9] Here, Do is the outer diameter of the wave spring device, W is the plate width,
tc is an average plate thickness of the material 10 (designed plate thickness of the base 5).

【0048】このような構成によれば、成形後に平均し
た板厚tc の矩形断面を有する波形ばね装置を得ること
ができる。したがって、高い圧力を加えた場合であって
も、波形ばね装置と押圧体8(7)とを全幅に亘って密
着させることができるので、両者間に生じる単位面積あ
たりの圧力を小さくすることができる。したがって、こ
の波形ばね装置や押圧体8が損壊することを有効に防止
できる。
With such a structure, it is possible to obtain a wave spring device having a rectangular cross section with an average plate thickness tc after molding. Therefore, even when a high pressure is applied, the corrugated spring device and the pressing body 8 (7) can be brought into close contact with each other over the entire width, so that the pressure per unit area generated between them can be reduced. it can. Therefore, it is possible to effectively prevent the wave spring device and the pressing body 8 from being damaged.

【0049】なお、この発明は、上記一実施形態に限定
されるものではなく、発明の要旨を変更しない範囲で種
々変形可能である。たとえば、上記一実施形態では、上
記波形ばね装置は、乗用車のオートマチックトランスミ
ッション装置に設けられていたが、これに限定されるも
のではない。他の装置に設けるようにしても良い。
The present invention is not limited to the above-described one embodiment, and can be variously modified without changing the gist of the invention. For example, in the above-described one embodiment, the wave spring device is provided in the automatic transmission device of the passenger car, but the invention is not limited to this. It may be provided in another device.

【0050】また、上記一実施形態においては、上記波
形ばね装置は一巻きであったがこれに限定されるもので
はない。図11(c)に示す従来例のように複数巻きで
構成するようにしても良い。
Further, in the above-described one embodiment, the wave spring device has one winding, but the invention is not limited to this. You may make it comprised by multiple winding like the prior art example shown in FIG.11 (c).

【0051】さらに、山谷部6´は、図9に示すような
形状であっても良い。この波形ばね装置では、山部6´
aは上記一実施形態と同形状であるが、谷部6´bの頂
部は上記一実施形態と異なり平坦状になっている。この
ような形状においても、曲線部の最小曲率半径が前記式
(5)を満たすものであれば、上記一実施形態と同様の
効果を得ることができる。
Furthermore, the peaks and valleys 6'may have a shape as shown in FIG. In this wave spring device, the mountain portion 6 '
Although a has the same shape as that of the above-described embodiment, the top of the valley portion 6'b is flat unlike the above-described embodiment. Even in such a shape, as long as the minimum radius of curvature of the curved portion satisfies the above expression (5), the same effect as in the above-described embodiment can be obtained.

【0052】[0052]

【発明の効果】以上述べた構成によれば、この発明の波
形ばね装置は、山谷部が完全に押しつぶされて平板状に
なる状態にまで圧縮する場合でも損壊することがないた
め、狭いスペースに設けることができかつより高い荷重
を受けることができる効果がある。
According to the structure described above, the corrugated spring device of the present invention does not break even when the peaks and valleys are completely crushed and compressed into a flat plate state, so that it can be installed in a narrow space. There is an effect that it can be provided and can receive a higher load.

【0053】また、帯状の素材を曲成して形成する場合
であっても、この波形ばね装置の当接面を当接対象物と
平行にすることができ、面当接させることができるか
ら、両者間に生じる圧力の増加を抑えることができ、こ
の波形ばね装置および対象物の損壊を有効に防止できる
効果がある。
Further, even when the band-shaped material is bent and formed, the contact surface of the corrugated spring device can be made parallel to the object to be contacted and can be surface-contacted. It is possible to suppress an increase in pressure generated between the two and effectively prevent damage to the corrugated spring device and the object.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施形態を示す斜視図および側面
図。
FIG. 1 is a perspective view and a side view showing an embodiment of the present invention.

【図2】同じく、動作を示す拡大工程図。FIG. 2 is also an enlarged process diagram showing the operation.

【図3】同じく、寸法を示す模式図。FIG. 3 is a schematic diagram showing dimensions as well.

【図4】同じく、従来の波形ばね装置の動作を示す工程
図。
FIG. 4 is a process diagram similarly showing the operation of the conventional wave spring device.

【図5】同じく、従来の波形ばね装置の動作を示す工程
図。
FIG. 5 is a process drawing similarly showing the operation of the conventional wave spring device.

【図6】同じく、本発明品と従来品との性能を比較する
表。
FIG. 6 is a table similarly comparing the performance of the present invention product and the performance of the conventional product.

【図7】同じく、本発明品と従来品の応力特性を比較す
るグラフ。
FIG. 7 is a graph similarly comparing the stress characteristics of the present invention product and the conventional product.

【図8】同じく、断面形状を示す概略斜視図。FIG. 8 is a schematic perspective view showing a sectional shape of the same.

【図9】他の実施形態を示す側面図。FIG. 9 is a side view showing another embodiment.

【図10】従来例を示す斜視図。FIG. 10 is a perspective view showing a conventional example.

【図11】同じく、従来例を示す斜視図。FIG. 11 is a perspective view showing a conventional example.

【図12】同じく、従来例の断面形状を示す概略斜視
図。
FIG. 12 is a schematic perspective view showing a sectional shape of a conventional example.

【符号の説明】[Explanation of symbols]

5…基体、6…山谷部、6a…山部、6b…谷部、R1
…曲率半径。
5 ... Base, 6 ... Mountain valley, 6a ... Mountain, 6b ... Valley, R1
…curvature radius.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 流石 一郎 神奈川県愛甲郡愛川町中津字桜台4056番地 日本発条株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Nagaishi 4056 Sakuradai, Nakatsu, Aikawa-cho, Aiko-gun, Kanagawa Japan

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 環状をなす基体と、この基体に沿って周
方向に所定のピッチで設けられた山谷部とを有する波形
ばね装置において、 上記山谷部の最小曲率半径R1 が次式を満足することを
特徴とする波形ばね装置。 【数1】
1. A corrugated spring device having an annular base and peaks and valleys circumferentially provided along the base at a predetermined pitch, wherein the minimum radius of curvature R1 of the peaks and valleys satisfies the following equation. A wave spring device characterized by the above. [Equation 1]
【請求項2】 請求項1記載の波形ばね装置において、
上記環状の基体は、帯状の素材をこの素材の板厚方向と
平行な軸線回りに曲成することで形成されたものであ
り、この帯状の素材は、上記基体の内周側となる部位の
板厚および外周側となる部位の板厚が次式を満たすこと
を特徴とする波形ばね装置。 【数2】
2. The corrugated spring device according to claim 1,
The annular base body is formed by bending a band-shaped material around an axis parallel to the plate thickness direction of the material, and the band-shaped material is formed on the inner peripheral side of the base body. A corrugated spring device, characterized in that the plate thickness and the plate thickness on the outer peripheral side satisfy the following equation. [Equation 2]
JP18184995A 1995-07-18 1995-07-18 Wave spring device Expired - Fee Related JP3935979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18184995A JP3935979B2 (en) 1995-07-18 1995-07-18 Wave spring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18184995A JP3935979B2 (en) 1995-07-18 1995-07-18 Wave spring device

Publications (2)

Publication Number Publication Date
JPH0932874A true JPH0932874A (en) 1997-02-04
JP3935979B2 JP3935979B2 (en) 2007-06-27

Family

ID=16107903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18184995A Expired - Fee Related JP3935979B2 (en) 1995-07-18 1995-07-18 Wave spring device

Country Status (1)

Country Link
JP (1) JP3935979B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174282A (en) * 2000-12-08 2002-06-21 Piolax Inc Wave coil spring
WO2005005855A1 (en) * 2003-07-06 2005-01-20 Christian Bauer Gmbh + Co. Sinuous spring
DE102004018711A1 (en) * 2004-04-17 2005-11-17 Muhr Und Bender Kg Wave spring with defined progressive spring characteristic
CN105706232A (en) * 2013-10-28 2016-06-22 日本发条株式会社 Pressing structure and pressing unit
CN106996431A (en) * 2017-05-18 2017-08-01 上海核工碟形弹簧制造有限公司 A kind of wavy spring
WO2019167932A1 (en) * 2018-02-28 2019-09-06 日本発條株式会社 Wave spring

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174282A (en) * 2000-12-08 2002-06-21 Piolax Inc Wave coil spring
WO2005005855A1 (en) * 2003-07-06 2005-01-20 Christian Bauer Gmbh + Co. Sinuous spring
DE102004018711A1 (en) * 2004-04-17 2005-11-17 Muhr Und Bender Kg Wave spring with defined progressive spring characteristic
EP1586788A3 (en) * 2004-04-17 2005-11-30 Muhr und Bender KG Wave spring with progressive load-deflection characteristics
US7465138B2 (en) 2004-04-17 2008-12-16 Muhr Und Bender Kg Undulating washer or wave-shaped spring with a defined progressive characteristic spring rate
CN105706232A (en) * 2013-10-28 2016-06-22 日本发条株式会社 Pressing structure and pressing unit
US9955611B2 (en) 2013-10-28 2018-04-24 Nhk Spring Co., Ltd. Pressure structure and pressure unit
CN106996431A (en) * 2017-05-18 2017-08-01 上海核工碟形弹簧制造有限公司 A kind of wavy spring
WO2019167932A1 (en) * 2018-02-28 2019-09-06 日本発條株式会社 Wave spring

Also Published As

Publication number Publication date
JP3935979B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
KR100228003B1 (en) Coiled wave spring and production method thereof
US6669184B2 (en) Composite wave ring spring
US5622358A (en) Wave spring
US20210227704A1 (en) Flexible display screen support structure
US8684342B2 (en) Coil spring
JPH0932874A (en) Waved spring device
JPH0821471A (en) Wavy spring
US5464198A (en) Torsional vibration damper having helical torsion springs
US6050557A (en) Coiled disk spring
JPH0567836U (en) Wave coil spring
JPH07248035A (en) Wavy spring
JP2002039243A (en) Wave coil spring
US6832675B2 (en) Flat disk spring assembly for automatic transmissions
JP3789299B2 (en) Wave coil spring
CN114060441A (en) Wave spring
JPH0554833U (en) Corrugated spring
JPH076536U (en) Wave coil spring
US5014838A (en) Diaphragm spring arrangement for a clutch
JPH11270605A (en) Coil spring
JP2000285982A (en) Terminal and electric wire caulking structure to terminal
JP2004245313A (en) Wave coil spring
JP5056281B2 (en) Energy absorbing member
JP5819253B2 (en) Disc spring
JP7261362B2 (en) Pulsation damping member
JP5134728B2 (en) Corrugated coil spring

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees