JP2004245313A - Wave coil spring - Google Patents

Wave coil spring Download PDF

Info

Publication number
JP2004245313A
JP2004245313A JP2003035242A JP2003035242A JP2004245313A JP 2004245313 A JP2004245313 A JP 2004245313A JP 2003035242 A JP2003035242 A JP 2003035242A JP 2003035242 A JP2003035242 A JP 2003035242A JP 2004245313 A JP2004245313 A JP 2004245313A
Authority
JP
Japan
Prior art keywords
spring
coil spring
wave
wave coil
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003035242A
Other languages
Japanese (ja)
Inventor
Toshikazu Okuno
利和 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKUNO MACHINE CO Ltd
Fukuju Kogyo KK
Original Assignee
OKUNO MACHINE CO Ltd
Fukuju Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKUNO MACHINE CO Ltd, Fukuju Kogyo KK filed Critical OKUNO MACHINE CO Ltd
Priority to JP2003035242A priority Critical patent/JP2004245313A/en
Publication of JP2004245313A publication Critical patent/JP2004245313A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wave coil spring capable of providing an at least two-stage weighting spring of a short stroke. <P>SOLUTION: This wave coil spring is obtained by coiling a single continuous plate spring member 10 waved by waving work in such a way that crests 1 and troughs 2 of waves face each other. It is composed in such a way that the crests 1 and the troughs 2 face each other at non-parallel angles as seen in radial directions. In spite of the stroke similar to that in conventional ones, it is elastically deformed with weak force initially, and then elastically deformed with strong force to make a two-stage weighting spring. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ウエーブ加工により波付けされた金属の板ばね材を、ウエーブの山と谷とが相対向するようにコイル巻きされてなるウエーブコイルスプリング、さらに詳しくは少なくとも2段階加重の反力を持つウエーブコイルスプリングに関する。
【0002】
【従来の技術】
ウエーブコイルスプリングは、帯状の金属板ばね材を波状に形成しながら薄板の厚さ方向にコイル巻きしたものであって、このようなウエーブコイルスプリングは従来から一般に知られている。(例えば、特許文献1及び2参照)。図1は従来のウエーブコイルスプリングの側面図、図2(a)は従来のウエーブコイルスプリングの平面図、(b)は同図A−A線に沿う断面図である。
【0003】
このように従来のウエーブコイルスプリングはスプリングの谷(上側)と山(下側)とが平行しているため、荷重を加えない無負荷(自由長)の状態で山31と谷32の頂部が平行に相対して接触し、スプリングの両端に圧縮加重をかけると山と谷の弓状部分に撓みを生じて所定の反発力が得られる構造となっている。このため、従来のウエーブコイルスプリングは、図7の線図(ロ)に示すように1段階のばね反力しか得られなかった。
【0004】

Figure 2004245313
【0005】
【発明が解決しようとする課題】
従って、従来のウエーブコイルスプリングは反発力を段階的に変化させることができず、利用範囲が限定されるという問題があった。
【0006】
本発明の目的は従来のウエーブコイルスプリングと同じストロークで少なくとも2段階の加重ばねが得られるようにしたウエーブコイルスプリングを提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るウエーブコイルスプリングは、ウエーブ加工により波付けされた板ばね材10をウエーブの山1と谷2とを相対向するようにコイル巻して得られたウエーブコイルスプリングにおいて、山1と谷2とが半径方向から見て非平行に角度を持って相対向し、山1と谷2の面はハの字に開いている。
【0008】
本発明に係るスプリングはストロークが従来のものと全くかわらないにもかからわず、始め弱い力で弾性変形し、その後強い力で弾性変形する2段階加重ばねが得られる。
【0009】
また、上記ウエーブコイルスプリング20において、山1と谷2とが、コイルの内径側に向かってハ字形に開いていることが好ましい。こうすると、集中荷重が中心に働くため弾性変形の中心がずれにくく、より精度が高い。
【0010】
また、上記ウエーブコイルスプリング20は、無負荷(自由長)の状態でウエーブの山1と谷2とが離間して対向するようにしてもよい。
【0011】
このようにすれば、山1と谷2とが点接触するまでと、点接触後山1と谷2の頂部同志が線接触するまでと、線接触後さらに変形して完全に密着するまで、の3段階荷重ばねが得られる。
【0012】
本発明に係るウエーブコイルスプリング20は、全体の形状が円錐形、太鼓型などであってもよい。
【0013】
【実施例】
以下添付図面を参照して本発明の好ましい実施例を説明する。図3乃至図5は、本発明の一実施例を説明するための図である。図3は本発明のウエーブコイルスプリングの側面図、図4(a)は本発明のウエーブコイルスプリングの平面図、(b)は同図B−Bに沿う断面図、また、図5(a)は本発明のウエーブコイルスプリングの全体斜視図であり、(b)は同図中の破線部で囲ったA部分(隣接する波形部の山と谷の対向部分)を模式的に拡大した図である。
【0014】
本発明のウエーブコイルスプリング20は、図5のようにウエーブの山1と谷2の対向部分が平行ではなく、角度をつけることによって山と谷との一部が接触する構造となっている。加重を全く加えない状態、即ちスプリングが自由長のときは、図5(b)の拡大図のように、山と谷の対向部分がハの字に開いているため、側面からみると図4(b)のようにスプリングの内径側(コイルの中心軸側)に「開き」が見られる。言い換えると、山と谷とが密接している部分に略三角形の隙間を備えている。
【0015】
このスプリング20は、荷重を加えると接触部を支点にして捻れが発生する。この捻れが元に戻ろうとする比較的弱い力で反発しながら弾性変形を始める(第1段階)。さらに荷重を加えると、山と谷との全面が密着し、以後(第2段階)はスプリング20全体が強い力で弾性変形する。
【0016】
このため、本発明のウエーブコイルスプリングは、ウエーブ部分の捻れによる弱いばね定数k1と、完全密着後の強いばね定数k2とを備えた2段階の加重ばねとなる。
【0017】
なお、第2段階は、山と谷とが平行な(即ち角度のない)従来のスプリングとほぼ同様の変形動作を行なう。
【0018】
図6(a)乃至(c)は、加重を加えた際のスプリングの変形状態を示したものである。(a)は無負荷の状態でありスプリングは自由長である。(b)は第1段階の弱い力(軽加重)を加えた場合であり、山と谷の頂部同志が点から線接触してスプリングは自由長よりも圧縮した状態である。(c)は最大加重を加え、これによりスプリング全体が弾性変形して大きく縮んだ状態を示している。
【0019】
ー実施例ー
本発明のウエーブコイルスプリングの仕様:
板ばねの板巾(w) 10ミリメートル
板厚(t) 2.45ミリメートル
ウエーブの山数/周(NX) 3.5
有効巻数(Z) 37巻(総巻数 39)
外径(D) 150ミリメートル
内径(d) 130ミリメートル
【0020】
図7はこの仕様のスプリングに対し98万回の疲労試験を行なった後の、加重に対する撓み量を実測したデータ線図(イ)と、従来のスプリングの実測データ(ロ)とを対比したものである。従来のスプリングは、加重に対しほぼ直線的に変化する一段階荷重ばねとして機能しているが、本発明のスプリングは撓みが125mm(荷重190kg、図のA点)に達するとばね定数が大きく変化(増大)していることがわかる。
【0021】
これは、ウエーブの山と谷の接触分がハの字に開いた状態から捻れに反発して山と谷が平行となり全面密着した状態に移行すると、この時点で捻れによる反発力は限界に達するため、これ以上の圧縮力を加えるためにはさらに大きな荷重が必要となるためである。
【0022】
即ち、本発明に係るウエーブコイルスプリングは始め弱い力で変形し、撓みがある大きさ以上になると今度は強い力で変形する2段階荷重ばねとなる。
【0023】
(変形例)
ばねの捻れは、スプリングの内径側(中心軸側)がハの字に開く(つまり、捻れの支点がスプリングの円の外側に存在する)例を示した。この方が集中荷重が中心に働くため弾性変形の中心がずれにくく精度がよいためである。しかし、これとは逆に外側がハの字に開き、中心側が閉じていても、同様の2段階加重ばねが得られる。
【0024】
また、上記実施例のように山と谷との対向部が角度を持った状態でスプリングが自由長のときにウエーブの山と谷とが離間して対向するようにすることもできる。このようにすれば、山と谷の一部が接触するまではストロークの大きいばねとして働く。このようにすると、3段階加重ばねとなる。
【0025】
さらに、スプリングの形状は上記実施例のごとく円柱に限られず、円錐形状や太鼓型形状、角柱形など種々の変形が可能である。
【0026】
【発明の効果】
本発明は、ウエーブ加工により波付けされた板ばね材をウエーブの山と谷とを一定間隔隔てて相対向するようにコイル巻して得られたウエーブコイルスプリングにおいて、山と谷とが半径方向から見て非平行に角度を持って相対向しているため、始め弱い力で弾性変形し、その後強い力で弾性変形する2段階加重ばねが得られる。
【図面の簡単な説明】
【図1】従来のウエーブコイルスプリングの側面図である。
【図2】従来のウエーブコイルスプリングを示し、(a)は平面図、(b)は、同図A−A線に沿う断面図である。
【図3】本発明のウエーブコイルスプリングの側面図である。
【図4】本発明のウエーブコイルスプリングを示し、(a)は平面図、(b)は、同図B−B線に沿う断面図である。
【図5】(a)は本発明のウエーブコイルスプリングの全体斜視図であり、(b)は同図中の破線部で囲ったA部分を模式的に拡大した図である。
【図6】本発明のウエーブコイルスプリングに加重を加えた際の変化を示したもので、(a)は無負荷状態、(b)は軽荷重を加えた状態、(c)は最大荷重を加えた状態を示す。
【図7】本発明のウエーブコイルスプリングに対し、98万回の疲労試験を行なった後の、加重に対する撓み量を実測したデータと、従来のスプリングを実測したデータとの比較線図である。
【符号の説明】
1 山
2 谷
10 板ばね材
20 本発明のウエーブコイルスプリング
30 従来のウエーブコイルスプリング
31 山
32 谷[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wave coil spring formed by winding a metal leaf spring material corrugated by wave processing such that peaks and valleys of the wave are opposed to each other, and more specifically, a reaction force of at least two-stage load. About having a wave coil spring.
[0002]
[Prior art]
The wave coil spring is formed by winding a band-shaped metal leaf spring material into a wave shape and winding the coil in the thickness direction of a thin plate. Such a wave coil spring has been generally known. (See, for example, Patent Documents 1 and 2). FIG. 1 is a side view of a conventional wave coil spring, FIG. 2A is a plan view of the conventional wave coil spring, and FIG. 1B is a cross-sectional view taken along line AA in FIG.
[0003]
As described above, in the conventional wave coil spring, since the valley (upper side) and the ridge (lower side) of the spring are parallel to each other, the peaks of the ridge 31 and the valley 32 are not loaded (free length) and no load is applied. The springs are in parallel contact with each other, and when a compression load is applied to both ends of the spring, the bow-shaped portions of the peaks and valleys are bent to obtain a predetermined repulsive force. For this reason, the conventional wave coil spring can obtain only one-step spring reaction force as shown in the diagram (b) of FIG.
[0004]
Figure 2004245313
[0005]
[Problems to be solved by the invention]
Therefore, the conventional wave coil spring has a problem that the repulsive force cannot be changed in a stepwise manner, and the range of use is limited.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a wave coil spring capable of obtaining at least two stages of weight springs with the same stroke as a conventional wave coil spring.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a wave coil spring according to the present invention is a wave spring obtained by coiling a leaf spring material 10 corrugated by wave processing so that peaks 1 and valleys 2 of the wave are opposed to each other. In the coil spring, the ridges 1 and the valleys 2 face each other at an angle in a non-parallel manner when viewed from the radial direction, and the surfaces of the ridges 1 and the valleys 2 are open in a C shape.
[0008]
The spring according to the present invention can obtain a two-stage load spring that elastically deforms with a weak force at first, and then elastically deforms with a strong force, even though the stroke does not differ from the conventional one at all.
[0009]
In the wave coil spring 20, it is preferable that the peaks 1 and the valleys 2 open in a C shape toward the inner diameter side of the coil. In this case, since the concentrated load acts on the center, the center of the elastic deformation does not easily shift, and the accuracy is higher.
[0010]
The wave coil spring 20 may be configured such that the peaks 1 and the valleys 2 of the wave are opposed to each other with no load (free length).
[0011]
In this way, the peaks 1 and valley 2 are brought into point contact with each other, the point between the peaks of the peaks 1 and valleys 2 are brought into line contact with each other after the point contact, and further deformed and completely adhered after the line contact. A three-stage load spring is obtained.
[0012]
The wave coil spring 20 according to the present invention may have a conical shape, a drum shape, or the like as a whole.
[0013]
【Example】
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. 3 to 5 are diagrams for explaining one embodiment of the present invention. FIG. 3 is a side view of the wave coil spring of the present invention, FIG. 4A is a plan view of the wave coil spring of the present invention, FIG. 3B is a sectional view taken along the line BB of FIG. FIG. 1 is an overall perspective view of a wave coil spring of the present invention, and FIG. 1B is a schematic enlarged view of a portion A (a portion where a peak and a valley of an adjacent corrugated portion oppose each other) surrounded by a broken line in FIG. is there.
[0014]
The wave coil spring 20 of the present invention has a structure in which the wave peaks 1 and valleys 2 are not parallel to each other as shown in FIG. When no load is applied, that is, when the spring has a free length, as shown in the enlarged view of FIG. As shown in (b), an “opening” is seen on the inner diameter side of the spring (the center axis side of the coil). In other words, a substantially triangular gap is provided at a portion where the peak and the valley are in close contact.
[0015]
When a load is applied, the spring 20 twists around the contact portion as a fulcrum. This torsion starts elastic deformation while repelling with a relatively weak force trying to return to the original state (first stage). When a load is further applied, the entire surfaces of the peaks and valleys are brought into close contact, and thereafter (second stage), the entire spring 20 is elastically deformed by a strong force.
[0016]
Therefore, the wave coil spring of the present invention is a two-stage weighted spring having a weak spring constant k1 due to the torsion of the wave portion and a strong spring constant k2 after perfect contact.
[0017]
In the second stage, the same deformation operation as that of a conventional spring in which peaks and valleys are parallel (that is, have no angle) is performed.
[0018]
FIGS. 6A to 6C show the deformed state of the spring when a load is applied. (A) is a no-load state and the spring has a free length. (B) is a case where a first-stage weak force (light load) is applied, and the tops of the peaks and valleys are in line contact from a point, and the spring is compressed more than its free length. (C) shows a state in which the maximum load is applied, whereby the entire spring is elastically deformed and largely contracted.
[0019]
-Example-Specifications of the wave coil spring of the present invention:
Plate width of leaf spring (w) 10 mm plate thickness (t) 2.45 mm crest number of wave / round (NX) 3.5
Effective turns (Z) 37 (total 39)
Outer diameter (D) 150 mm Inner diameter (d) 130 mm
FIG. 7 shows a comparison between a data diagram (a) in which the amount of deflection against the load is measured after a 980,000 fatigue test is performed on a spring of this specification and data (b) in which the conventional spring is measured. It is. The conventional spring functions as a one-step load spring that changes almost linearly with the load, but the spring of the present invention greatly changes its spring constant when the deflection reaches 125 mm (load 190 kg, point A in the figure). (Increase).
[0021]
This is because the contact between the peak and the valley of the wave repels torsion from the state of opening in a C-shape, and the ridge and the valley become parallel and transition to the state of full contact, at this point the repulsive force due to the torsion reaches the limit Therefore, a larger load is required to apply a greater compressive force.
[0022]
That is, the wave coil spring according to the present invention is a two-stage load spring that is initially deformed by a weak force, and is deformed by a strong force when the deflection exceeds a certain magnitude.
[0023]
(Modification)
As for the torsion of the spring, an example is shown in which the inside diameter side (center axis side) of the spring opens in a C shape (that is, the fulcrum of the torsion exists outside the circle of the spring). This is because the concentrated load acts on the center, so that the center of the elastic deformation is less likely to shift, and the accuracy is better. However, conversely, even if the outside is opened in a C shape and the center side is closed, a similar two-stage weighted spring can be obtained.
[0024]
Also, as in the above-described embodiment, the peak and the valley of the wave may be spaced apart and face each other when the spring has a free length in a state where the facing portion between the peak and the valley has an angle. In this way, the spring acts as a large-stroke spring until a part of the peak and the valley come into contact. In this way, a three-stage load spring is obtained.
[0025]
Furthermore, the shape of the spring is not limited to a cylinder as in the above-described embodiment, and various modifications such as a conical shape, a drum shape, and a prism shape are possible.
[0026]
【The invention's effect】
The present invention relates to a wave coil spring obtained by coiling a leaf spring material corrugated by wave processing so that peaks and valleys of the wave are opposed to each other with a predetermined interval between the peaks and valleys in the radial direction. As a result, a two-stage weighted spring is obtained, which is elastically deformed by a weak force at first, and then elastically deformed by a strong force.
[Brief description of the drawings]
FIG. 1 is a side view of a conventional wave coil spring.
FIGS. 2A and 2B show a conventional wave coil spring, wherein FIG. 2A is a plan view and FIG. 2B is a cross-sectional view along the line AA in FIG.
FIG. 3 is a side view of the wave coil spring of the present invention.
4A and 4B show a wave coil spring of the present invention, wherein FIG. 4A is a plan view, and FIG. 4B is a cross-sectional view taken along the line BB in FIG.
FIG. 5A is an overall perspective view of a wave coil spring according to the present invention, and FIG. 5B is a schematic enlarged view of a portion A surrounded by a broken line in FIG.
FIGS. 6A and 6B show changes when a weight is applied to the wave coil spring of the present invention. FIG. 6A shows a state where no load is applied, FIG. 6B shows a state where light load is applied, and FIG. The added state is shown.
FIG. 7 is a comparison diagram of data obtained by actually measuring the amount of deflection with respect to the load after a 980,000 fatigue test is performed on the wave coil spring of the present invention and data obtained by measuring a conventional spring.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 mountain 2 valley 10 leaf spring material 20 wave coil spring 30 of the present invention conventional wave coil spring 31 mountain 32 valley

Claims (3)

ウエーブ加工により波付けされた板ばね材(10)をウエーブの山(1)と谷(2)の頂部が相対向するようにコイル巻して得られたウエーブコイルスプリングにおいて、山(1)と谷(2)とが半径方向から見て非平行となるように角度を持って相対向していることを特徴とするウエーブコイルスプリング。In a wave coil spring obtained by coiling a leaf spring material (10) corrugated by wave processing such that the peaks of the wave peaks (1) and valleys (2) are opposed to each other, A wave coil spring characterized in that the valleys (2) face each other at an angle so as to be non-parallel as viewed from the radial direction. 山(1)と谷(2)とが、半径方向からみてコイルの内径側に向ってハ字形に開いていることを特徴とする請求項1記載のウエーブコイルスプリング。2. The wave coil spring according to claim 1, wherein the ridges (1) and the valleys (2) open in a C shape toward the inner diameter side of the coil when viewed from the radial direction. 無負荷(自由長)の状態で前記ウエーブの山(1)と谷(2)とが離間して対向していることを特徴とする請求項1又は2記載のウエーブコイルスプリング。The wave coil spring according to claim 1 or 2, wherein the ridge (1) and the valley (2) of the wave are opposed to each other with no load (free length).
JP2003035242A 2003-02-13 2003-02-13 Wave coil spring Pending JP2004245313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035242A JP2004245313A (en) 2003-02-13 2003-02-13 Wave coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035242A JP2004245313A (en) 2003-02-13 2003-02-13 Wave coil spring

Publications (1)

Publication Number Publication Date
JP2004245313A true JP2004245313A (en) 2004-09-02

Family

ID=33020723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035242A Pending JP2004245313A (en) 2003-02-13 2003-02-13 Wave coil spring

Country Status (1)

Country Link
JP (1) JP2004245313A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117049A (en) * 2004-10-20 2006-05-11 Favess Co Ltd Electric power steering device
CN101832351A (en) * 2010-05-29 2010-09-15 北华大学 Multi-connection helical spring
JP2015192825A (en) * 2014-03-31 2015-11-05 飛騨産業株式会社 chair
WO2018230491A1 (en) * 2017-06-15 2018-12-20 いすゞ自動車株式会社 Coiled wave spring

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117049A (en) * 2004-10-20 2006-05-11 Favess Co Ltd Electric power steering device
JP4517285B2 (en) * 2004-10-20 2010-08-04 株式会社ジェイテクト Electric power steering device
CN101832351A (en) * 2010-05-29 2010-09-15 北华大学 Multi-connection helical spring
JP2015192825A (en) * 2014-03-31 2015-11-05 飛騨産業株式会社 chair
WO2018230491A1 (en) * 2017-06-15 2018-12-20 いすゞ自動車株式会社 Coiled wave spring
CN110741177A (en) * 2017-06-15 2020-01-31 五十铃自动车株式会社 Spiral corrugated spring
CN110741177B (en) * 2017-06-15 2021-07-30 五十铃自动车株式会社 Spiral corrugated spring

Similar Documents

Publication Publication Date Title
KR100228003B1 (en) Coiled wave spring and production method thereof
US6705813B2 (en) Snap disc device
Neilsen et al. Bifurcations in elastic-plastic materials
US20030222385A1 (en) Composite wave ring spring
JP5580473B2 (en) Captive panel fastener assembly
CN108648629A (en) Rotating shaft mechanism for flexible display screen
US10677307B2 (en) Barrel spring
US4257457A (en) Discharge valve apparatus of compressor
JP6785898B2 (en) Lid stay for furniture
JP2004245313A (en) Wave coil spring
US10070700B1 (en) Lanyard adjuster
EP0704916A1 (en) Output-enlarged piezoelectric clamp device
JPH0821471A (en) Wavy spring
EP2425146A1 (en) Spring and spring assembly
JP2002039243A (en) Wave coil spring
JPH0932874A (en) Waved spring device
CN107408622B (en) Piezoelectric generator, button, radio module and the method for manufacturing piezoelectric generator
CN112997021A (en) Planar folding/twisting compliant joint with integrated membrane
WO2021215260A1 (en) Piezoelectric coil and electronic apparatus
JP2002174282A (en) Wave coil spring
JPH11270605A (en) Coil spring
JP2002276708A (en) Wave coil spring generating repulsion force toward coil center
JP4173353B2 (en) Combination piston ring
RU2107854C1 (en) Spherical part compensator
US20230125356A1 (en) Zoom Lens Assembly with Flat Coil Extension Spring Termination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081010

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081107