JP3816101B2 - 心臓ペースメーカ - Google Patents

心臓ペースメーカ Download PDF

Info

Publication number
JP3816101B2
JP3816101B2 JP51883296A JP51883296A JP3816101B2 JP 3816101 B2 JP3816101 B2 JP 3816101B2 JP 51883296 A JP51883296 A JP 51883296A JP 51883296 A JP51883296 A JP 51883296A JP 3816101 B2 JP3816101 B2 JP 3816101B2
Authority
JP
Japan
Prior art keywords
rate
activity
circuit
value
cardiac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51883296A
Other languages
English (en)
Other versions
JPH10509897A (ja
Inventor
イェリッチ,チャールズ・ジー
コームズ,ウィリアム・ジェイ
クレックナー,カレン・ジェイ
パンケン,エリック・ジェイ
シャルホーン,リチャード・エス
ワールストランド,ジョン・ディー
Original Assignee
メドトロニック・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メドトロニック・インコーポレーテッド filed Critical メドトロニック・インコーポレーテッド
Publication of JPH10509897A publication Critical patent/JPH10509897A/ja
Application granted granted Critical
Publication of JP3816101B2 publication Critical patent/JP3816101B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36585Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by two or more physical parameters

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Description

発明の分野
本発明は、体内に植込み可能な自動心臓ペースメーカの分野に関し、特に、レート応答型心臓ペーシングを行う装置に関する。
発明の背景
心臓ペースメーカは、一般に、異常な心臓の自然のペーシング機能の一部または全てに置換するために用いられる電気装置である。ペースメーカは、典型的に、心筋層を収縮即ち「搏動」を生じるように設計された、時にペーシング脈搏と呼ばれる適切に調時された電気刺激信号を送出するように動作する。技術水準のペースメーカにおいては、刺激信号が送られるレートが変更可能であり、このような変更は患者の物理的活動レベルにおける検知された変化に応答して自動的に生じる。このようなレート即ち活動状態に応答するペースメーカは、自然に生じる(内在性の)心臓の電気的活動を測定し、あるいは患者の心室内部の圧力を測定するセンサからの信号の如き生理学的に基く信号に依存する。このような生理学的に基く信号は、心機能およびペースメーカの介在の必要に関する情報を提供し、これにより酸素飽和血液に対する患者の代謝要求を決定するのに有効である。
酸素飽和血液に対する患者の要求を測定するための1つの一般的な方法は、マイクロフォンの如き圧電型トランスジューサにより患者の物理的活動レベルを監視することである。このような方法を用いるペースメーカは、Anderson等の米国特許第4,485,813号に開示されている。
典型的な従来技術のレート応答型ペースメーカにおいては、ペーシング・レートが活動センサからの出力に従って決定される。ペーシング・レートは予め定めた最大および最小のレベル間で変更可能であり、これらのレベルは複数のプログラム可能な上限および下限のレート設定間から医師によって選択可能である。活動センサ出力が患者の活動レベルが増加したことを示す時、ペーシング・レートは、活動センサの出力の関数として決定される増分量だけプログラムされた比較的低いレートから増加される。即ち、レート応答型ペースメーカにおける応答性レート即ち「目標」ペーシング・レートは下記のように決定される。即ち、
目標レート=プログラムされた低レート+f(センサ出力)
但し、fは典型的にセンサ出力の一次関数、即ち単調関数である。患者の活動が表示され続ける限り、ペーシング・レートは、上式に従って計算されたレートに達するまで(あるいは、このレートとプログラムされた上限レートの低い方に達するまで)、増分量だけ周期的に増加される。このように、増加されたペーシング・レート(即ち、プログラムされた下限レートより高いレート)は、患者の活動期間中維持される。患者の活動が停止すると、プログラムされた下限レートに達するまでペーシング・レートは徐々に低減される。任意の公知のレート応答型ペースメーカにおいては、センサ出力が可能なかぎり患者の実際の代謝需要および生理学的需要と高度に相関し、結果として得られるレート応答性ペーシング・レートが適切なレベルに調整できるようにすることが明らかに望ましい。圧電活動センサは、代謝需要を間接的に決定するためにのみ使用することができる。圧電トランスジューサにより検知される物理的活動は、ある場合には、身体上部の運動によって影響を受け得る。従って、腕の運動を伴う体操は、代謝需要より不当に大きい信号を生じることがある。反対に、自転車に乗ることのような身体下部のみを刺激する体操は、実際の要求がより高いのに代謝需要の低い表示を生じ得る。
従来技術においてこれらの認識された短所に対して、患者の代謝需要の評価において他の生理学的に基くパラメータを用いることが提案されてきた。分時換気量(VE)が患者の実際の代謝需要と生理学的需要と直接的に相関するパラメータであることが臨床的に提示されている。分時換気量は、下式によって定義される。即ち、
E=RR×TV
但し、RRは1分当たりの呼吸における呼吸率(respiration rate)、およびTVはリッタ単位の一回呼吸量(tidal volume)である。臨床的には、VEの測定は、換気量を測定して1分当たりの全体積を計算する装置に対して直接患者に呼吸させることにより行われる。VEの直接測定は、植込み装置の場合は実用的でない。しかし、胸郭のインピーダンス変化の測定は、植込みペースメーカで実現することができ、胸郭を経由する心臓インピーダンスがVEと良好に相関することが示されている。インピーダンス測定能力が提供されたペースメーカは、1987年10月27日発行のNappholz等の米国特許第4,702,253号に開示されている。インピーダンス信号の変化の大きさは一回呼吸量に対応し、変化の周波数は呼吸率に対応している。このように、心臓インピーダンスの測定は、VEデータを取得するための1つの方法として用いることができる。
実際において、心臓インピーダンスは、心臓ペースメーカと関連してペーシングおよび(または)検知のため他の方法で用いられる電極の如き2つ以上の心臓電極間に存在するインピーダンスの評価によって測定することができる。特に、心臓インピーダンスは、電流が心臓組織の一部領域に流れされるように2つの「ソース」電極間に定電流励起パルスを供給することにより測定できることが示されている。心臓組織に励起電流パルスを流すことから生じる電圧差によって反映される如きインピーダンスを確認するため、2つの「記録」電極間の電圧差を測定することができる。このようなインピーダンス測定手法は、心臓ペースメーカの如き植込み可能な装置に関して実施可能であることが証明されている。
Lampadiusの米国特許第4,721,110号には、ペースメーカの基本ペーシング・レートがレオグラフィにより得られる呼吸率信号によって部分的に決定される心臓ペースメーカに対するレオグラフィ装置が記載されている。
心臓における血液のインピーダンスとの呼吸および胸郭経由圧力の変動の相関関係もまた、2つの電極間のインピーダンス測定について記載するAltの米国特許第4,884,576号において認識されている。Altの特許第4,884,576号によれば、インピーダンス信号の低域通過フィルタ処理が、患者の呼吸率が得られる信号を生じ、同じ信号の高域通過フィルタ処理は患者の心機能が観察できる信号を生じる。
現在、レオグラフィ手法を用いて代謝需要に応答してペーシング・レートを調整する幾つかの植込み可能装置が市販されている。例えば、イタリア国BolognaのBiotec International社により製造されるBiorate装置は、双極レオグラフィ装置を用いて患者の呼吸率を監視する。米国コロラロ州EnglewoodのTelectronics社により製造されるMeta−MV装置は、3極レオグラフィ装置を用いて患者の酸素飽和血液の代謝需要を監視する。米国ミネソタ州St.PaulのCPIにより製造されるPrecept装置は、4極レオグラフィ構成を用いて患者の収縮前間隔(PEI)、一回搏出量、および心臓組織の収縮性を監視する。
米国ミネソタ州MinneapolisのMedtronic社により製造され、現在合衆国内の臨床試験を受けているLegend Plus(登録商標)パルス発生器は、レート応答機能の支援にレオグラフィ装置を用いる植込み可能ペースメーカの別の事例である。このLegend Plus(登録商標)は、パルス発生器のカニスタ(不関電極として働く)と静脈経由ペーシング/検知リード線のリング電極との間に2相の励起信号を供給する。Legend Plus(登録商標)におけるインピーダンスの検知は、リード線の先端電極とパルス発生器カニスタ間で行われる。このLegend Plus(登録商標)インピーダンス測定回路は、呼吸と心臓収縮の両方が反映されるインピーダンス波形を生成する。この波形は、先に述べたように、ペースメーカの回路により用いられて分時換気量値VEを得る。Legend Plus(登録商標)は、患者のVEを周期的に評価して、その基本ペーシング・レートをVE値に反映される代謝需要に従って上下に調整する。(Legend Plus(登録商標)装置の種々の特質については、本発明の譲受人に同じく譲渡され参考のためその全容が本文に援用されるWahlstrand等の米国特許第5,271,395号「レート応答型心臓ペーシングのための方法および装置(Method and Apparatus for Rate−Responsive Cardiac Pacing)」)において更に詳細に記載される。)
植込み可能装置と関連するレオグラフィ装置の使用に関する別の開示は、インピーダンス波形を取得するための方法および装置を提案する、1994年4月28日出願のWahlstrand等の係属中の米国特許出願第08/233,901号「心機能の検知のための方法および装置(Method and Apparatus for Sensing of Cardiac Functions)」に見出すことができる。先に述べたLegend Plus(登録商標)において用いられたものと類似のインピーダンス波形の品質を改善するための専用リード線の使用に関するWahlstrand等の米国特許出願は、その全容において参考のため本文に援用される。
植込み可能装置と関連するレオグラフィ装置の使用に関する更に別の開示は、1994年7月19日出願のGianni Plicchi等の係属中の米国特許出願第08/277,051号「時分割多極型レオグラフィ装置(Time−Sharing Multi−Polar Rheography)」に見出すことができる。
先に述べたように、心臓ペースメーカにおける圧電型トランスジューサの利用は、有効ではあるが単に間接的な患者の実際の物理的活動レベルの表示を提供し、このため、患者の代謝需要の増加レベルの擬似正表示または擬似負表示の可能性を許容する。上体の運動と関連する先に述べた問題はこの一例である。
同様に、レオグラフィ技法を用いる心臓内インピーダンスの測定は、患者の呼吸と心臓レートの有効ではあるがやや間接的な表示を提供し、従ってこれもまた患者の代謝需要を決定時に誤りの可能性を許容する。分時換気量レベルを示すための胸郭経由インピーダンスの使用は、上体の筋肉電位干渉および姿勢の変化による高い代謝需要レベルの擬似正表示の潜在性を有することが示される。更にまた、過渡的な血液化学的変化のような徐々に働く生理学的パラメータもまたインピーダンス測定に影響を及ぼし得る。
更に、とりわけ分時換気量の測定における基本的ペーシング・レートは、体操の開始時に最適なペーシング・レートの増加を常に提示するとはかぎらない。一回呼吸量(TV)および呼吸率(RR)のレベルは、CO2レセプタと自律神経系統の応答により、固有の生理学的時間的遅れを有する。VEにおける増加は、増加した心臓出力に対する需要より遅れを生じ得る。
一方、圧電型トランスジューサから得られる活動信号は、典型的に、運動の開始時におけるこの同じ時間的遅れ現象を呈することはない。更に、胸郭経由インピーダンス測定から得られる分時換気量信号は、圧電型センサ信号の傾向よりも広範囲の運動の種類(例えば、自転車乗り、歩き、走り、など)に更に適切に比例しようとする傾向がある。この観点において、圧電的な活動信号および胸郭経由インピーダンスの測定は、患者の代謝需要レベルを確立する上で効率において相互に補完的である。即ち、各検知形式の潜在的な制約は異なる。このことは、圧電型トランスジューサを用いる活動状態の検知と、レオグラフィ技法を用いる分時換気量の検知の組合わせが、患者の代謝需要レベルを正確に追跡する改善された方法を提供することを示唆する。
発明の概要
上記の考察に照らして、本発明は、体内に植込み可能なパルス発生システムにおけるレート応答型心臓ペーシングを実現するための改善された装置に関するものである。
特に、本発明は、患者の生理学的要求における認識される変化に応答して増減する可変ペーシング・レートの決定時のインピーダンスの測定と活動状態の検知の両方を用いるペースメーカに関するものである。
本発明の1つの特質によれば、ペースメーカのインピーダンス検知回路と、(圧電型トランスジューサに基く)活動状態検知回路とは、個々に独立的に動作可能状態および不動作状態にすることができる。いずれか一方の検知回路が不動作状態にされるならば、ペースメーカのレート応答伝達関数(即ち、そのレート応答動作)は、もっぱら動作可能状態のセンサに基く。しかし、両方の検知回路が動作可能状態にされると、レート応答伝達関数は、活動状態検知回路とインピーダンス(分時換気量)検知回路の両方からの寄与を表わす組合わされた、即ち「混合された」活動信号に基くものである。
本発明の別の特質によれば、ペースメーカのインピーダンス検知サブシステムと活動状態検知サブシステムからの出力信号の混合は、活動信号とインピーダンス信号の相互寄与がその時の「センサのレート」の関数として変化する組合わせ信号を生じるように行われる(ここで用いられるセンサ・レートとは、レート応答モードで動作するペースメーカの変化するペーシング・レートを指す)。特に、本発明の望ましい実施形態においては、活動状態センサの出力信号の寄与は、ペースメーカのペーシング・レート範囲の下方終端またはその付近のペーシング・レートに対するセンサのレート値の計算時に優勢であり、インピーダンス・センサの出力信号においては、高いペーシング・レートにおけるセンサ・レートの計算時に優勢である。
本発明の更に別の特質によれば、本文に開示された構成は、患者の代謝需要のある表示を行う異なる種類のセンサ(即ち、インピーダンス・センサおよび活動状態センサ以外のセンサ)からの出力の組合わせ即ち「混合」を容易にすることができるものと信じられる。例えば、本発明の原理が任意の2重検知ペースメーカ、即ち、活動状態の検知、分時換気量の検知、酸素飽和の検知、圧力の検知、Q−T間隔のセンサ、などのある組合わせが可能である任意のペースメーカに適用できると考えられる。このようなセンサの出力は、本発明によれば、活動状態とQ−T検知の両能力、酸素飽和と分時換気量の検知能力、などを有するペースメーカにおけるように、種々の組合わせで組合わすことができる。
【図面の簡単な説明】
本発明の上記および他の特質および特徴は、添付図面に関して本発明の特定の実施の形態の詳細な記述を参照すれば更によく理解することができる。
図1は、人間の患者に植込まれた本発明によるペースメーカの図、
図2は、図1のペースメーカの機能的構成要素を示すブロック図、
図3は、図2のペースメーカにおけるインピーダンス測定回路により得られる励起電流パルスの図、
図4は、レート応答モードにおける図2のペースメーカの動作を示す機能的ブロック図、
図5は、レート応答モードにおける図2のペースメーカの分時換気動作を示す更に別の機能的ブロック図、
図6は、レート応答モードで動作する図2のペースメーカのセンサ混合機能のグラフ表示、および
図7は、レート応答モードで動作する図2のペースメーカのレート伝達関数のグラフ表示である。
本発明の特定の実施の形態の詳細な記述
一般的説明
図1において、本発明の1つの実施形態によるペースメーカ10が患者12に植込まれる図が全体的に示される。当技術における従来の慣例によれば、ペースメーカ10は密閉された生物学的に不活性の外側カニスタ内部に収容され、このカニスタ自体が導電性でありこのためペースメーカのペーシング/検知回路における不関電極として働く。図1の参照番号14a(心室)と14b(心房)で総合的に識別される1つ以上のペースメーカのリード線は、従来の方法でペースメーカ10に電気的に接続されて静脈18を介して患者の心臓16まで延長している。リード線14aおよび14bの遠端部に略々近く配置されているのは、心臓の電気信号を受取り、そして/またはペーシング電気的刺激を心臓16へ送る1つ以上の露呈された導電性電極である。当業者にはよく理解されるように、リード線14aおよび14bはその遠端部を心臓16の心房または心室へ配置させて植込まれる。
次に図2において、本発明の現在開示された実施の形態によりペースメーカ10を構成する電子回路のブロック図が示される。図2から判るように、ペースメーカ10は、主要ペーシング/制御回路20と、活動状態センサ回路21と、分時換気回路22とを含む。主要ペーシング/制御回路20と関連する回路の多くは、例えば、Sivula等の米国特許第5,052,388号「パルス発生器における活動状態検知を実現する方法および装置(Method and Apparatus for Implementing Activity Sensing in a Pulse Generator)」に開示される設計による従来の設計である。Sivula等の特許第5,052,388号は、その全容において参考のため本文に援用される。ペースメーカ10のある構成要素がその設計および動作において完全に周知のものである範囲で、このような構成要素の設計および構成が当業者には周知のことであると考えられるので、この構成要素は本文では詳細には記述されない。例えば、図2の主要ペーシング/制御回路20は、全て当技術では周知のものである、センス増幅器回路24と、ペーシング出力回路26と、水晶クロック28と、ランダム・アクセス・メモリーおよび読出し専用メモリー(RAM/ROM)装置30と、中央処理装置(CPU)32と、テレメトリ回路34とを含む。
ペースメーカ10は、外部プログラマ/制御装置によりプログラムすることができるように、内部テレメトリ回路34を含むことが望ましい。本発明の実施時の使用に適するプログラマおよびテレメトリ・システムは、長年にわたり周知である。
公知のプログラマは、典型的に、2方向性無線周波テレメトリ・リンクを介して植込まれた装置と通信し、プログラマは植込まれた装置により受取られるべき制御コマンドおよび動作パラメータを送出することができ、従って植込まれた装置が診断および演算データをプログラマへ通信することができるようにする。本発明の実施目的に適すると考えられるプログラマは、米国ミネソタ州MinneapolisのMedtronic社から利用可能なモデル9760およびモデル9790プログラマを含む。外部プログラミング装置と植込まれた装置間に必要なチャンネルを提供するための種々のテレメトリ・システムが開発され、当技術において周知である。本発明の実施目的に適すると考えられるテレメトリ・システムは、下記の米国特許に開示されている。例えば、Wyborny等の米国特許第5,127,404号「植込まれた医療装置のためのテレメトリ・フォーマット(Telemetry Format for Implanted Medical Device)」、Markowitzの米国特許第4,374,382号「医療装置のためのマーカー・チャンネル・テレメトリ・システム(Marker Channel Telemetry System for a Medical Device)」、およびThompson等の米国特許第4,556,063号「医療装置用のテレメトリ・システム(Telemetry System for a Medical Device)」。Wyborny等の米国特許第5,127,404号、Markowitzの米国特許第4,374,382号、およびThompson等の米国特許第4,556,063号は、本発明の同じ譲受人に譲渡され、それぞれその全容において参考のため本文に援用される。
典型的に、前掲の米国特許に記載された如きテレメトリ・システムは、外部のプログラミング/処理装置と関連して用いられる。心臓ペースメーカを非侵入的にプログラミングするための1つのプログラマが、前掲のHartlaub等の′884特許に記載されている。
最も一般には、植込み可能な医療装置のためのテレメトリ・システムは、装置における無線周波(RF)送受信機と、外部プログラミング装置における対応するRF送受信機とを用いる。植込み可能な装置の内部では、送受信機がワイヤのコイルを、ダウンリンク・テレメトリ信号を受取り、アップリンク・テレメトリに対するRF信号を送信するアンテナとして利用する。このシステムは、空心結合変成器としてモデル化されている。このようなテレメトリ・システムの一例は、前掲のThompson等の米国特許第4,556,063号に示される。
RFテレメトリを用いてディジタル・データを通信するために、Wyborny等の米国特許第5,127,404号に記載される如きディジタル・コード化方式を使用することができる。特に、ダウンリンク・テレメトリに対しては、パルス間隔変調方式が用いられ、この場合外部プログラマが一連の短RF「バースト」即ちパルスを送出し、このパルスでは連続パルス間の間隔(例えば、1つのパルスの後エッジから次のパルスの後エッジまでの間隔)が送られるべきデータに従って変調される。例えば、より短い間隔がディジタル「0」ビットをコード化し、より長い間隔はディジタル「1」ビットをコード化する。
アップリンク・テレメトリの場合は、パルス位置変調方式がアップリンク・テレメトリ・データをコード化するために用いられる。パルス位置変調のために、複数のタイム・スロットがデータ・フレーム内で定義され、各タイム・スロットの間に送られるパルスの存不在がデータをコード化する。例えば、16位置のデータ・フレームが定義でき、タイム・スロットの1つにおけるパルスがデータの一義的な4ビット位置を表わす。
図1に示されるように、前掲のモデル9760および9790プログラマの如きプログラミング装置が、プログラミング・ヘッドまたはプログラミング・パドル、患者の植込まれた装置の植込み場所における患者の身体に置かれるための手持ち装置の使用により植込まれた装置と典型的にインターフェースする。プログラミング・ヘッドにおける磁石が、テレメトリ・セッションを開始するため植込まれた装置におけるリード・スイッチの閉鎖を行う。その後、アップリンクおよびダウンリンク通信が、植込まれた装置の送信機および受信機と、プログラミング・ヘッド内に配置された受信機および送信機との間に生じる。
図2を引き続き参照して、ペースメーカ10は、植込まれた時、図1に関して先に述べたように、ペースメーカ10の植込み場所と患者の心臓16間に静脈を介して延長するリード線14に接続される。明瞭にするため、リード線14とペースメーカ10の種々の構成要素との間の接続は図2に示されない。当業者には明らかであるが、例えば、リード線14は、心臓の電気信号がセンス増幅器回路24へ伝送できるように、またペーシング・パルスがリード線14を介して心臓組織へ送られるように、一般的な慣例に従ってセンス増幅器回路24およびペーシング出力回路26に直接的あるいは間接的に必ず接続される。
ここで開示された実施の形態において、心房先端部とリング電極(図2のATIPとARING)を有する心房リード線14Aと、心室先端部とリング電極(図2のVTIPとVRING)を有する心室リード線14Vの2つのリード線が用いられる。更に、先に述べたように、ペースメーカ10の導電性の密閉カニスタが不関電極(図2のCASE)として働く。
先に述べたように、主要ペーシング/制御回路20は、すぐ入手可能なプログラム可能マイクロプロセッサまたはマイクロコントローラでよいが、本発明の現在望ましい実施形態ではカスタム集積回路でよい中央処理装置32を含む。CPU32と主要ペーシング/制御回路20の他の構成要素間の特定の接続は図2に示さないが、当業者には、RAM/ROM装置30に記憶されたプログラミングの制御下で、CPU32がペーシング出力回路26およびセンス増幅器回路24の調時動作を制御するように機能する。当業者はこのような動作構成に馴染みがあることと考える。
引き続き図2において、水晶発振回路28、現在望ましい実施形態では32,768Hzの水晶制御発振器が、主要調時クロック信号を主要ペーシング/制御回路20と分時換気回路22へ提供する。
図2に示されるペースメーカ10の種々の構成要素は、当技術における一般的慣例に従って、ペースメーカ10の密閉筺体内に含まれるバッテリ(図示せず)により給電されることを理解すべきである。図面の明瞭性のため、バッテリと、このバッテリとペースメーカ10の他の構成要素間の接続とは示さない。
CPU32により発生される信号の制御下でペーシング刺激を生成するよう機能するペーシング出力回路26は、例えば、全容において参考のため本文に援用されるThompsonの米国特許第4,476、868号「身体スティミュレータ出力回路(Body Stimulator Output Circuit)」に開示されたタイプでよい。しかし、再び、当業者が本発明の実施の目的に適する従来技術のペーシング出力回路の多くの種々のタイプから選択できると考えられる。
図2に示されるように、主要ペーシング/制御回路20は、図2に38として全体的に示される多数の信号線により活動状態センサ回路21と分時換気回路22とに接続される。主要ペーシング/制御回路20におけるI/Oインターフェース40と、活動状態センサ回路21における対応するI/Oインターフェース41と、分時換気回路22における対応するI/Oインターフェース42とが、3つの装置間の信号の伝送を関連付ける。
分時換気の検知
分時換気回路22は、分時換気量に比例すると示された胸郭経由インピーダンスにおける変化を測定する。先に述べたように、分時換気は、一回呼吸量と呼吸率の積であり、このため代謝需要における変化の生理学的指標であり、従って心臓のレートを増加または減少する必要を識別する。
本発明のここで開示される実施の形態によるペースメーカ10は、双極リード線14と3極型測定システムを用いて胸郭経由インピーダンスを測定する。以下に更に詳細に記述するように、分時換気回路22は、双極型リード線14のリング電極と、16Hzのレートで不関電極CASEとして機能するペースメーカ10の導電性カニスタとの間に1mA(ピーク間)の30マイクロ秒の2相電流励起パルスを送る。結果として生じる電圧は、リード線14のTIP電極とペースメーカのCASE電極間で測定される。このようなインピーダンスの測定は、患者の心臓の心房または心室に生じるようにプログラムすることができる。
本発明の当該実施の形態に従ってインピーダンス測定のため送られる2相励起パルスの図が、図3に示される。図3に示されるもののような励起パルスの2相性が、パルスの全エネルギ内容が与えられ、電極の分極が打消され、DC電流が長期のリード線の金属イオンの酸化を避けるため均衡されるならば、励起パルスのピーク振幅が最小化される単相性パルスに勝る利点を提供するものと信じられる。図3に示されるように、2相パルスの各相は約15マイクロ秒だけ継続し、パルスが0.0625秒ごとに1回(即ち、先に述べたように、16Hzのレートで)送られる。
分時換気回路22により得られるインピーダンス信号は、3つの主成分、即ちDCオフセット電圧、心臓の機能から結果として生じる心臓成分、および呼吸成分を有する。心臓成分と呼吸成分の周波数は、これらの生理学的起源と同じものであると見なされる。分時換気回路22により得られるインピーダンス信号の呼吸成分が本発明の目的にとって主な関心であるので、インピーダンス信号は、DC成分および心臓成分を除去するため0.05ないし0.8Hz(毎分3ないし48呼吸に対応)の通過帯域を有する分時換気低域通過フィルタ(MV LPF)47の通過帯域におけるフィルタリングを受ける。
帯域通過フィルタ信号に対する呼吸率×ピークピーク振幅(一回呼吸量)機能を行うためにデルタ変調器回路(DELTAMOD)52とカウンタが用いられる。分時換気量に比例するデルタ変調器カウンタにより生成される値は、MVデータ・レジスタ49に累積される。このMVデータ・レジスタ値は、2ミリ秒ごとに1最下位ビット(LSB)のレートで(190)x(下付きの「x」は16進数を表わす)より小さいか等しいプログラム可能値に増加することができる。この(190)xの値は、インピーダンスにおける1分当たり600Ω(ピークピーク)の変化に対応する。MVデータ・レジスタにおける値は、2秒ごとに更新され、これにより、以下に更に詳細に述べるレート応答アルゴリズムにおけるMV入力となる。
図2に関して、分時換気回路22は実質的に、以下において更に詳細に述べるように、分時換気回路22をVTIP、VRING、ATIP、ARINGおよびCASE電極に選択的に結合し遮断するように機能するマルチプレクサであるリード線インターフェース回路44を含む。
リード線インターフェース回路44に結合されているのは、心臓インピーダンスを測定する目的のためリード電極(VTIP、VRING、など)の種々の組合わせ間に2相の定電流パルスを送るように機能する分時換気励起(MV励起)回路46である。特に、MV励起回路46は、前述のLegend Plus(登録商標)装置により、本発明の譲受人に同じように譲渡されその全容において参考のため本文に援用されるWahlstrand等の米国特許第5,271,395号に記載された方法および装置に従って送られるタイプの2相励起パルスを送出する。
励起パルスがその間に送られる電極は、心房または心室のどちらかのインピーダンスが評価されているかに従って変動することになる。電極の選択は、主要ペーシング/制御回路20により表明される信号の制御下でリード線インターフェース回路44により行われ、バス38で分時換気回路22へ伝送される。先に述べたように、分時換気量の測定は、心臓のいずれかの心室で生じるようにプログラムすることができる。心室ベースの分時換気量の評価のため、例えば、2相パルスを心室リング電極VRINGとペースメーカのカニスタCASE間に16Hzのレートで送ることができる。同様に、心房の分時換気量の評価のためには、パルスを心房リング電極ARINGとCASE間に送ることができる。
心臓インピーダンスを測定するため、分時換気回路22が、先に述べたように励起パルスが注入されるとるときに、電極対間に存在する電圧差を監視する。再び、電圧差が監視される電極は、心房または心室のどちらかの測定が行われているかに従って変動する。本発明の1つの実施形態においては、同じ電極(即ち、心室に対してはVRINGおよびCASE、心房に対してはARINGおよびCASE)が、励起パルスの送出と電圧差の監視の両方のために用いられる。しかし、励起と測定のための電極の組合わせは、プログラミング・システムを用いて植込み後に変更できるプログラム可能な設定間にあり得ると考えられる。
インピーダンス測定前置増幅器回路(ZMEAS REAMP)48は、励起パルスの送出中電圧差測定電極に結合される。ZMEAS PREAMP回路48は、3つの段を含む。第1段は、これも高域通過フィルタリング機能を行う低ノイズ増幅器(当該望ましい実施形態では20の利得を持つ)である。第2段は、利得増幅器(当該望ましい実施形態では8の利得を持つ)である。最終段は、16Hzのサンプル/ホールド回路である。先に述べたように、2相励起パルスが16Hzのレートで送出され、従って、16の電圧差の測定が毎秒行われる。ZMEAS PREAMP回路48のサンプル/ホールド段が、分時換気回路22における残りの回路に与えるためのこれら電圧をそれぞれ保持する。
ZMEAS PREAMP回路48の前置増幅器、利得およびサンプル/ホールド段の設計および構成が当業者には日常の技術事項であろう。従って、ZMEAS PREAMP回路48の設計の詳細については、本文では記述しない。
引き続き図2において、ZMEAS PREAMP回路48からサンプルされた16Hzの出力電圧が、先に述べたように、本発明の現在望ましい実施形態では0.05ないし0.8Hzの通過帯域を持つ分時換気量の低域通過フィルタ回路MV LPF47へ与えられる。再び、MV LPF回路50の設計および構成が当業者には日常事であると考えられる。MV LPF47からの出力は、任意の所与の時間におけるレベルが選択された電極間で測定される心臓インピーダンスに正比例する電圧波形である。このため、MV LPFの出力信号は、ここではインピーダンス波形と呼ばれる。
MV LPF47における帯域通過フィルタ処理後に、前記のインピーダンス波形がデルタ変調器回路DELTAMOD52へ与えられ、これがアナログ/ディジタル変換(ADC)機能を行う。ZMEAS PREAMPのサンプル/ホールド動作により規定される各16Hzサイクルの初めに、DELTAMOD52がMV LPF回路47の出力に存在するインピーダンス波形電圧を直前の16Hzサイクルの間に存在するインピーダンス波形電圧と比較し、これら2つの電圧間の差を表わすΔ値を決定する。
DELTAMOD回路52は、各16Hzサイクルの初めに計算するΔ値を表わすための「ステップ・サイズ」を定義する。本発明の現在望ましい実施形態において、DELTAMOD52は、心室インピーダンス測定のための26mVのステップ・サイズと、心房インピーダンス測定のための14mVのステップ・サイズとを定義する。このため、例えば、2つの連続的な16Hzの電圧測定のための心室インピーダンス波形電圧間の差が260mV(即ち、Δ=260mV)であったならば、DELTAMOD回路52はこれを10のカウント値として表わすことになる((Δ/ステップ・サイズ)=(260mVの26mVによる商))。この場合、DELTAMOD回路52は16Hzサイクルの間10だけMVレジスタ49を増分することになる。
DELTAMOD回路52はカウント値を生成し、ZMEAS PREAMP回路48のサンプルおよびホールド動作により定義される各16Hzサイクルにおいて(即ち、0.0625秒ごと)然るべくMVレジスタ49を増分する。このため、2秒の間隔で、32のこのようなカウント値がMVレジスタ49において生成され加算される。
2秒の間隔ごとの終了時に、MVレジスタ49におけるアキュムレータ値が、以下に詳述される本発明のレート応答アルゴリズムに従って処理するため、I/O線38を介して主要ペーシング/制御回路20へ、特にCPU32へ提供される。当該開示の目的のためには、MVレジスタ49から2秒ごとにCPU32に対して提供される値は、MVカウント(MV COUNT)値と呼ばれることになる。2秒のMVカウント値がCPU32へ与えられる時、MVレジスタ49は別のMVカウント値を得ることに備えてゼロにリセットされる、即ちDELTAMODカウントの別の2秒の値打ちを累算する。
活動状態の検知
前述のように、本発明のここで開示される実施の形態によるペースメーカ10は、その変更可能なレート応答ペーシング・レートを確立する際に活動状態の検知と分時換気量の測定の両方を用いる。本発明の現在望ましい実施形態においては、ペースメーカ10における活動状態センサ回路21は、活動状態の検知を実施するため図2における参照番号60で示される圧電型のマイクロフォンの如きセンサを用いる。圧電型センサ60は、当技術における従来の慣例に従って、ペースメーカの密閉筺体の内面にボンド付けされることが望ましい。このような構成は、例えば、全容において参考のため本文に援用される本発明の譲受人に譲渡された前掲のAnderson等の米国特許第4,485,813号に開示されている。同様な構成は、前掲のSivula等の米国特許第5,052,388号にも開示される。
Sivula等の米国特許第5,052,388号およびAnderson等の米国特許第4,485,813号に開示される如き従来の活動状態応答型ペースメーカ・システムにおけるように、本発明のペースメーカ10における圧電型センサ60は、活動状態センサ回路21における活動信号処理回路ACT PROC62へ生の電気信号を与え、この活動状態回路がペースメーカのレートを確立する際に使用される活動信号を帯域通過濾波して処理する。予め定めた閾値を越える帯域通過濾波された活動信号におけるピークは、システム62によりペーシング・レートにおける増加が保証される充分な大きさの患者活動の表示として解釈される。ペースメーカ10のプログラム可能に選択できる値に含まれる予め定めた閾値は、低い患者活動を表わし、あるいは実際には患者の活動は表わさないセンサ60により検知される物理的ストレスを表わすセンサ出力信号における背景「ノイズ」を除去するために意図される。
予め定めた閾値を越える帯域通過濾波されたセンサ信号におけるピークの各発生は、ここでは「活動状態カウント(ACTIVITY COUNT)」と呼ばれる。活動状態センサ回路21における活動状態レジスタ64に保持される「活動状態カウント」値の和は、予め定めた期間、例えば2秒間隔にわたって計算される。本発明の現在望ましい実施形態によれば、2秒の「活動状態カウント」の和が、MVレジスタ49から主要ペーシング/制御回路20に対する分時換気量アキュムレータ値の提供のための方法と同様に、I/Oバス38を介して主要ペーシング/制御回路20へ与えられる。次いで、CPU32は、以下において更に詳細に述べるように、2秒の「活動状態カウント」値と分時換気量値とをレート応答型「センサのレート」の計算時に用いることができる。
(圧電素子から患者の物理的活動レベルを表わす活動状態「カウント」を取得する概念は、先に述べたAnderson等の特許第4,485,813号およびSivula等の特許第5,052,388号により例示されるように、従来技術では周知であり理解されている。活動状態応答型心臓ペーシングにおいて活動検知を実施するため当業者は圧電型センサを使用することで馴染みであり、かつ本発明の実施目的に適する方法でこのような能力を容易に実現可能であると考えられる。)
レート応答伝達関数
ペースメーカ10の基本レート応答動作に基本的な事項は、(ペースメーカ10が「活動」レート応答モードにプログラムされる時、)検知された物理的活動量に基き、(ペースメーカ10が「分時換気量」レート応答モードにプログラムされる時の)分時換気量に基き、あるいは(ペースメーカ10が「デュアル・」レート応答モードにプログラムされる時)活動状態と分時換気量の混合組合わせに基き、「センサ・レート」を計算することである。このように得られた「センサ・レート」は、水晶発振器28のサイクル(クロック・サイクル)単位における時間間隔として表わされる。
現在望ましい実施形態においては、「センサ・レート(Sensor Rate)」値は、動作可能状態のセンサからの入力に基いて、2秒ごと、即ち、MVレジスタ49における2秒の累積値(MVカウント値)および(または)活動状態レジスタ61からの2秒の累積された「活動状態カウント」値に更新される。ペースメーカ動作の各2秒間隔の終りにどのように更新されたMVカウントと活動状態カウント値が主要ペーシング/制御回路20に与えられるかを述べたので、「センサ・レート」値がこれら値から得られる方法について次に述べることができる。
当業者には理解されるように、分時換気回路22および活動状態センサ回路21からそれぞれ与えられる「MVカウント」と「活動状態カウント」の値に基く「センサ・レート」値の計算は、主要ペーシング/制御回路20の記憶装置30に保持される変数およびプログラム可能値について主としてCPU32により行われる多数の計算を含む。
表1は、本発明のここで開示される実施の形態による「センサ・レート」の決定の以降の記述で用いられる種々の定義、頭文字語および略語を記載する。
Figure 0003816101
Figure 0003816101
表2は、レート応答動作と関連して用いられるペースメーカ10の種々のプログラム可能パラメータを示す。
Figure 0003816101
Figure 0003816101
Figure 0003816101
Figure 0003816101
Figure 0003816101
本発明のここに開示された実施形態に従ってペースメーカ10における分時換気量および活動状態検知に基くセンサ・レートを決定するための全アルゴリズムが、図4の機能的ブロック図に示される。図4における各ブロックは、センサ・レート決定プロセスにおける1つの段階を示す。以下において更に詳細に述べるように、図4に示される多くの段階が、ペーシング/制御装置20(図2参照)におけるCPU32によって実施される。例えば、図4における参照番号100で示されるブロックMV処理は2秒ごとに与えられるMV COUNT値の数値処理の段階に対応し、この数値処理は記憶装置30に記憶されたプログラミング命令の制御下でCPU32によって行われる。同様に、図4に示される他の段階、例えば組合わせ段階104、レート計算段階106、、などは、CPU32により行われる主として数値的な処理を含む。
センサ・レート(Sensor Rate)決定アルゴリズムのMV処理段階100の場合は、図5の機能的ブロック図に示されるように、3つのサブ段階が含まれる。図5のブロック120により示されるMV処理段階における最初のステップは、2秒ごとに分時換気回路22から与えられるMV COUNT値についてのスルーレート制限(MV SlewRateLimit)機能を行うことである。値「LimitedMVCount(制限されたMVカウント)」の計算の結果生じるブロック120の制限機能は、下式に従って行われる。即ち、
LimitedMVCount=MIN{MVCOUNT,INT{LSTA+SlewRateLimitCount×2}}
但し、MV COUNTは分時換気回路22から与えられた最も後の「2秒」MV COUNT値であり、LSTAはMV COUNT値の制限された短期平均値(後で更に詳細に述べる)、SlewRateLimitCountは下式におけるように定義される。即ち、
SlewRateLimitCount=INT(URCount×SlewRateLimit/100)
URCountおよびSlewRateLimitはプログラム可能な一定値、INTおけるMINはそれぞれ周知の整数と最小数学関数である。本発明の現在望ましい実施形態において、URCountは最大センサ・レート値を結果として生じ得る最小のMV COUNT値を反映し、0ないし255からプログラム可能である。SlewRateLimitは、MV COUNT/2およびLSTA間の最大許容正差に対する限度を表わし、URCount値の関数として表わされる。本発明の現在望ましい実施形態においては、SlewRateLimitはURCountの1.5、3、6、12、25、50または100%にプログラム可能であり、さもなければ、OFFである。
LimitedMVCount値を前式に示されように計算した後、MVデルタ・ブロック122により示される図5のブロック図における次のステップは、LimitedDMV(制限されたDMV)、UnlimitedDMV(無制限DMV)、LSTAおよびMaxMVの値を含む他の値の計算および(または)更新におけるLimitedMVCounts値を用いることを含む。
LTA(長期平均)値は、下式に従ってブロック122において再帰的に計算される。即ち、
Figure 0003816101
但し、LongTermTimeは、現在望ましい実施形態においては、略々18時間である(前式では32,768の2秒間隔として表わされる)。
制限された短期平均(LSTA)値は、下式に従って計算される。即ち、
Figure 0003816101
但し、ShortTermTimeは、現在望ましい実施形態においては、32秒である(上式では16個の2秒間隔として表わされる)。
USTA(無制限短期平均)値は、下式に従って計算される。即ち、
Figure 0003816101
LSTA値とLTA値間の差を表わすLimitedDMV値は、下記のように定義される。即ち、
LimitedDMV = MAX(0,INT(LSTA−LTA))
UnlimitedDMV値は、下式に従ってブロック122において計算される。即ち、
UnlimitedDMV = INT(USTA−LTA)
最後に、MaxLimitedMV値は、下式に従ってブロック122において計算される。即ち、
MaxLimitedMV = MAX(LimitedDMV, MaxLimitedMV)
図5のMVデルタ・ブロック122における上記の処理サブステップを実行した後、センサ・レート計算プロセスの次のステップは、図5におけるMVハイ・ブロック124により表わされる。前記MVハイ処理は、延長された期間に対する望ましくない高いレートのペーシングに対する防護策として生じる。分時換気量の検知が予め定めた期間(0、4、8、、、24分にプログラム可能であるUR時間基準として示されるプログラム可能値)に対して連続的にハイであり、かつ活動状態検知回路21が同じ期間中に高められる生理学的需要(以下に述べる)を確証しなければ、いわゆるMVハイの介在が生じる。
本発明の現在望ましい実施形態によれば、上式に述べられる如く計算されたUnlimitedDMV値がURCountより大きければ、分時換気量検知は高すぎると見なされる。一方、ScaledActivityAverage値(定義は以下に更に詳細に述べる)が下式に従って定義される予め定めた(プログラム可能な)ActivityCrossCheckCount値より小さければ、活動状態検知は低すぎると見なされる。即ち、
Figure 0003816101
但し、ActivityCrossCheckLevelは、所与の患者に対して低いと見なされるACTIVITY COUNTレベルを反映しており、ADLCount(「日常生活の活動」カウント)は、患者の日常活動に対して適当であると見なされるレートでペーシングを生じることができるSensorCountの最小数に対応するプログラム可能値である。ActivityCrossCheckLevelは、ADLCountの一部として表わされることが望ましい(例えば、0%、12.5%、25%、37.5%、50%、62.5%、75%、87.5%、100%)。本発明の現在開示される実施の形態においては、いわゆるADLRateはプログラム可能に(毎分40ないし180拍の間に)決定され、ここでADLRateは、所与の患者の日常活動に対して適切であるように植込み医師に見なされるペーシング・レートである。ADLCountは更に、ペースメーカ10をADLRateで搏動させることができるSensorCountに対する最小値を定義する。1つの実施の形態において、ADLCountはURCountの百分率で表わされ、ここでURCountは、ペースメーカ10をそのプログラムされたUpperSensorRate(即ち、MVおよび(または)活動検知モードでペーシングする時、ペースメーカ10の最大ペーシング・レート)で搏動させることができるSensorCountに対する最小値である。(ADL(日常生活の活動)の特徴に関するペースメーカ10の機能およびパラメータについては、以下において更に詳細に述べる。)
MV COUNTをハイ、ACTIVITY COUNTをローと見なすための先に述べた基準に従って、分時換気量が高すぎかつ検知された活動が低すぎるならば、CPU32はMVHighTimeで示される変数を増分し、さもなければ、MVHighTimeはゼロにリセットされる。MVHighTime変数が値URTimeCriteria(先に述べたように定義される)に達するならば、MVハイの介在が生じる。MVハイの介在中、DMVは、下式に従って定義される予め定めた(プログラム可能な)値MVSwitchCountにセットされる。即ち、
Figure 0003816101
MVSwitchLevelは、正常な分時換気プロセシングがMVハイの介在の挿入に従って再開するADLCountの一部を表わすプログラム可能な値である。MVSwitchLevelは、ADLCountの一部(例えば、ADLCountの0、25、50、75、または100%)として表わされることが望ましい。
MVハイの介在中、上式に従って計算されたMVSwitchCountあるいはこれより小となるまで、先に計算されたLimitedDMVが監視され、この時MVハイの介在が終り、DMVがLimitedDMVにリセットされる。
先に述べたように、ACTIVITY COUNT値は活動状態レジスタ64から2秒ごとに集められる。新たなACTIVITY COUNT値がペーシング/制御装置20に与えられるごとに、前のACTIVITY COUNT値が4秒の活動カウント(4SecActCount)値が計算できる順序でレジスタに保持される。特に、4SecActCountは、下式により与えられる。即ち、
4SecActCount = ACTIVITYCOUNT + LastActCount
但し、ACTIVITY COUNTは、その時の2秒の間隔の終りに活動状態センサ回路21における活動状態レジスタ64から得られた値であり、LastActCountは、前の2秒の間隔の終りにレジスタ64から得られたACTIVITY COUNT値である。
従って、4SecActCount値は、ScaledActivityCount値を生じるように分時換気量検知回路21の範囲にスケールされる。このスケーリング動作は、図4のブロック102において生じ、スケールされた活動状態カウント値SActCntの取得を結果として生じる。SActCntは、下式に従って得られる。即ち、
Figure 0003816101
255の天井値はSActCnt値に課される、即ち、上式に従って計算されたSActCnt値が255より大きければ、SActCntは255にセットされる。
先に述べたように、スケールされた活動状態カウント値SActCountの平均値がMVハイの介在および高いレートのクロスチェック演算において使用するため保持される。SActAverageとして示されるこの平均値は、下式に従って計算される。即ち、
Figure 0003816101
また、最大スケール活動状態の平均値MaxSActAverageは、以下に更に詳細に述べるように、活動状態のスケーリングのためCPU32によって保持される。MaxSActAverageは、下式に従って計算される。即ち、
MaxSActAverage = MAX(INT(SActAverage), MaxSActAverage)
本発明の1つの特質によれば、活動状態および分時換気量の両方の検知がペースメーカ10において動作可能状態にされるならば、「混合」機能がセンサ出力について行われる。この混合機能は、活動状態検知がプログラムされたLowerSensorRateから先に述べたように、患者の正常な日常活動レベルに適切と見なされるレートに医師によってプログラム可能である「日常生活の活動」(ADL)レートまでの範囲内でSensorRateに対して影響を有する。安静時は、活動状態の検知がSensorRateの計算において優勢となる。SensorRateが増加するに伴い、分時換気量の検知がより大きな影響を取得し、その結果ADLレートより上では、分時換気量が優勢となる。
活動状態センサ出力と分時換気量センサの「混合」が、図4の組合わせブロック104において生じる。図4に示されるように、図5に関して前に述べたように取得されるDMV値と、活動状態センサから得られたSActCntvlとは、SensorRate計算アルゴリズムの組合わせ段104に入力として与えられる。組合わせ段104において、混合されたセンサ・カウント値Sensor3Countが得られる。第一に、SActCnt値はSActCntとURCountの小さい方にセットされ、即ち、上式に従って得られるSActCntは下式に従ってリセットされる。即ち、
SActCnt = MIN (URCount, SActCnt)
次いで、混合されたセンサ値Sensor3Countは下式に従って計算される。即ち、
Figure 0003816101
さもなければ、
C関数は下式に従って与えられ場合、C1、C2、CS1opelおよびCS1ope2の値がそれぞれ、UpperSensorRateおよびADLRate間の関係に従って、かつADLRateとLowerSensorRate間で変動する。特に、UpperSensorRate≧ADLRate+10ならば、かつADLRate>LowerSensorRate+10ならば、C1、C2、CS1ope1およびCS1ope2が下式により与えられる。即ち、
Figure 0003816101
(上式および他の式において、「間隔」関数は、クロック・サイクル単位で、レート値から間隔値への変換を表わす間隔(x)=7680/xによって与えられる。)
しかし、UpperSensorRate≦ADLRate+10、およびADLRate≧LowerSensorRate+10であるならば、C1、C2、CSlope1およびCSlope2は下式により与えられる。即ち、
Figure 0003816101
一方、UpperSensorRate<ADLRate+10、およびADLRate>LowerSensorRate+10ならば、C1、C2、CSlope1およびCSlope2は下式により与えられる。即ち、
Figure 0003816101
最後に、UpperSensorRate<ADLRate+10、およびADLRate≦LowerSensorRate+10ならば、C1、C2、CSlope1およびCSlope2は下式により与えられる。即ち、
Figure 0003816101
前式に従ってSensor3Count値を計算することに加えて、「センサ・レート」計算アルゴリズムの組合わせ段104に関して行われる別の演算は、上式に従って計算されたScaleActivityAverage値の、上式に関して述べたAcivityCrossCheckCount値に対する比較を含む高レートのクロスチェックである。ScaledActivityAverageがAcivityCrossCheckCountより小さくDMVがMVCrossCheckCountより大きければ、Sensor3CountはMVCrossCheckCountにセットされ、ここでMVCrossCheckCountは下式により与えられる。即ち、
MVCrossCheckCount=ADLWidthCount+
TempOffset
但し、TempOffsetは下式により与えられる。
Figure 0003816101
但し、MVCrossCheckLimitは(URCount−ADLCount)の一部、例えば、0%、12.5%、25%、50%または100%として表わされる。
HighRateCrossCheckがDMVを制限しなければ、SActCnt、Sensor3Countなどに対する式に関して先に述べた組合わせ関数が用いられる。この組合わせ関数は、活動入力がLowerSensorRateからADLRateまで影響を及ぼすように構成される。休息時に、活動状態はこの組合わせ関数において優遇される。SensorRateが増加するに伴い、分時換気量が、ADLRateより上ではSensor3Count=DMVとなるようにより大きな影響を有する。いつも、DMVがSActCntより大きければ、DMVが用いられる。
図4に示される如きSensorRate計算の次の段階は、レート計算(RATE CALC)段106であり、これはプログラムされたUpperSensorRate、プログラムされたADLRate、プログラムされたLowerRate、ADLCountおよびURCountの値、およびADLWidthCountの値からレート応答カーブを構成する。
TargetRate(目標レート)を計算するため、2つの勾配値、RSlope1およびRSlope2と、DLWidthCount値とが、下式に従って計算される。即ち、
Figure 0003816101
次に、TargetRate値は下式に従って計算される。即ち、
Figure 0003816101
但し、値SensorCountは、分時換気量と活動状態の両方の検知が可能にされるならば、上式に従って計算されるようにSensor3Countである。1つセンサが動作可能状態にされなければ、上式におけるSensorCountは動作可能状態にされたセンサからのカウント値である(即ち、分時換気量の検知のみが動作可能状態にされるならば、SensorCount=DMVであり、活動状態の検知のみが動作可能状態にされるならば、SensorCount=SActCntである。)
次に、TargetRate値は、下記のようにTargetInterval値へ変換される。即ち、
Figure 0003816101
これは、図4に示されたアルゴリズムのレート計算段106を締めくくるものである。次の段、スムース(加減速)ブロック108は、SensorIntervalの計算を含み、これは加速度パラメータと減速度パラメータとがペースメーカ10の実際のペーシング・レート(間隔)がどれだけ早く目標レート(間隔)に達し得るかに影響を及ぼすことができる点においてTargetIntervalとは異なり得る。即ち、SensorIntervalは、分時換気量および活動状態の検知入力に基いてTargetRate(間隔)における非常に早い変化に対する可能性にも拘わらず、(自然心臓応答に更に厳密に近似させるために)増加または減少を早すぎないようにされる。
望ましい実施形態によれば、上式により計算されたTargetIntervalがその時のSensorIntervalより小さいかあるいはこれと等しければ、ペーシング・レートがTargetRateに向けて加速するようにSensorIntervalが低減される。プログラム可能なAccelerationパラメータは、ペーシング・レートがどれだけ早くTargetRateに向けて増加するかを制御するために用いられる。加速中、ペースメーカ10は、下記のように新たなSensorIntervalを(2秒ごとに)計算する。即ち、
Figure 0003816101
一方、TargetIntervalがSensorIntervalより大きければ、SensorIntervalは、ペーシング・レートがTargetRateにむけて減速するように増加される。プログラム可能Decelerationパラメータは、ペーシング・レートがどれだけ早くTargetRateに向けて低減するかを制御するために用いられる。減速中、ペースメーカ10は、下記のように新たなSensorIntervalを(2秒ごとに)計算する。即ち、
Figure 0003816101
SensorIntervalに対する上式において、4によるOR演算は、SensorIntervalが常に、少なくともクロック28(図2参照)の1サイクルの4/256に対応する時間量だけ増減されることを保証する。
加速または減速のいずれにおいても、SensorIntervalはプログラムされたLowerRateIntervalを越えること、あるいはプログラムされたUpperSensorRateIntervalより低下することが許されない。
現在望ましい実施形態においては、先に述べたように、AccelerationおよびDecelerationパラメータが植込み医師によってプログラム可能であるパラメータに含まれるが、30秒に対応するAcceleration定数および2.6分に対応するDeceleration定数が適切であると考えられる。更に、本発明はShelton等の米国特許第5,312,453号「レート応答型心臓ペースメーカおよび作業変調ペーシング・レートの減速の方法(Rate Responsive Cardiac Pacemaker and Method for Work Modulating Pacing Rate Deceleration)」に詳細に記載されたものの如き更に堅固な加減速アルゴリズムに関して有効に実施できると考えられる。前記Shelton等の米国特許第5,312,453号は、本発明の譲受人に同様に譲渡され、参考のため全容において本文に援用される。
次に図6および図7において、図1ないし図5および前述の式に関して先に述べた如き分時換気量および活動状態の検知に基く計算から結果として得る、ペースメーカ10に対するレート応答伝達関数の代替的なグラフィック表示が示される。
図6におけるセンサ間隔(Sensor Interval)範囲のグラフにおいて、横軸はクロック28(図2参照)のサイクル単位で示されたセンサ間隔を表わす。図6に示されるように、センサ間隔は、プログラムされたLowerRateInterval(下方レート間隔)(例えば、プログラムされたUpperRateLimit、即ちURLの逆数)と、ペースメーカ10に対して許容され得るペーシング・パルス間の最大間隔(即ち、プログラムされたUpperRateLimit即ちURLの逆数)である、UpperSensorRateInterval(上方センサ・レート間隔)との間の範囲内にある。
図6における縦軸は、計算されたSensorRateに対する分時換気量の寄与および活動状態の寄与の加重を表わす。縦軸上の最低点は、計算されたSensorRateに対するゼロ・パーセントの寄与(即ち、検知された活動または検知された分時換気量のいずれも計算されたSensorRateに何らの作用も及ぼさない)を表わし、縦軸の最高点は100%の寄与を表わしている。
前式に関して先に述べた計算の結果から得るレート応答伝達関数は、図6においてプロット線150で表わされる。特に、検知された分時換気量の影響はプロット線150上方のハッチをかけた領域によって表わされ、検知された活動状態の影響はプロット線150より下方の領域によって示される。図6は、DMVがSActCntより大きい時、分時換気量は常に、レート応答伝達関数において、活動状態の検知に勝ることを示している。このため、ペースメーカ10がプログラムされた下方レート間隔(即ち、プログラムされたURL)においてペーシング中である時、混合機能の出力は検知された患者の「ACTIVITY COUNT(活動状態カウント)」に完全に依存することになる。
LowerRateIntervalにおいて、代替的な方法で表わされると、「活動状態カウント」値は100の加重係数だけ乗じられ、「MVカウント」値は加重係数0によって乗じられる。この加重係数は、SensorRateの決定時に、「活動状態カウント」値および「MVカウント」値の影響即ち優勢を決定する。当業者には理解されるように、1のカウント値に対するゼロの加重係数は、このカウント値がレートの計算に影響を及ぼさないこと、および本発明により決定されるSensorRateがゼロより大きい加重係数を持つカウント値に完全に依存することを示唆する。
引き続き図6において、プロット線150は、プログラムされたLowerRateIntervalと点C1との間のセンサ間隔範囲で下向き勾配CSlope1を有し、センサ間隔範囲における点C1と第2の点C2との間のセンサ間隔範囲で第2の下向き勾配CSlope2を有する。(点C1およびC2は、上式に関して述べた計算に基いて決定される。)このため、図6のグラフにおけるLowerRateIntervalとC1の間では、「活動状態カウント」値に対する加重係数は、ペーシング・レートが増加するに伴ってCSlope1に対応するレートで100から減少し、「MVカウント」値に対する加重係数は、ペーシング・レートが増加するに伴ってCSlope1に対応するレートで0から増加する。
図6に示されるように、検知された分時換気量が計算されたSensorIntervalに及ぼす影響は、センサ間隔範囲において、LowerRateIntervalと点C1との間でゼロから約25%まで徐々に増加し、その影響の増加率は先に定義したようにCSlope1によって決定される。センサ間隔範囲における点C1と点C2との間では、計算されたSensorIntervalに対する検知された分時換気量の影響は、先にCSlope2により決定されたように、更に早く増加する(また逆に、検知された活動状態の影響は更に早く減少する)。最後に、点C2とプログラムされたUpperSensorRateIntervalとの間では、計算されたSensorIntervalは完全に検知された分時換気量に依存する。即ち、点C2とプログラムされたUpperSensorRateIntervalとの間の範囲内では、検知された患者の活動状態はSensorInterval値には何の作用も持たない。即ち、レート応答伝達関数における「活動状態カウント」値に対する加重係数はゼロであるが、レート応答伝達関数における「MVカウント」値に対する加重係数は100である。
図7において、前記の諸式による演算から結果として生じるペースメーカ10のレート応答伝達関数は、横軸に沿ってプロットされる前記式に従って計算される変更可能なSensorCountにより、かつ(図6における如きセンサ間隔範囲ではなく)縦軸に沿って示されるセンサ・レート範囲(SensorRateRange)により別の方法で示される。図7に示されるように、センサ・レート範囲は、先に述べたように、プログラムされたLowerRateInterval(LRL)とプログラムされたUpperSensorRate(USR)間に延在し、SensorCount変数は0と255間の範囲にある。
図7は、SensorCountが0とADLCountとの間にある時、SensorRateが前記式に従って計算されたRSlope1である第1の勾配で増加することを示している。SensorCountがADLCountとADLCount+ADLWidthとの間の範囲にある時、「センサ・レート」はADLRateのレベルにある。ADLCount+ADLWidthとURCountとの間のSensorCountについては、SensorRateは、前記式に従って計算されたRSlope2である第2の勾配で増加する。最後に、URCountと255との間のSensorRateについては、SensorRateはプログラムされたUpperSensorRateのレベルにある。
先に述べたように、本発明の現在開示される実施の形態によるペースメーカ10によって用いられるSensorRate決定アルゴリズムは、図6および図7に示される如きレート応答関数を得るために、幾つかの数値が保持されて周期的に更新されることを要求する。これらの値には、活動状態閾値(どんな程度の物理的活動が代謝需要を増すのに充分な患者の活動を表わすと見なされるかを決定する)と、分時換気量の検知と関連する、LSTA(LimitedShortTermAverage)値とLTA(LongTermAverage)値とが含まれる。本発明の現在望ましい実施形態においては、ActivityThreshold(活動状態閾値)パラメータを、5つの設定;下、中の下、中、中の上、および上の1つにプログラムすることができる。
活動状態閾値の如きペースメーカ10により保持されねばならないこれらの値のあるものは患者単位に変動するが、LSTAおよびLTAの如き他の値は、予め定めた期間(例えば、LTAの場合は、数時間)にわたる患者の一義的な生理学的挙動を反映する。その結果、これらの値を、ペースメーカ10がレート応答モードで動作される前に、患者にとって適切な個人化されたレベルに初期設定されることが必要である。このためには、本発明の現在開示される実施の形態によるペースメーカ10は、自動初期設定能力が備えられている。
本発明の1つの実施形態では、ペースメーカ10は更に、自動植込み検知能力が備えられ、この能力はペースメーカ10を植込みと同時にデフォルト動作設定およびパラメータで動作するように自動的に付勢することを可能にする。このような能力により、以下に述べるレート応答値の自動的初期設定を植込みと同時に自ら初期設定することができる。この能力の1つの用途は、本願と同じ日付でWahlstrand等の名義で出願され、本発明の譲受人に同様に譲渡された係属中の米国特許出願「植込み可能な医療装置のための自動的リード線認識(Automatic Lead Recognition for an Implantable Medical Device)」に詳細に記載されている。Wahlstrand等の米国特許出願は、その全容における参考のため本文に援用される。
自動的植込み検知能力は持たないペースメーカ10の代替的な実施の形態では、ペースメーカ10は、簡単なダウンリンク・テレメトリ・コマンドを介して植込みを「通知」することができ、このコマンドの受取りがペースメーカ10に自動的初期設定手順を始動させる。
いずれの場合も、本発明の現在開示された実施の形態によれば、ペースメーカ10のレート応答動作に関する設定の自動的な初期設定が、植込みの数時間(例えば、6時間)以内に行われることが望ましい。ペースメーカ10の「日常生活活動」(ADL)と関連する値の自動的初期設定の値は、植込み後数日(例えば、10日)以内に行われることが望ましい。
以降の項は、ペースメーカ10のレート応答動作と関連する各値がどのように植込み時に初期設定されるかの概要を示す。即ち、
ActivityThreshold(活動状態閾値)の自動初期設定
植込みが(先に述べたように、自動的に、あるいは医師のプログラミングにより)いったん確認されると、ペーシング/制御回路が各活動閾値設定によりサイクルして、各活動状態設定(即ち、下、中の下、中、中の上、および上)と関連する実行合計に追加するため2秒の活動状態カウントを集める。現在望ましい実施形態においては、これは6時間行われる。2秒の活動状態カウントを集める6時間の後に、活動状態閾値の設定が選択される。本発明の現在望ましい実施形態において、中の下の活動状態閾値で集められた活動状態カウント数が約1/16Hzより小さい(即ち、毎秒16の活動状態カウントより小さい)平均入力周波数に対応するならば、中の下が初期活動状態閾値設定として選択される。さもなければ、中の下、中あるいは中の上の設定は下記のように選択される。即ち、中の下の設定で集められるカウント数が上の設定で集められるカウント数の3倍より小さければ、中の下が選択される。もしそうでなく、中の設定で集められるカウント数が上の設定で選択されるカウント数の3倍より小さければ、中が選択される。さもなければ、中の上が選択される。
LSTAおよびLTAの自動初期設定
植込みがいったん確認されると、LTAが最初MVCountに設定される。次いで、2秒の間隔ごとに、LongTermTimeパラメータの増加する値でLTA計算式を用いてLTAが再計算される。望ましくは、LongTermTimeは、その32,768の最終値に達するまで指数的に(即ち、1、2、4、8、など)増加する。
LTAのこのような初期設定の間、増加する時定数(LongTermTime)の各々がLongTermTime時間として使用され、即ち、1のLongTermTime値が1回用いられ、2のLongTermTime値が2回用いられ、8のLongTermTime値が8回用いられ、などである。このプロトコルが、最初の基線に厳密に適合する平均化関数を結果として生じるが、次は変化に対する抵抗が逓増する。このため、初期設定相から適合モードへの円滑な遷移を可能にする。
LTA初期設定の間最後の32,768LongTermTime定数に達するまで、運動によるLTAの上方への可動域を制限するため「長期フリーズ」機能が課される。この長期フリーズは、(時定数における回数が増分されても)、SensorInterval値がADLRateIntervalまたはそれより少なくそしてMVハイの介在が進行しなければ、所与の2秒の間隔に対して、LTAが更新されることを阻止することにより実現される。
Scaling Factor(スケーリング・ファクタ)の自動初期設定
植込みと同時に、「MVカウント」値により「活動状態カウント」値を校正するため用いられるScalingFactorは、予め定めた患者の活動レベル(例えば、活動状態センサ信号における1秒当たり閾値より3ないし5高いピーク)がSensorRateをADLレート付近で駆動することを許容する値に最初にセットされる。次に、以下に更に詳細に述べるように、ScalingFactorの調整が毎日生じて、「活動状態カウント」値を「MVカウント」値に整合即ち校正する。
日常レート応答動作
ペースメーカ10の日常レート応答動作は、長期センサ・レート・ヒストグラムの更新、レート応答療法の最適化、およびセンサ指標の再スケーリングを含む。
長期センサ・レート・ヒストグラムは、外部のプログラミング装置による照会により、例えば診療所における患者フォローアップ・セッションにおいてペースメーカ10から利用可能なセンサ・レート・ヒストグラムである。センサ指標の再スケーリングは、MVCountと同じスケールにActivityCountを置くために用いられる乗数であるScalingFactor値の調整を含む。レート応答初期設定の完了に続いて、SensorIntervalの計算が可能にされる時、オフにプログラムされていなかったならば、再スケーリングは自動的に動作可能状態にされる。ScalingFactorは、最初、活動状態カウント(例えば、1秒当たり3、4または5の活動状態カウント)の予め定めた周波数がSensorRateをほぼADLRateに駆動することを許容する値にセットされる。次に、スケーリング・ファクタの調整が毎日生じて、活動状態センサ・カウントの範囲を分時換気量センサ・カウントの範囲に整合する。
レート応答療法を最適化するようレート伝達関数を自動的に適合するための手段として最適化が提供される。本発明の現在開示された実施の形態による最適化アルゴリズムは、2つの(ほとんど)独立的な基準を用いて実際の長期センサ・レート・ヒストグラムを所望のセンサ・レート・ヒストグラムに整合させようと試みる。1組の基準が高いレート(HiR)挙動を目標とされ、他はADL挙動を目標とされる。ADLRateかまたはそれより高い実際の事象数が所望の範囲外になるならば、ADLCountが小さすぎる(急激すぎる応答)か、大きすぎる(充分に急激でない応答)かのいずれかであると仮定され、然るべく調整される必要がある。同様に、指定された「高レート」かこれより高い実際の事象数が所望の範囲外になるならば、URCountが小さすぎるか大きすぎると仮定される。長期センサ・レート・ヒストグラムを更新して最適化を行うタスクは一日に1回生じる。
SensorRateの計算アルゴリズム自体については、レート応答動作の最適化と関連する動作をサポートするためCPU32により記憶ブロック30に保持される多数の動的変数値とプログラム可能パラメータが存在する。これらは、下表3において要約される。
Figure 0003816101
Figure 0003816101
Figure 0003816101
先に述べたように、装置10は、予め定義された基準を用いて所望のセンサ・レート分布を決定する。ここで用いられる「センサ・レート分布」とは、どれだけ多くのペーシング・パルスがSensorRate範囲内で可能なレートの各々で送られたかを反映するデータの集まりを指す。一実施形態においては、CPU32は、SensorRate範囲内の可能な各ペーシング・レートごとに「ビン」(例えば、メモリ・ブロック30内の記憶場所)を定義する。各ビンにおける値は、このビンに関連するSensorRateで送られるパルス数を反映する。最適化の基準は、特定の患者に対して所望のセンサ・レート分布をカスタマイズするため医師により調整される。
毎日、その日のSensorRate分布は加重された平均化方式を用いて長期分布に追加される。(ReinitHistoryがセットされるならば、長期分布はクリヤされ、最適化は生じない。)
(再)初期設定の24時間後に、一日の分布が長期分布となる。この後、最後の履歴定数(HistoryTime)が8に達するまで、2進の増加平均化定数が用いられる。
各「ビン」が値LongTermEventを記憶し、それに対して更新式が下式により与えられる。即ち、
Figure 0003816101
但し、HistoryTimeは、8まで2進的に増加する。
長期分布は、外部のプログラミング/診断装置により照会するため利用可能であることが望ましい。
LongTermEvent値の長期分布が保持されるのと同じ方法で、ADLRateIntervalおよびこれより小さくかつHiRateIntervalおよびこれより小さい日常事象および長期事象が保持される。これらの事象は、所望の範囲に比較されてレート応答伝達関数が調整を必要とするかどうかを決定する。(全事象数が一定のままであるゆえに、事象に関する所望の範囲の表現が全事象の百分率での表現に相等する。)
24時間ごとに実行される、ADLRate事象に対する更新式は下記のとおりである。即ち、
Figure 0003816101
同様に、これもまた24時間ごとに実行される高レート事象に対する更新式は下記のとおりである。即ち、
Figure 0003816101
高レートの挙動は、日常事象および長期事象を所望の範囲MinHiREventないしMaxHiREventに比較することにより評価される。事象がこの範囲より低くなれば、このことは、UpperSensorRateにマップされるSensorCount値を減少する必要を示す。事象がこの範囲より高くなれば、このことはUpperSensorRateにマップされるSensorCount値を増加する必要を示す。ADL挙動は、同じように取扱われる。
下記の表4は、長期および日常のADL、および高レート(HiR)および所見に基いてとられる処置を示す。表4において、「処置」欄の値は、以下に示される式に従って更新されたADLCountおよびURCount値を計算するため用いられる値を示す。
Figure 0003816101
上記表4に示される処置に加えて、履歴の(再)初期設定後の予め定めた期間(例えば、10日)以内にADL動作に関して行われる3つの付加的な動作がある。長期と毎日の両履歴が減少の必要を表示した時に行われるこれら動作は下記の如くである。即ち、
Figure 0003816101
但し、RRSensorIsActivityは、活動状態の検知のみが動作可能にされるならば「真」であるブール変数である。
同様に、下記のように、履歴の(再)初期設定後の予め定めた期間(例えば、10日)以内にHiR動作に関して行われる3つの付加的な動作がある。
Figure 0003816101
UpperSensorRateにマップされたSensor3Countを変化させる式(即ち、URCountに対する式)は下記の如くである。
同様に、ADLRateまたはそれより大きな実際の量がMinADLREventより小さいか、あるいはMaxADLREventより大きければ、ADLRateにマップされたSensor3Countは、下式により与えられる如く減少あるいは増加される。即ち、
Figure 0003816101
いずれか一方または両方の調整(即ち、ADLCountまたはURCount)は、日ごとに可能である。ADLCountの調整は、レート伝達関数およびADLCountに依存する任意のパラメータの両方の勾配の再計算を必要とする。URCountの調整は、レート伝達関数およびADLWidthCountを含むURCountに依存する任意のパラメータの上方勾配の再計算を必要とする。両方の調整が必要とされるならば、ADLCount調整が最初に行われる。
MVセンサ範囲と活動センサ範囲との間の関係は時間的に比較的一定であると予期されるが、時間的な変化がスケーリングに反映されることを保証するように日ごとに評価されることが望ましい。
2つの値、MaxMVおよびMaxSActAverageが、2秒ごとに更新される。これらの値は日ごとに比較される。従って、ScalingFactorが下式で与えられるように調整される。即ち、
Figure 0003816101
ScalingFactorが変更されたならば、MaxSActAverageはMaxMVにセットされる。Rescalingは、最適化の調整と同日に発生し得る。この場合、MaxMVは1/64だけ減分されて、時間的にMV信号における減少を許容する。
本発明の特定の実施の形態の以上の詳細な記述から、レート応答型心臓ペーシングのための新規な方法および装置が開示されたことが明らかであろう。本発明の特定の実施の形態をやや詳細に本文に記述したが、この記述は、もっぱら本発明をその種々の特質において例示する目的のためになされたもので、本文の記述が本発明の範囲を限定するものではないことを理解すべきである。本文に特定に記述した構成の選択を含みかつこれに限定されない本発明の本文に開示された実施の形態に対して種々の代替、変更および(または)修正が、請求の範囲に記載される如き本発明の趣旨および範囲から逸脱することなく本発明に対して可能であるものと考えられる。

Claims (10)

  1. 心臓ペースメーカであって、
    トリガ信号に応答して心臓刺激パルスを生成する刺激パルス発生器と、
    心臓電気信号を検出する、前記心臓ペースメーカ内の第1の検知回路と、
    少なくとも一つの導体と、一端で患者の心臓に電気的に接触する少なくとも一つの電極とを有する心臓ペーシング・リードであって、前記刺激パルス発生器からの心臓刺激パルスを患者の心臓に伝導し、且つ心臓電気信号を前記第1の検知回路に伝導する前記心臓ペーシング・リードと、
    前記心臓ペーシング・リードに接続され、患者の分時換気量レベルを示すレベルを有する電気的なインピーダンス・レベル信号を発生するインピーダンス検知回路と、
    患者の活動レベルを示すレベルを有する電気的な活動レベル信号を発生する活動検知回路と、
    前記インピーダンス検知回路からの前記インピーダンス・レベル信号を受け、且つ前記活動検知回路からの前記活動レベル信号を受けるように接続され、現在のレート値と、前記活動レベル信号のレベルおよび前記インピーダンス・レベル信号のレベルの混合されたレベルとの関数として新しいレート値を周期的に発生するレート決定回路であって、新しいレート値は、予め決定された上限および下限によって規定されるレート範囲内にあり、前記活動レベル信号は、前記現在のレート値が前記レート範囲の下方にあるときに、前記レート値の発生に前記インピーダンス・レベル信号より大きな影響を与え、前記インピーダンス・レベル信号は、前記現在のレート値が前記レート範囲の上方にあるときに、前記レート値の発生に前記活動レベル信号より大きな影響を与える、前記レート決定回路と、
    前記刺激パルス発生器、前記第1の検知回路および前記レート決定回路に接続され、周期的に発生された前記新しいレート値に応じて変化するレートで、一連の前記トリガ信号を発生する制御回路と、
    を備えた心臓ペースメーカ。
  2. 前記活動検知回路は、前記患者の身体的な活動レベルを示すパルス状の電気出力信号を生成する圧電型トランスジューサを含む請求項1に記載の心臓ペースメーカ。
  3. 前記インピーダンス検知回路は、
    前記心臓ペーシング・リードに接続された励起電流発生器であって、前記心臓ペーシング・リードの前記少なくとも一つの電極と、第2の電極とを介して、患者の心臓に供給される励起パルスを生成する、前記励起電流発生器と、
    前記少なくとも一つの電極と前記第2の電極とに接続され、患者の心臓に供給される前記励起パルスを与える前記少なくとも一つの電極と前記第2の電極との間の電圧差を測定する電圧差検出回路と、
    を含む請求項1に記載の心臓ペースメーカ。
  4. 心臓ペースメーカであって、
    トリガ信号に応答して心臓刺激パルスを生成する刺激パルス発生器と、
    心臓電気信号を検出する、前記心臓ペースメーカ内の第1の検知回路と、
    少なくとも一つの導体と、一端で患者の心臓に電気的に接触する少なくとも一つの電極とを有する心臓ペーシング・リードであって、前記刺激パルス発生器からの心臓刺激パルスを患者の心臓に伝導し、且つ心臓電気信号を前記第1の検知回路に伝導する前記心臓ペーシング・リードと、
    前記心臓ペーシング・リードに接続され、患者の分時換気量のインピーダンス・レベルを示す値を有する分時換気カウント値を周期的に発生するインピーダンス検知回路と、
    患者の活動レベルを示す値を有する活動カウント値を周期的に発生する活動検知回路と、
    前記インピーダンス検知回路からの分時換気カウント値を受け、且つ前記活動検知回路からの前記活動カウント値を受けるように接続され、入力パラメータとして、現在のレート値と、前記分時換気カウント値および前記活動カウント値の混合された値とを有する伝達関数に従って、新しいレート値を周期的に発生するレート決定回路であって、前記伝達関数は、新しいレート値が予め決定された上限および下限によって規定されるレート範囲内に存在するように定義され、前記伝達関数は更に、前記現在のレート値が前記レート範囲の下方にあるときに、前記活動カウント値が前記伝達関数に従って与えられるレート値に前記分時換気カウント値より大きな影響を与え、前記現在のレート値が前記レート範囲の上方にあるときに、前記分時換気カウント値が前記伝達関数に従って与えられるレート値に前記活動カウント値より大きな影響を与えるように定義される、前記レート決定回路と、
    前記刺激パルス発生器と前記レート決定回路とに接続され、周期的に発生された前記新しいレート値に応じて変化するレートで、一連の前記トリガ信号を発生する制御回路と、
    を備えた心臓ペースメーカ。
  5. 前記伝達関数は更に、前記伝達関数に従って決定されるレート値に対する前記活動カウント値および前記分時換気カウント値の相対的な影響を決定するための少なくとも一つのスケーリング・ファクタを使用するように定義される請求項4に記載の心臓ペースメーカ。
  6. 前記レート決定回路は更に、予め決定された時間間隔にわたって前記ペースメーカのレート応答動作を示すヒストグラム・データを記憶するメモリー回路を含む請求項4に記載の心臓ペースメーカ。
  7. 前記ヒストグラム・データによって示される前記レート応答動作は、予め決定された所望のレート応答データに周期的に比較されること、および前記ペースメーカのレート応答動作が周期的に最適化されるように、前記少なくとも一つのスケーリング・ファクタが前記比較の結果に基づいて周期的に調整される請求項6に記載の心臓ペースメーカ。
  8. 前記活動検知回路は、
    前記患者の身体活動レベルを示すほぼパルス状の活動センサ出力信号を生成する圧電型トランスジューサと、
    予め決定された閾値を超える前記ほぼパルス状の活動センサ出力信号の変位に応答して、活動検出出力信号を発生する閾値検出回路と、
    前記活動検出出力信号の発生に応答して、活動レベル信号として前記レート決定回路に周期的に供給されるカウント値を増分するカウント回路と、
    を含む請求項4に記載の心臓ペースメーカ。
  9. インピーダンス検知回路は、
    前記心臓ペーシング・リードに接続された励起パルス発生回路であって、前記患者の胸郭領域の付近に供給される電流励起パルスを生成する前記励起パルス発生回路と、
    前記心臓ペーシング・リードを介して前記少なくとも一つの電極に接続され、且つ前記患者の胸郭領域の付近に配置される第2の電極に接続された電圧差検出回路であって、前記励起パルスの印加の結果として生じる、前記少なくとも一つの電極と前記第2の電極との間の電圧差を示すインピーダンス・レベル信号を生成する前記電圧差検出回路と、
    前記インピーダンス・レベル信号を受けるように接続されたデルタ変調器回路であって、該デルタ変調器回路が先行するその出力値を与えた後に、前記インピーダンス・レベル信号のレベルにおける変化を示す出力値を周期的に与える前記デルタ変調器回路と、
    前記デルタ変調器回路からの連続する出力値の合計を維持し、且つ分時換気レベル信号として、前記合計を前記レート決定回路に周期的に供給するアキュムレータと、
    を含む請求項4に記載の心臓ペースメーカ。
  10. プロセッサ処理命令のプログラムを記憶するためのディジタル・メモリ・ユニットを更に含み、前記制御回路は、前記伝達関数を処理するために、記憶された前記プログラムを実行するプロセッサを含む請求項4に記載の心臓ペースメーカ。
JP51883296A 1994-11-30 1995-11-13 心臓ペースメーカ Expired - Fee Related JP3816101B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/346,813 1994-11-30
US08/346,813 US5562711A (en) 1994-11-30 1994-11-30 Method and apparatus for rate-responsive cardiac pacing
PCT/US1995/014809 WO1996016695A2 (en) 1994-11-30 1995-11-13 Method and apparatus for rate-responsive cardiac pacing

Publications (2)

Publication Number Publication Date
JPH10509897A JPH10509897A (ja) 1998-09-29
JP3816101B2 true JP3816101B2 (ja) 2006-08-30

Family

ID=23361150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51883296A Expired - Fee Related JP3816101B2 (ja) 1994-11-30 1995-11-13 心臓ペースメーカ

Country Status (6)

Country Link
US (1) US5562711A (ja)
EP (1) EP0794812A2 (ja)
JP (1) JP3816101B2 (ja)
AU (1) AU706142B2 (ja)
CA (1) CA2204499A1 (ja)
WO (1) WO1996016695A2 (ja)

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1281370B1 (it) * 1995-09-29 1998-02-18 Medico S P A Misura di impedenza transvalvolare adatta all'uso in dispositivi impiantabili.
US5792196A (en) * 1996-04-30 1998-08-11 Cooper; Daniel Rate-responsive pacemaker with automatic rate response factor selection
US5755740A (en) * 1996-08-22 1998-05-26 Nappholz; Tibor Pacemaker with automatic calibration of the response of multiple sensors
US5836975A (en) * 1996-12-19 1998-11-17 Medtronic, Inc. Method and apparatus for diagnosis and treatment of arrhythmias
US5817136A (en) * 1997-05-02 1998-10-06 Pacesetter, Inc. Rate-responsive pacemaker with minute volume determination and EMI protection
US5836988A (en) * 1997-05-02 1998-11-17 Pacesetter, Inc. Rate responsive pacemaker with exercise recovery using minute volume determination
US5817135A (en) * 1997-05-02 1998-10-06 Pacesetter, Inc. Rate-responsive pacemaker with noise-rejecting minute volume determination
US6069917A (en) * 1997-05-23 2000-05-30 Lucent Technologies Inc. Blind training of a decision feedback equalizer
US5987356A (en) * 1997-06-05 1999-11-16 Medtronic, Inc. Method and apparatus for diagnosis and treatment of arrhythmias
US5991661A (en) * 1997-10-17 1999-11-23 Pacesetter, Inc. System and method for measuring cardiac activity
FR2771298B1 (fr) * 1997-11-25 2000-01-28 Ela Medical Sa Dispositif medical implantable actif, notamment stimulateur cardiaque, asservi a au moins un parametre physiologique
US6022322A (en) * 1998-02-06 2000-02-08 Intermedics Inc. Non-invasive cardiorespiratory monitor with synchronized bioimpedance sensing
US5978713A (en) 1998-02-06 1999-11-02 Intermedics Inc. Implantable device with digital waveform telemetry
US6076015A (en) * 1998-02-27 2000-06-13 Cardiac Pacemakers, Inc. Rate adaptive cardiac rhythm management device using transthoracic impedance
US6185454B1 (en) 1998-04-29 2001-02-06 Medtronic, Inc. Power consumption reduction in medical devices employing just-in-time voltage control
US6167303A (en) * 1998-04-29 2000-12-26 Medtronic, Inc. Power consumption reduction in medical devices employing just-in-time clock
US6163721A (en) * 1998-04-29 2000-12-19 Medtronic, Inc. Power consumption reduction in medical devices by employing pipeline architecture
US6120467A (en) * 1998-04-30 2000-09-19 Medtronic Inc. Spinal cord simulation systems with patient activity monitoring and therapy adjustments
FR2780290B1 (fr) * 1998-06-26 2000-09-22 Ela Medical Sa Dispositif medical implantable actif asservi tel que stimulateur cardiaque, defibrillateur et/ou cardioverteur, notamment de type multisites
US6119040A (en) * 1998-06-29 2000-09-12 Chirife; Raul Cardiac pacemaker upper rate limit control
US6104949A (en) * 1998-09-09 2000-08-15 Vitatron Medical, B.V. Medical device
WO2000024457A1 (en) 1998-10-26 2000-05-04 Medtronic, Inc. Accelerometer count calculation for activity signal for an implantable medical device
US7912143B1 (en) * 1998-12-23 2011-03-22 And Yet, Inc. Biphase multiple level communications
US6434424B1 (en) 1998-12-28 2002-08-13 Medtronic, Inc. Regularization of ventricular rate during atrial tachyarrhythmia
US6714811B1 (en) 1999-03-05 2004-03-30 Medtronic, Inc. Method and apparatus for monitoring heart rate
US6341236B1 (en) 1999-04-30 2002-01-22 Ivan Osorio Vagal nerve stimulation techniques for treatment of epileptic seizures
US8064997B2 (en) 1999-05-21 2011-11-22 Cardiac Pacemakers, Inc. Method and apparatus for treating irregular ventricular contractions such as during atrial arrhythmia
US6275733B1 (en) 1999-06-16 2001-08-14 Pacesetter, Inc. Dual sensor rate response pacemaker
US6339720B1 (en) 1999-09-20 2002-01-15 Fernando Anzellini Early warning apparatus for acute Myocardial Infarction in the first six hours of pain
US7127290B2 (en) * 1999-10-01 2006-10-24 Cardiac Pacemakers, Inc. Cardiac rhythm management systems and methods predicting congestive heart failure status
US6490485B1 (en) 1999-10-06 2002-12-03 Cardiac Pacemakers, Inc. Automatic rate-adaptive pacing with auto-lifestyle
US6449508B1 (en) * 1999-10-21 2002-09-10 Medtronic, Inc. Accelerometer count calculation for activity signal for an implantable medical device
US6408208B1 (en) 1999-10-28 2002-06-18 Cardiac Pacemakers, Inc. Fully automatic and physiologic rate-adaptive pacing
US6600949B1 (en) 1999-11-10 2003-07-29 Pacesetter, Inc. Method for monitoring heart failure via respiratory patterns
US6752765B1 (en) 1999-12-01 2004-06-22 Medtronic, Inc. Method and apparatus for monitoring heart rate and abnormal respiration
US6589188B1 (en) 2000-05-05 2003-07-08 Pacesetter, Inc. Method for monitoring heart failure via respiratory patterns
US7239914B2 (en) * 2000-05-13 2007-07-03 Cardiac Pacemakers, Inc. Rate smoothing control
US7039461B1 (en) 2000-05-13 2006-05-02 Cardiac Pacemakers, Inc. Cardiac pacing system for prevention of ventricular fibrillation and ventricular tachycardia episode
US8512220B2 (en) 2000-05-26 2013-08-20 Cardiac Pacemakers, Inc. Rate smoothing control
US6522914B1 (en) * 2000-07-14 2003-02-18 Cardiac Pacemakers, Inc. Method and apparatuses for monitoring hemodynamic activities using an intracardiac impedance-derived parameter
US6519495B1 (en) * 2000-08-15 2003-02-11 Cardiac Pacemakers, Inc. Rate-adaptive therapy with sensor cross-checking
US6839593B1 (en) 2000-09-08 2005-01-04 Cardiac Pacemakers, Inc. Rate-adaptive therapy with automatic limiting of maximum pacing rate
US6823214B1 (en) 2000-09-08 2004-11-23 Cardiac Pacemakers, Inc. Self-calibrating rate-adaptive pacemaker
US6681135B1 (en) 2000-10-30 2004-01-20 Medtronic, Inc. System and method for employing temperature measurements to control the operation of an implantable medical device
US7069070B2 (en) * 2003-05-12 2006-06-27 Cardiac Pacemakers, Inc. Statistical method for assessing autonomic balance
US7369890B2 (en) 2000-11-02 2008-05-06 Cardiac Pacemakers, Inc. Technique for discriminating between coordinated and uncoordinated cardiac rhythms
US6629931B1 (en) 2000-11-06 2003-10-07 Medtronic, Inc. Method and system for measuring a source impedance of at least one cardiac electrical signal in a mammalian heart
US6741885B1 (en) 2000-12-07 2004-05-25 Pacesetter, Inc. Implantable cardiac device for managing the progression of heart disease and method
US6689117B2 (en) 2000-12-18 2004-02-10 Cardiac Pacemakers, Inc. Drug delivery system for implantable medical device
US6990375B2 (en) * 2001-03-02 2006-01-24 Cardiac Pacemakers, Inc. Adjustment of the breakpoint of the rate response curve based on minute ventilation values
US6597951B2 (en) * 2001-03-16 2003-07-22 Cardiac Pacemakers, Inc. Automatic selection from multiple cardiac optimization protocols
US6907288B2 (en) * 2001-04-10 2005-06-14 Cardiac Pacemakers, Inc. Cardiac rhythm management system adjusting rate response factor for treating hypotension
US6912420B2 (en) * 2001-04-10 2005-06-28 Cardiac Pacemakers, Inc. Cardiac rhythm management system for hypotension
US7206635B2 (en) * 2001-06-07 2007-04-17 Medtronic, Inc. Method and apparatus for modifying delivery of a therapy in response to onset of sleep
US6731984B2 (en) 2001-06-07 2004-05-04 Medtronic, Inc. Method for providing a therapy to a patient involving modifying the therapy after detecting an onset of sleep in the patient, and implantable medical device embodying same
US6748271B2 (en) * 2001-07-27 2004-06-08 Cardiac Pacemakers, Inc. Method and system for treatment of neurocardiogenic syncope
US7191000B2 (en) 2001-07-31 2007-03-13 Cardiac Pacemakers, Inc. Cardiac rhythm management system for edema
US6721592B2 (en) 2001-09-12 2004-04-13 Medtronic, Inc. Automatic electrogram measurement
US6832113B2 (en) 2001-11-16 2004-12-14 Cardiac Pacemakers, Inc. Non-invasive method and apparatus for cardiac pacemaker pacing parameter optimization and monitoring of cardiac dysfunction
US6885891B2 (en) * 2001-12-31 2005-04-26 Medtronic, Inc. Automatic rate response sensor mode switch
US6963777B2 (en) * 2002-03-13 2005-11-08 Cardiac Pacemakers, Inc. Cardiac rhythm management system and method using time between mitral valve closure and aortic ejection
US7031772B2 (en) * 2002-04-29 2006-04-18 Medtronic, Inc. Method and apparatus for rate responsive adjustments in an implantable medical device
US7123965B2 (en) * 2002-04-30 2006-10-17 Medtronic, Inc. Method and apparatus for injection of external data within an implantable medical device
US7136705B1 (en) 2002-05-31 2006-11-14 Pacesetter, Inc. Method and apparatus for monitoring sensor performance during rate-responsive cardiac stimulation
US7089055B2 (en) * 2002-06-28 2006-08-08 Cardiac Pacemakers, Inc. Method and apparatus for delivering pre-shock defibrillation therapy
US7092757B2 (en) 2002-07-12 2006-08-15 Cardiac Pacemakers, Inc. Minute ventilation sensor with dynamically adjusted excitation current
US7226422B2 (en) 2002-10-09 2007-06-05 Cardiac Pacemakers, Inc. Detection of congestion from monitoring patient response to a recumbent position
US7189204B2 (en) * 2002-12-04 2007-03-13 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US7101339B2 (en) 2002-12-13 2006-09-05 Cardiac Pacemakers, Inc. Respiration signal measurement apparatus, systems, and methods
US7272442B2 (en) 2002-12-30 2007-09-18 Cardiac Pacemakers, Inc. Automatically configurable minute ventilation sensor
US8050764B2 (en) * 2003-10-29 2011-11-01 Cardiac Pacemakers, Inc. Cross-checking of transthoracic impedance and acceleration signals
US7149573B2 (en) * 2003-04-25 2006-12-12 Medtronic, Inc. Method and apparatus for impedance signal localizations from implanted devices
US7133718B2 (en) 2003-06-19 2006-11-07 Medtronic, Inc. Method and apparatus for temporarily varying a parameter in an implantable medical device
US7200440B2 (en) 2003-07-02 2007-04-03 Cardiac Pacemakers, Inc. Cardiac cycle synchronized sampling of impedance signal
US7320675B2 (en) 2003-08-21 2008-01-22 Cardiac Pacemakers, Inc. Method and apparatus for modulating cellular metabolism during post-ischemia or heart failure
EP1512430B1 (de) * 2003-09-02 2008-02-13 Biotronik GmbH & Co. KG Vorrichtung zur Behandlung von Schlaf-Apnoe
US7392084B2 (en) 2003-09-23 2008-06-24 Cardiac Pacemakers, Inc. Demand-based cardiac function therapy
US8428717B2 (en) * 2003-10-14 2013-04-23 Medtronic, Inc. Method and apparatus for monitoring tissue fluid content for use in an implantable cardiac device
US7572226B2 (en) 2003-10-28 2009-08-11 Cardiac Pacemakers, Inc. System and method for monitoring autonomic balance and physical activity
US7657312B2 (en) 2003-11-03 2010-02-02 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US7706884B2 (en) 2003-12-24 2010-04-27 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US8126560B2 (en) 2003-12-24 2012-02-28 Cardiac Pacemakers, Inc. Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US7647114B2 (en) 2003-12-24 2010-01-12 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US9020595B2 (en) 2003-12-24 2015-04-28 Cardiac Pacemakers, Inc. Baroreflex activation therapy with conditional shut off
US20050149129A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baropacing and cardiac pacing to control output
US8024050B2 (en) 2003-12-24 2011-09-20 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US7387610B2 (en) 2004-08-19 2008-06-17 Cardiac Pacemakers, Inc. Thoracic impedance detection with blood resistivity compensation
US7676261B2 (en) * 2004-09-30 2010-03-09 General Electric Company Method and system for enhancing pace pulses
US8108046B2 (en) * 2004-12-17 2012-01-31 Medtronic, Inc. System and method for using cardiac events to trigger therapy for treating nervous system disorders
US8108038B2 (en) * 2004-12-17 2012-01-31 Medtronic, Inc. System and method for segmenting a cardiac signal based on brain activity
US8214035B2 (en) 2004-12-17 2012-07-03 Medtronic, Inc. System and method for utilizing brain state information to modulate cardiac therapy
US8485979B2 (en) * 2004-12-17 2013-07-16 Medtronic, Inc. System and method for monitoring or treating nervous system disorders
US20070239060A1 (en) * 2004-12-17 2007-10-11 Medtronic, Inc. System and method for regulating cardiac triggered therapy to the brain
US8209009B2 (en) * 2004-12-17 2012-06-26 Medtronic, Inc. System and method for segmenting a cardiac signal based on brain stimulation
US8112148B2 (en) * 2004-12-17 2012-02-07 Medtronic, Inc. System and method for monitoring cardiac signal activity in patients with nervous system disorders
US8112153B2 (en) * 2004-12-17 2012-02-07 Medtronic, Inc. System and method for monitoring or treating nervous system disorders
EP1833558B1 (en) * 2004-12-17 2011-10-05 Medtronic, Inc. System for monitoring or treating nervous system disorders
US8209019B2 (en) * 2004-12-17 2012-06-26 Medtronic, Inc. System and method for utilizing brain state information to modulate cardiac therapy
US7981065B2 (en) 2004-12-20 2011-07-19 Cardiac Pacemakers, Inc. Lead electrode incorporating extracellular matrix
US8874204B2 (en) 2004-12-20 2014-10-28 Cardiac Pacemakers, Inc. Implantable medical devices comprising isolated extracellular matrix
US7680534B2 (en) * 2005-02-28 2010-03-16 Cardiac Pacemakers, Inc. Implantable cardiac device with dyspnea measurement
US7493161B2 (en) 2005-05-10 2009-02-17 Cardiac Pacemakers, Inc. System and method to deliver therapy in presence of another therapy
US7499748B2 (en) 2005-04-11 2009-03-03 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
US7603170B2 (en) * 2005-04-26 2009-10-13 Cardiac Pacemakers, Inc. Calibration of impedance monitoring of respiratory volumes using thoracic D.C. impedance
US9089275B2 (en) 2005-05-11 2015-07-28 Cardiac Pacemakers, Inc. Sensitivity and specificity of pulmonary edema detection when using transthoracic impedance
US7907997B2 (en) 2005-05-11 2011-03-15 Cardiac Pacemakers, Inc. Enhancements to the detection of pulmonary edema when using transthoracic impedance
US7617003B2 (en) 2005-05-16 2009-11-10 Cardiac Pacemakers, Inc. System for selective activation of a nerve trunk using a transvascular reshaping lead
US7340296B2 (en) 2005-05-18 2008-03-04 Cardiac Pacemakers, Inc. Detection of pleural effusion using transthoracic impedance
US7616990B2 (en) 2005-10-24 2009-11-10 Cardiac Pacemakers, Inc. Implantable and rechargeable neural stimulator
US8046069B2 (en) * 2005-12-22 2011-10-25 Cardiac Pacemakers, Inc. Method and apparatus for control of cardiac therapy using non-invasive hemodynamic sensor
US7937150B2 (en) * 2006-01-31 2011-05-03 Medtronic, Inc. Lead-carried proximal electrode for quadripolar transthoracic impedance monitoring
WO2007105996A1 (en) * 2006-03-15 2007-09-20 St. Jude Medical Ab Method and implantable medical device for assessing a degree of pulmonary edema of a patient.
EP2035084B1 (en) * 2006-06-21 2010-09-22 St. Jude Medical AB Implantable heart stimulating device with stimulation rate optimization
US8065001B1 (en) * 2007-03-01 2011-11-22 Pacesetter, Inc. Use of implantable body position and body movement sensors
US9381366B2 (en) * 2007-03-16 2016-07-05 Medtronic, Inc. Methods and apparatus for improved IPG rate response using subcutaneous electrodes directly coupled to an implantable medical device (IMD)
US8000788B2 (en) 2007-04-27 2011-08-16 Medtronic, Inc. Implantable medical device for treating neurological conditions including ECG sensing
US7970462B2 (en) 2007-05-29 2011-06-28 Biotronik Crm Patent Ag Implantable medical devices evaluating thorax impedance
EP2135549B1 (en) * 2008-06-17 2013-03-13 Biotronik CRM Patent AG Night respiration rate for heart failure monitoring
US9037237B2 (en) * 2009-07-29 2015-05-19 Medtronic, Inc. Algorithm to modulate atrial-ventricular delay and rate response based on autonomic function
US8538526B2 (en) * 2009-12-17 2013-09-17 Cardiac Pacemakers, Inc. Automatic programming of rate-adaptive therapy via activity monitoring
US10512424B2 (en) 2013-12-23 2019-12-24 Medtronic, Inc. Method and apparatus for selecting activity response vector
US9814887B2 (en) 2014-02-06 2017-11-14 Medtronic, Inc. Selection of optimal accelerometer sensing axis for rate response in leadless pacemaker
US9452292B2 (en) 2014-02-24 2016-09-27 Medtronic, Inc. Method and apparatus for detecting loss of capture
US9724518B2 (en) * 2014-11-25 2017-08-08 Medtronic, Inc. Dynamic patient-specific filtering of an activity signal within a beating heart
US9937352B2 (en) 2015-10-22 2018-04-10 Medtronic, Inc. Rate responsive cardiac pacing control using posture
US10130824B2 (en) 2016-04-28 2018-11-20 Medtronic, Inc. Asystole detection and response in an implantable cardioverter defibrillator
US10207116B2 (en) 2016-12-01 2019-02-19 Medtronic, Inc. Pacing mode switching in a ventricular pacemaker
US10864377B2 (en) 2016-12-01 2020-12-15 Medtronic, Inc. Pacing mode switching in a ventricular pacemaker
US11158179B2 (en) * 2017-07-27 2021-10-26 NXT-ID, Inc. Method and system to improve accuracy of fall detection using multi-sensor fusion
CN111886046A (zh) 2018-03-23 2020-11-03 美敦力公司 Av同步vfa心脏治疗
CN111902187A (zh) 2018-03-23 2020-11-06 美敦力公司 Vfa心脏再同步治疗
EP3768160B1 (en) 2018-03-23 2023-06-07 Medtronic, Inc. Vfa cardiac therapy for tachycardia
US10780281B2 (en) 2018-03-23 2020-09-22 Medtronic, Inc. Evaluation of ventricle from atrium pacing therapy
CN112312959B (zh) 2018-06-28 2024-10-15 美敦力公司 心室起搏器中的起搏模式切换
US20200069949A1 (en) 2018-08-31 2020-03-05 Medtronic, Inc. Adaptive vfa cardiac therapy
CN112770807A (zh) 2018-09-26 2021-05-07 美敦力公司 心房至心室心脏疗法中的捕获
US11951313B2 (en) 2018-11-17 2024-04-09 Medtronic, Inc. VFA delivery systems and methods
US20200197705A1 (en) 2018-12-20 2020-06-25 Medtronic, Inc. Implantable medical device delivery for cardiac therapy
US20200197706A1 (en) 2018-12-21 2020-06-25 Medtronic, Inc. Delivery systems and methods for left ventricular pacing
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11701517B2 (en) 2019-03-11 2023-07-18 Medtronic, Inc. Cardiac resynchronization therapy using accelerometer
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
US12005259B2 (en) 2020-09-10 2024-06-11 Medtronic, Inc. Dual sensors to control pacing rate
US20230381523A1 (en) 2022-05-25 2023-11-30 Medtronic, Inc. Single channel sensing using vfa device
WO2023230147A1 (en) 2022-05-25 2023-11-30 Medtronic, Inc. Tachyarrhythmia detection using vfa devices

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476868A (en) * 1978-11-06 1984-10-16 Medtronic, Inc. Body stimulator output circuit
US4556063A (en) * 1980-10-07 1985-12-03 Medtronic, Inc. Telemetry system for a medical device
US4374382A (en) * 1981-01-16 1983-02-15 Medtronic, Inc. Marker channel telemetry system for a medical device
US4485813A (en) * 1981-11-19 1984-12-04 Medtronic, Inc. Implantable dynamic pressure transducer system
US4527568A (en) * 1983-12-27 1985-07-09 Vitafin N.V. Dual chamber pacer with alternative rate adaptive means and method
DE3419439C1 (de) * 1984-05-24 1985-11-21 Eckhard Dr. 8000 München Alt Belastungsabhaengig frequenzvariabler Herzschrittmacher
US4782836A (en) * 1984-05-24 1988-11-08 Intermedics, Inc. Rate adaptive cardiac pacemaker responsive to patient activity and temperature
DE3428975A1 (de) * 1984-08-06 1986-02-13 Michael S. 8113 Kochel Lampadius Atmungsgesteuerter herzschrittmacher
DE3687388D1 (de) * 1985-09-17 1993-02-11 Biotronik Mess & Therapieg Herzschrittmacher.
US4702253A (en) * 1985-10-15 1987-10-27 Telectronics N.V. Metabolic-demand pacemaker and method of using the same to determine minute volume
DE3541598A1 (de) * 1985-11-25 1987-11-19 Alt Eckhard Belastungsabhaengig frequenzvariabler herzschrittmacher
US4722342A (en) * 1986-06-16 1988-02-02 Siemens Aktiengesellschaft Cardiac pacer for pacing a human heart and pacing method
DE3732640C1 (de) * 1987-09-28 1989-05-18 Alt Eckhard Medizinisches Geraet zum Ermitteln von physiologischen Funktionsparametern
GB2214813A (en) * 1988-01-14 1989-09-13 Stuart Charles Webb Rate-responsive pacemaker
GB8803613D0 (en) * 1988-02-17 1988-03-16 Lewis L M Rate-responsive pacemaker
GB2216011B (en) * 1988-02-17 1990-02-28 Stuart Charles Webb Rate-responsive pacemaker
US4972834A (en) * 1988-09-30 1990-11-27 Vitatron Medical B.V. Pacemaker with improved dynamic rate responsiveness
US5052388A (en) * 1989-12-22 1991-10-01 Medtronic, Inc. Method and apparatus for implementing activity sensing in a pulse generator
US5127404A (en) * 1990-01-22 1992-07-07 Medtronic, Inc. Telemetry format for implanted medical device
US5101824A (en) * 1990-04-16 1992-04-07 Siemens-Pacesetter, Inc. Rate-responsive pacemaker with circuitry for processing multiple sensor inputs
US5154170A (en) * 1990-08-14 1992-10-13 Medtronic, Inc. Optimization for rate responsive cardiac pacemaker
US5065759A (en) * 1990-08-30 1991-11-19 Vitatron Medical B.V. Pacemaker with optimized rate responsiveness and method of rate control
EP0477420A1 (de) * 1990-09-28 1992-04-01 Pacesetter AB Messvorrichtung zur intrakardialen Erfassung eines der körperlichen Aktivität eines Lebewesens entsprechenden Messsignales
US5184614A (en) * 1990-10-19 1993-02-09 Telectronics Pacing Systems, Inc. Implantable haemodynamically responsive cardioverting/defibrillating pacemaker
US5156147A (en) * 1991-02-05 1992-10-20 Cardiac Pacemakers, Inc. Variable rate pacemaker having upper rate limit governor based on hemodynamic performance
US5271395A (en) * 1992-04-17 1993-12-21 Medtronic, Inc. Method and apparatus for rate-responsive cardiac pacing
US5330513A (en) * 1992-05-01 1994-07-19 Medtronic, Inc. Diagnostic function data storage and telemetry out for rate responsive cardiac pacemaker
US5312453A (en) * 1992-05-11 1994-05-17 Medtronic, Inc. Rate responsive cardiac pacemaker and method for work-modulating pacing rate deceleration
EP0570895B1 (en) * 1992-05-18 2003-12-03 Cardiac Pacemakers, Inc. System for event processing in biological applications
US5197467A (en) * 1992-06-22 1993-03-30 Telectronics Pacing Systems, Inc. Multiple parameter rate-responsive cardiac stimulation apparatus
US5387229A (en) * 1993-01-21 1995-02-07 Pacesetter, Inc. Multi-sensor cardiac pacemaker with sensor event recording capability
US5441524A (en) * 1993-08-30 1995-08-15 Medtronic, Inc. Energy efficient multiple sensor cardiac pacemaker
US5376106A (en) * 1993-10-18 1994-12-27 Cardiac Pacemakers, Inc. Multi-sensor blending in a rate responsive cardiac pacemaker

Also Published As

Publication number Publication date
US5562711A (en) 1996-10-08
WO1996016695A2 (en) 1996-06-06
EP0794812A2 (en) 1997-09-17
WO1996016695A3 (en) 1996-09-06
JPH10509897A (ja) 1998-09-29
AU706142B2 (en) 1999-06-10
CA2204499A1 (en) 1996-06-06
AU4406796A (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JP3816101B2 (ja) 心臓ペースメーカ
US11684785B2 (en) Dynamic patient-specific filtering of an activity signal within a beating heart
JP3753736B2 (ja) ペーシング閾値レベルを決定するペースメーカ・システム
US6055454A (en) Cardiac pacemaker with automatic response optimization of a physiologic sensor based on a second sensor
JP5519804B2 (ja) 活動センサ及び分時換気センサからの入力に基づくペーシング心拍数の自動適応を有するペースメーカー
JP2623170B2 (ja) レート応答型ペースメーカー
EP0310024B1 (en) Ventilation controlled rate responsive cardiac pacemaker
US6449509B1 (en) Implantable stimulation device having synchronous sampling for a respiration sensor
JPH05269211A (ja) レート応答ペースメーカ及び患者の心臓を整調する方法
JP2005523784A (ja) 埋め込み可能医療デバイスにおいてレート応答調整する方法および装置
JPH03503502A (ja) 自動調節レート応答しきい値を有するマイクロプロセツサ制御レート応答形ペースメーカ
US6275733B1 (en) Dual sensor rate response pacemaker
JP4297787B2 (ja) 自動レート応答型センサモードスイッチ
US20050065566A1 (en) Rate regularization of cardiac pacing for disordered breathing therapy
CN108697896B (zh) 动态夺获管理安全裕度
EP0616819B1 (en) Rate-responsive pacemaker

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees