JP3815600B2 - One side horizontal fillet gas shielded arc welding method - Google Patents
One side horizontal fillet gas shielded arc welding method Download PDFInfo
- Publication number
- JP3815600B2 JP3815600B2 JP2001271126A JP2001271126A JP3815600B2 JP 3815600 B2 JP3815600 B2 JP 3815600B2 JP 2001271126 A JP2001271126 A JP 2001271126A JP 2001271126 A JP2001271126 A JP 2001271126A JP 3815600 B2 JP3815600 B2 JP 3815600B2
- Authority
- JP
- Japan
- Prior art keywords
- arc
- welding
- tio
- flux
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
- Nonmetallic Welding Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、橋梁における構造物の内、特にUトラフ形リブ片側水平すみ肉ガスシールドアーク溶接方法に係り、フラックス入りワイヤを用いてアーク状態がきわめて良好で、スパッタが少なく、深溶込みの溶接部が得られる片側水平すみ肉ガスシールドアーク溶接方法に関する。
【0002】
【従来の技術】
近年、橋梁の分野において鋼床版の補強材として図3(a)に示すような閉断面形式のUトラフ形リブ(以下、Uリブという。)が、図3(b)に示す開断面形式の縦リブ(以下、縦リブという。)に比べてその使用量が増加している。これはUリブが縦リブに比べ強度および防錆上好ましく、鋼床版全体の軽量化や溶接長の低減が図れる等のメリットがあるからである。しかし、縦リブの溶接では図3(b)に示すように縦リブの両側から溶接が行えるため溶け込み量が確保できるが、Uリブの場合、図3(a)に示すように片側のみの溶接になるため、溶け込み量の確保が容易ではない。
【0003】
水平すみ肉ガスシールドアーク溶接が可能なフラックス入りワイヤとして、例えば、特開平9−94692号公報に、充填フラックスを含めたワイヤ成分を限定することにより、溶接速度1m/minの条件下にてビード形状、ビードのなじみ性およびスラグ剥離性を改善する技術の開示がある。また、特開平6−234075号公報では、フラックス入りワイヤの成分組成を限定すると共に、2電極で1プール溶接方法を採用することで、アークが安定し、スパッタが少なく、ビード形状が良好な溶接部が得られる技術の記載がある。
【0004】
しかし、前述の特開平9−94692号公報記載のフラックス入りワイヤを用いて、高速度かつ高電流の溶接条件で水平すみ肉溶接を行った場合、アークが不安定でスパッタ発生量が多くなると共に、深い溶込みを得ることができない。
また、特開平6−234075号公報に記載の2電極溶接による方法は、溶接速度は高速化されるが、2電極であるので溶接施工上、溶接トーチ周りの設備が大型化し、設備投資が高価になる。さらに深い溶込みが得られない等の問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、片側水平すみ肉ガスシールドアーク溶接方法において、高電流で高速度の溶接条件においてもアークが安定で、スパッタ発生量が少なく、さらに深い溶込みが得られる片側水平すみ肉ガスシールドアーク溶接方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の要旨は、片側水平すみ肉ガスシールドアーク溶接方法において、鋼製外皮にフラックスを充填したワイヤのワイヤ全質量%で、Si:0.3〜1.8%、Mn:0.8〜4.0%、アーク安定剤としてNa 2 OとTiO 2 を含む合成物が1.8%以下、Na 2 OとTiO 2 を含む合成物とは別に、Na 2 O源をNa 2 O換算値で0.6%以下、TiO 2 源をTiO 2 換算値で1.8%以下の1種または2種以上:0.05〜1.8%を含み、フラックス充填率が3〜9.5%であるフラックス入りワイヤを用いて、下板および立板からなる水平すみ肉部材の該立板が傾斜したすみ肉角度θが90°超の水平すみ肉部の溶接を行うことを特徴とする。
【0007】
また、溶接電流がワイヤ径1.2mmの場合300〜500A、1.4mmの場合320〜520A、1.6mmの場合340〜540Aであることも特徴とする片側水平すみ肉ガスシールドアーク溶接方法である。
【0008】
【発明の実施の形態】
図1に示すUリブに代表される立板の傾斜によるすみ肉角度θが90°超のすみ肉溶接部の片側すみ肉肉ガスシールドアーク溶接方法においては、図2に示すように構造物の強度の確保立から板の板厚Tに対する溶け込み深さt1が溶け込み率((t1/T)×100)で70%以上要望される。そこで本発明者らは、高電流で高速度の溶接条件で行う片側水平すみ肉ガスシールドアーク溶接方法に用いるフラックス入りワイヤの成分組成などについて詳細に検討した。
【0009】
その結果、フラックス入りワイヤに充填するフラックスに適正な範囲のSi、Mnからなる脱酸剤にNa2OおよびTiO2を含む合成物、Na2O、TiO2の単独、または複合添加したアーク安定剤を含有させることにより、溶接時の溶滴の離脱を促進して溶滴の細粒化および移行回数を増加させてアーク安定化させると共に低スパッタ化を図り、さらにフラックス充填率を低くすることにより、フラックス入りワイヤの欠点である溶込み深さが浅いという問題を解決し得るという知見を得た。
【0010】
以下に本発明の片側水平すみ肉ガスシールドアーク溶接方法に用いるフラックス入りワイヤの成分組成等限定理由を述べる。
Siはワイヤ質量%(以下、%という。)で、0.3〜1.8%とする。Siは脱酸剤として使用し、溶接金属中の酸素量を低減させる効果がある。しかし、0.3%未満では溶接金属の粘性が低くなってビードが下板側に垂れる。さらに脱酸力が不足して溶接金属にブローホールが発生するようになる。また、1.8%を超えると溶接金属中へのSi成分の歩留りが過大となって溶接金属の強度が高まり、割れが発生しやすくなる。
【0011】
Mnは0.8〜4.0%とする。Mnは溶接金属の脱酸を促進するとともに、溶融金属の流動性を高め、溶接ビード形状を改善する。Mnが0.8%未満ではビード形状が凸状になるとともにブローホールが発生する。また、4.0%を超えると溶滴が大きくなり、スパッタ低減効果が無くなり、溶着金属への歩留りが過大となって溶接金属の強度が高まり、割れが発生しやすくなる。
SiおよびMn含有量は鋼製外皮のSiおよびMn、金属Si、金属MnまたはFe−Si、Fe−Si−Mn、Fe−Mn等鉄合金のSi、Mnの換算値である。
【0012】
次にアーク安定剤の添加量とその効果について記述する。
充填フラックスにアーク安定剤を0.05〜1.8%添加することによって、アーク状態が良好で溶滴が小さく安定し、スパッタ発生量が極めて少なくなる。アーク安定剤が0.05%未満であると溶滴が移行した瞬間に発生するアーク切れが阻止できない。また、アーク長の変動が大きく、さらに溶滴移行回数が少なく溶滴が大きくなり、アークが不安定でスパッタ発生量も多くなる。アーク安定剤が1.8%を超えるとアークが必要以上に長くなり、スパッタ発生量が増加するととともにアンダーカットが発生する。なお、アーク安定剤はNa2OおよびTiO2を含む合成物、Na2O源をNa2O換算値およびTiO2源をTiO2換算値の1種または2種以上を用いる。
【0013】
充填フラックスのアーク安定剤であるNa2OおよびTiO2を含む合成物は1.8%以下とする。Na2OおよびTiO2を含む合成物は、溶滴が移行した瞬間に発生するアーク切れを防止し、アーク状態を良好とし、スパッタ発生量を少なくする。Na2OおよびTiO2を含む合成物が1.8%を超えると、アーク切れは防止できるが、アーク長が必要以上に長くなり、スパッタ発生量が増加し、ヒュームの発生量も増加し、さらにアンダーカットも発生する。
【0014】
Na2OおよびTiO2を含む合成物は、SiO2を含む三元系の合成物、Na2OおよびTiO2の割合が種々変化した合成物であっても同様な効果が得られ、本発明技術思想に含まれる。Na2OおよびTiO2を含む合成物はチタン酸ソーダであり、例えば、水酸化ナトリウムとルチールを所望の割合で配合して高温処理する方法で得られることができるが、Na2Oが10〜50%で、TiO2が50〜90%の範囲内での割合の合成物とすることが望ましい。例えば、13Na2O−80TiO2、20Na2O−73TiO2、42Na2O−53TiO2、あるいは13Na2O−25SiO2−58TiO2を主要成分とする合成物などが挙げられるが、これらに限定されるものではない。
【0015】
アーク安定剤のNa2O源をNa2O換算値で0.6%以下とする。Na2O源はNa2OおよびTiO2またはSiO2を含む合成物以外の添加成分であり、溶接中のアーク長変動を少なくし、溶滴移行回数の増加、即ち、溶滴の細粒化を促進させる効果を持つ。しかしながら、0.6%を超えると溶滴移行回数は減少し、アーク長のみが長くなる傾向があり、その結果、スパッタ発生量が増加するとともにアンダーカットも発生する。Na2O源には炭酸ソーダ、ソーダガラスがある。
【0016】
アーク安定剤のTiO2源をTiO2換算値で1.8%以下とする。TiO2源はNa2OおよびTiO2またはSiO2を含む合成物以外の添加成分であり、アーク安定剤として溶滴先端に発生するアークの発生面積を拡大させることにより、溶滴移行を安定させる下向きの電磁ピンチ効果を促進させる効果を有する。しかしながら、1.8%を超えると下向きの電磁ピンチ力が過大となり、溶滴移行を不安定にする。TiO2源には酸化チタン、ルチール、チタンスラグ、イルミナイト等がある。
【0017】
本発明に使用するフラックス入りワイヤの充填フラックス充填率は3〜9.5%とする。フラックス充填率が3%未満であると、フラックス充填および成形が困難となり、生産性が悪くなる。また、フラックス充填率が9.5%を超えるとスラグ発生量、スパッタ発生量が増え、さらに溶接金属溶込みが浅くなり溶け込み率70%以上が得られなくなる。しかし、より高い生産性と、低スラグ発生量、低スパッタ、および安定した深い溶込みを得ることを考慮した場合、フラックス充填率は4〜8%が望ましい。
【0018】
溶接電流は、ワイヤ径1.2mmの場合300〜500A、1.4mmの場合320〜520A、1.6mmの場合340〜540Aとする。溶接電流がワイヤ径1.2mmの場合300A未満、1.4mmの場合320A未満および1.6mmの場合340A未満の場合、アークが不安定でスパッタ発生量多くなる。また、溶込み深さが浅くなり溶け込み率70%以上が得られなくなる。溶接電流がワイヤ径1.2mmの場合500A超、1.4mmの場合520A超および1.6mmの場合540A超になると、溶け込み率は大きくなるが、アークの吹きつけが過大となりスパッタ発生量が多くなるとともにアンダーカットが生じやすくなりビード形状が劣化する。
【0019】
以上が本発明の構成であるが、充填フラックスに添加できる成分にはAl、Mg、Zrなどの脱酸剤を通常のガスシールドアーク溶接用フラックス入りワイヤと同様に、溶接金属の脱酸不足によるブローホールの発生および、または機械的性質の調整のため含有させる。しかし、これらが過剰に含有されるとスラグ焼き付きによるスラグ剥離性不良、ビード外観不良、または溶接金属の強度が過大となり耐割れ性が劣化する。なお、脱酸剤は溶接金属中に歩留り合金剤として働く以外にもスラグ化し、溶融スラグの組成および生成量にも影響し、本発明の目的効果を損なう場合があるので、種類、含有量は適宜制限することが望ましい。
本発明は溶接ビードを覆っているスラグの剥離性を向上させる成分として、Bi、S等を本発明の基本的な技術思想に影響を与えない範囲で適宜添加できる。
また、鋼種により強度および靱性の調整としてNi,Cr,Mo、Ti、B等の添加も可能である。
【0020】
本発明に用いるフラックス入りワイヤのワイヤ径は、高電流で高速度の溶接条件で水平すみ肉溶接に用いられるので、ワイヤ送給速度の安定性やワイヤ先端の狙い位置ずれを考慮して1.2〜1.6mmとする。
なお、立板端部を開先加工して溶接すれば溶け込み率は大きくなるが、溶着量が不足して多層溶接となって、溶接能率が悪くなる。一方、本発明においては開先加工しなくとも、十分な溶け込み率が得られる。
【0021】
また、本発明における立板の傾斜角度は90°超とするが、溶け込み率および溶着量の確保から立板の傾斜角度は95〜120°であることが望ましい。
本発明にて使用するアーク溶接用シールドガスは、CO2ガスを使用して十分な溶接作業性が得られるが、さらに溶接作業性時の環境面から考慮し、ヒューム発生量が少なくなるAr−CO2混合ガスを使用してもよい。
以下、実施例により本発明をさらに詳細に説明する。
【0022】
【実施例】
表1に本発明例および比較例に使用するために試作したフラックス入りワイヤを示す。なお、ワイヤ外皮はC:0.04%、Si:0.01%、Mn:0.30%、P:0.020%、S:0.015%の帯鋼を用い、成形工程でフラックスを充填し、O字型に成形して溶接後ワイヤ径1.2〜1.6mmまで伸線して試作した。これらの試作ワイヤを用いて、図1に示す立板および下板からなり立板を傾斜したすみ肉試験体(鋼種:SM490B、立板:板厚6および9mm、幅100mm、長さ1000mm、下板:厚さ20mm、幅150mm、長さ1000mm)に表2に示す溶接条件(溶接電圧:25〜40V、チップ・母材間距離:25mm、シールドガス:CO2 25リットル/min)で図2に示すように水平すみ肉溶接した。
【0023】
【表1】
【0024】
溶接時にスパッタ発生量の測定、アーク状態の観察を行い、溶接後にビード外観の観察、溶け込み深さの測定およびブロホール発生の有無を調べた。
なお、スパッタ発生量は捕集量が1.50g/min以下を良好とした。溶け込み率は溶接後の試験体から断面マクロを5個採取し、図2に示すように各断面マクロの溶け込み深さt1を測定し、立板の板厚Tに対する溶け込み率を算出した。溶け込み率は70%以上を良好とした。
また、ブロホールの有無は断面マクロを採取した残りの試験片につき、ビード表面にスリットを入れてビード縦方向に割って破面観察で有無を調べた。それらの結果を表2にまとめて示す。
【0025】
【表2】
【0026】
表2中、No.1〜No.9は本発明例、No.10〜No.24は比較例である。本発明例であるNo.1〜No.9は、使用したワイヤ記号W1〜W9の、成分(アーク安定剤、SiおよびMnの量)およびフラックス充填率が適正で、かつ溶接電流も適正であるので、アークが安定しスパッタ発生量が少なく、ビード外観が良好で、深い溶け込みが得られ、さらにブロホールの発生もなく極めて満足な結果であった。
【0027】
比較例中、No.10は、使用したワイヤ記号W10のアーク安定剤であるNa2OとTiO2を含む合成物が低いので、アークが不安定でスパッタ発生量が多くなった。また、Siが低いので、溶接金属の粘性が低くなってビードが下板側に垂れ、ブロホールも発生した。
No.11は使用したワイヤ記号W11のアーク安定剤であるNa2OとTiO2を含む合成物とTiO2源のTiO2換算値との合計が高いので、スパッタ発生量が多く、アンダーカットも発生した。また、Siが高いので、クレータ部に高温割れが発生した。
【0028】
No.12は使用したワイヤ記号W12のアーク安定剤であるNa2OとTiO2を含む合成物が高いので、ヒューム発生量およびスパッタ発生量が多く、さらにアンダーカットも発生した。また、Mnが低いので、ビード外観が凸ビードになりブロホールも発生した。
No.13は使用したワイヤ記号W13のアーク安定剤であるNa2O源のNa2O換算値が高いので、スパッタ発生量が多くアンダーカットも発生した。また、Mnが高いのでクレータ部に高温割れが発生した。
【0029】
No.14は使用したワイヤ記号W14のアーク安定剤であるTiO2源のTiO2換算値が高いのでスパッタ発生量が多くアンダーカットも発生した。
No.15は使用したワイヤ記号W15のフラックス充填率が低いので、ワイヤ製造時の生産性が悪くフラックスの充填率にバラツキがあり、アークが不安定でスパッタ発生量が多くなり、アンダーカットも発生した。
【0030】
No.16は使用したワイヤ記号W16のフラックスの充填率が高いのでスラグ生成量が多く、スパッタ発生量が多くなり、さらに溶け込み率も低くなった。No.17およびNo.19は溶接電流が低いので、アークが不安定でスパッタ発生量が多くなった。また、溶け込み率も低くなった。
No.18およびNo.20は、溶接電流が高いので、アークの吹きつけが過大となりスパッタ発生量が高く、さらにアンダーカットが生じた。
【0031】
【発明の効果】
以上説明したように、本発明の片側水平すみ肉ガスシールドアーク溶接方法によればアーク状態がきわめて良好で、スパッタ発生量が少なく、深い溶け込みが得られ、溶接の高能率化が図れる。
【図面の簡単な説明】
【図1】本発明の対象とする傾斜した立板すみ肉溶接部を示す断面図である。
【図2】本発明における溶け込み率算出の説明図である。
【図3】閉断面形式のUトラフ形リブの断面図(a)および開断面形式の縦リブ(b)を示す断面図である。
【符号の説明】
1 立板
2 下板
3 溶接金属
T 立板の板厚
t1 溶け込み深さ
θ すみ肉角度[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a bridge, in particular, a U trough rib one side horizontal fillet gas shield arc welding method, and uses a flux-cored wire to provide a very good arc state, low spatter, and deep penetration welding. The present invention relates to a one-sided horizontal fillet gas shielded arc welding method in which a part is obtained.
[0002]
[Prior art]
In recent years, in the field of bridges, U trough ribs (hereinafter referred to as U ribs) having a closed cross section as shown in FIG. The amount of use is increasing compared to the vertical ribs (hereinafter referred to as vertical ribs). This is because the U rib is preferable in terms of strength and rust prevention compared to the longitudinal rib, and has advantages such as reduction in the weight of the entire steel deck and reduction in the weld length. However, in the welding of the longitudinal rib, the welding amount can be secured because welding can be performed from both sides of the longitudinal rib as shown in FIG. 3 (b). However, in the case of the U-rib, welding on only one side as shown in FIG. 3 (a). Therefore, it is not easy to secure the amount of penetration.
[0003]
As a flux-cored wire capable of horizontal fillet gas shielded arc welding, for example, Japanese Patent Application Laid-Open No. 9-94692 discloses a bead under the condition of a welding speed of 1 m / min by limiting wire components including a filling flux. There is a disclosure of a technique for improving shape, bead conformability and slag peelability. In JP-A-6-234075, the composition of the flux-cored wire is limited, and the one pool welding method is adopted with two electrodes, so that the arc is stable, the spatter is small, and the bead shape is good. There is a description of the technology from which part is obtained.
[0004]
However, when horizontal fillet welding is performed under high-speed and high-current welding conditions using the flux-cored wire described in JP-A-9-94692, the arc is unstable and the amount of spatter generated increases. Can't get deep penetration.
In addition, the two-electrode welding method described in Japanese Patent Application Laid-Open No. 6-234075 increases the welding speed, but because it uses two electrodes, the equipment around the welding torch is enlarged in terms of welding work, and the equipment investment is expensive. become. Furthermore, there is a problem that deep penetration cannot be obtained.
[0005]
[Problems to be solved by the invention]
The present invention relates to a one-side horizontal fillet gas shielded arc welding method in which a one-sided horizontal fillet gas shielded arc that is stable even under high-current and high-speed welding conditions, generates less spatter, and provides deeper penetration. An object is to provide a welding method.
[0006]
[Means for Solving the Problems]
The gist of the present invention is that in the one-side horizontal fillet gas shielded arc welding method, the total wire mass% of the wire in which the steel outer shell is filled with flux, Si: 0.3 to 1.8%, Mn: 0.8 to 4.0%, the composition containing Na 2 O and TiO 2 as an arc stabilizer is 1.8% or less, and apart from the composition containing Na 2 O and TiO 2 , the Na 2 O source is converted to Na 2 O 0.6% or less, TiO 2 source including one or more of 1.8% or less in terms of TiO 2 : 0.05 to 1.8% , flux filling rate is 3 to 9.5 % The horizontal fillet portion where the fillet angle θ of the horizontal fillet member composed of the lower plate and the standing plate is inclined by more than 90 ° is welded using the flux-cored wire.
[0007]
Further, in the one-side horizontal fillet gas shield arc welding method, the welding current is 300 to 500 A when the wire diameter is 1.2 mm, 320 to 520 A when the wire diameter is 1.4 mm, and 340 to 540 A when 1.6 mm. is there.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the one-side fillet gas shielded arc welding method of the fillet weld portion where the fillet angle θ due to the inclination of the vertical plate represented by the U-rib shown in FIG. 1 exceeds 90 °, as shown in FIG. From the standpoint of securing strength, a penetration depth t1 with respect to the plate thickness T is required to be 70% or more in terms of the penetration rate ((t1 / T) × 100). Accordingly, the present inventors have studied in detail the composition of the flux-cored wire used in the one-side horizontal fillet gas shield arc welding method performed under high current and high speed welding conditions.
[0009]
As a result, a stable composition of Si, Mn, containing Na 2 O and TiO 2 as a deoxidizer in the proper range for the flux filled in the flux-cored wire, arc stability with Na 2 O, TiO 2 added alone or in combination. By containing an agent, the detachment of the droplets during welding is promoted, the number of droplets is reduced and the number of transitions is increased, the arc is stabilized and the spatter is reduced, and the flux filling rate is further reduced. As a result, the inventors have obtained the knowledge that the problem of a small depth of penetration, which is a drawback of flux-cored wires, can be solved.
[0010]
The reasons for limiting the composition of the flux-cored wire used in the one-side horizontal fillet gas shield arc welding method of the present invention will be described below.
Si is wire mass% (hereinafter referred to as%) and is 0.3 to 1.8%. Si is used as a deoxidizer and has the effect of reducing the amount of oxygen in the weld metal. However, if it is less than 0.3%, the viscosity of the weld metal becomes low and the bead hangs down to the lower plate side. Further, the deoxidizing power is insufficient and blow holes are generated in the weld metal. On the other hand, if it exceeds 1.8%, the yield of the Si component in the weld metal becomes excessive, the strength of the weld metal is increased, and cracks are likely to occur.
[0011]
Mn is set to 0.8 to 4.0%. Mn promotes deoxidation of the weld metal, improves the fluidity of the molten metal, and improves the weld bead shape. If Mn is less than 0.8%, the bead shape becomes convex and blow holes are generated. On the other hand, if it exceeds 4.0%, the droplets become large, the effect of reducing spatter is lost, the yield on the weld metal becomes excessive, the strength of the weld metal is increased, and cracks are likely to occur.
The Si and Mn contents are converted values of Si and Mn of steel outer skin such as Si and Mn, metal Si, metal Mn, or iron alloys such as Fe-Si, Fe-Si-Mn, and Fe-Mn.
[0012]
Next, the amount of arc stabilizer added and its effect will be described.
By adding 0.05 to 1.8% of an arc stabilizer to the filling flux, the arc state is good, the droplets are small and stable, and the amount of spatter is extremely reduced. If the arc stabilizer is less than 0.05%, the arc break that occurs at the moment when the droplets are transferred cannot be prevented. Further, the fluctuation of the arc length is large, the number of droplet transfer times is small, the droplet size is large, the arc is unstable, and the amount of spatter is increased. When the arc stabilizer exceeds 1.8%, the arc becomes longer than necessary, and the amount of spatter generated increases and undercut occurs. Incidentally, the arc stabilizer is Na 2 O and composites containing TiO 2, Na 2 O source terms of Na 2 O values and TiO 2 source using one or more of TiO 2 equivalent.
[0013]
The composition containing Na 2 O and TiO 2 which are arc stabilizers of the filling flux is made 1.8% or less. The composite containing Na 2 O and TiO 2 prevents arc breakage that occurs at the moment when the droplets move, makes the arc state good, and reduces the amount of spatter generated. When the composition containing Na 2 O and TiO 2 exceeds 1.8%, arc breakage can be prevented, but the arc length becomes longer than necessary, the amount of spatter generated increases, the amount of fumes increases, Furthermore, undercuts also occur.
[0014]
Composition containing Na 2 O and TiO 2 are composite ternary system containing SiO 2, the same effect even composite the ratio of Na 2 O and TiO 2 was variously changed to obtain, the invention Included in technical thought. Na 2 O and composites containing TiO 2 is titanium sodium, for example, can be obtained by the method of high-temperature treatment by blending sodium hydroxide and rutile in a desired ratio, Na 2 O is 10 to It is desirable that the composition is 50% and the proportion of TiO 2 is in the range of 50 to 90%. For example, 13Na 2 O-80TiO 2 , 20Na 2 O-73TiO 2 , 42Na 2 O-53TiO 2 , or a composition containing 13Na 2 O-25SiO 2 -58TiO 2 as a main component can be mentioned. It is not something.
[0015]
The Na 2 O source of the arc stabilizer is made 0.6% or less in terms of Na 2 O. The Na 2 O source is an additive component other than the composite containing Na 2 O and TiO 2 or SiO 2 , reduces fluctuations in the arc length during welding, and increases the number of times of droplet transfer, that is, droplets become finer Has the effect of promoting However, if it exceeds 0.6%, the number of droplet transfer times tends to decrease and only the arc length tends to increase. As a result, the amount of spatter generated increases and undercutting also occurs. Examples of Na 2 O sources include sodium carbonate and soda glass.
[0016]
The TiO 2 source of the arc stabilizer is set to 1.8% or less in terms of TiO 2 . The TiO 2 source is an additive component other than the composite containing Na 2 O and TiO 2 or SiO 2 , and stabilizes the droplet transfer by expanding the arc generation area generated at the droplet tip as an arc stabilizer. It has the effect of promoting the downward electromagnetic pinch effect. However, if it exceeds 1.8%, the downward electromagnetic pinch force becomes excessive, and the droplet transfer becomes unstable. Examples of the TiO 2 source include titanium oxide, rutile, titanium slag, and illuminite.
[0017]
The flux filling rate of the flux-cored wire used in the present invention is 3 to 9.5 %. When the flux filling rate is less than 3%, it becomes difficult to fill and mold the flux, resulting in poor productivity. On the other hand, if the flux filling rate exceeds 9.5 %, the amount of slag generation and the amount of spatter increase, and the weld metal penetration becomes shallow, so that the penetration rate of 70% or more cannot be obtained. However, in consideration of higher productivity, low slag generation amount, low spatter, and stable deep penetration, the flux filling rate is desirably 4 to 8%.
[0018]
The welding current is 300 to 500 A for a wire diameter of 1.2 mm, 320 to 520 A for 1.4 mm, and 340 to 540 A for 1.6 mm. When the welding current is less than 300 A when the wire diameter is 1.2 mm, less than 320 A when the wire diameter is 1.4 mm, and less than 340 A when the wire diameter is 1.6 mm, the arc is unstable and the amount of spatter generated increases. Moreover, the penetration depth becomes shallow, and a penetration rate of 70% or more cannot be obtained. If the welding current exceeds 500A when the wire diameter is 1.2mm, exceeds 520A when the wire diameter is 1.4mm and exceeds 540A when the wire diameter is 1.6mm, the penetration rate will increase, but the arc will be blown excessively, resulting in a large amount of spatter generation. At the same time, an undercut is likely to occur and the bead shape deteriorates.
[0019]
The above is the configuration of the present invention, but the deoxidizer such as Al, Mg, Zr, etc., can be added to the filling flux because of the lack of deoxidation of the weld metal in the same manner as the flux-cored wire for ordinary gas shield arc welding. It is contained for the generation of blowholes and / or adjustment of mechanical properties. However, when these are contained excessively, the slag peeling failure due to slag seizure, the bead appearance failure, or the strength of the weld metal becomes excessive and the crack resistance deteriorates. In addition, since the deoxidizer acts as a yield alloying agent in the weld metal, it slags, affects the composition and amount of molten slag, and may impair the objective effect of the present invention. It is desirable to restrict appropriately.
In the present invention, Bi, S, and the like can be appropriately added as a component that improves the peelability of the slag covering the weld bead as long as the basic technical idea of the present invention is not affected.
Moreover, addition of Ni, Cr, Mo, Ti, B, etc. is possible as adjustment of strength and toughness depending on the steel type.
[0020]
The wire diameter of the flux-cored wire used in the present invention is used for horizontal fillet welding under high-current and high-speed welding conditions, so that the wire feed speed stability and the target position deviation of the wire tip are taken into consideration. 2 to 1.6 mm.
If the vertical plate end is welded with a groove, the penetration rate increases, but the welding amount becomes insufficient, resulting in multilayer welding, resulting in poor welding efficiency. On the other hand, in the present invention, a sufficient penetration rate can be obtained without groove processing.
[0021]
Further, the inclination angle of the standing plate in the present invention is more than 90 °, but it is desirable that the inclination angle of the standing plate is 95 to 120 ° in order to ensure the penetration rate and the welding amount.
The shield gas for arc welding used in the present invention can obtain sufficient welding workability by using CO 2 gas, but further, Ar− which generates less fume in consideration of the environment during welding workability. A CO 2 gas mixture may be used.
Hereinafter, the present invention will be described in more detail with reference to examples.
[0022]
【Example】
Table 1 shows flux-cored wires made for trial use in the examples of the present invention and comparative examples. The wire skin is made of steel strip of C: 0.04%, Si: 0.01%, Mn: 0.30%, P: 0.020%, S: 0.015%, and flux is used in the molding process. It was filled, formed into an O-shape, and after welding, the wire diameter was drawn to 1.2 to 1.6 mm to make a prototype. Using these prototype wires, a fillet specimen (steel type: SM490B, vertical plate: plate thickness 6 and 9 mm, width 100 mm, length 1000 mm, lower) comprising the vertical plate and the lower plate shown in FIG. 2 under the welding conditions shown in Table 2 (welding voltage: 25 to 40 V, distance between tip and base material: 25 mm, shielding gas: 25 liters / min of CO 2 ) on a plate: thickness 20 mm, width 150 mm, length 1000 mm) Horizontal fillet welding was performed as shown in FIG.
[0023]
[Table 1]
[0024]
The amount of spatter generated during welding and the observation of the arc state were observed, the appearance of the bead was observed after welding, the penetration depth was measured, and the presence or absence of blowholes was examined.
Note that the amount of spatter generated was good when the collected amount was 1.50 g / min or less. As for the penetration rate, five cross-sectional macros were taken from the test specimen after welding, and the penetration depth t1 of each cross-sectional macro was measured as shown in FIG. 2 to calculate the penetration rate with respect to the thickness T of the upright plate. The penetration rate was 70% or more.
In addition, the presence or absence of a blowhole was examined by observing the fracture surface of the remaining test piece from which the cross-sectional macro was sampled by slitting the bead surface and breaking it in the longitudinal direction of the bead. The results are summarized in Table 2.
[0025]
[Table 2]
[0026]
In Table 2, No. 1-No. No. 9 is an example of the present invention. 10-No. 24 is a comparative example. No. which is an example of the present invention. 1-No. No. 9 has the components (arc stabilizers, amounts of Si and Mn) and flux filling ratios of the used wire symbols W1 to W9 and the appropriate welding current, so that the arc is stable and the amount of spatter generated is small. The bead appearance was good, deep penetration was obtained, and there were no blowholes.
[0027]
In the comparative examples, No. No. 10 was low in the composition containing Na 2 O and TiO 2 as the arc stabilizers of the wire symbol W10 used, so the arc was unstable and the amount of spatter generated was large. Moreover, since Si was low, the viscosity of the weld metal was lowered, the bead drooped to the lower plate side, and a blowhole was also generated.
No. No. 11 has a high sum of sputter generation and undercut because the total of the composition containing Na 2 O and TiO 2 as the arc stabilizer of the wire symbol W11 used and the TiO 2 equivalent value of the TiO 2 source is high. . Moreover, since Si was high, hot cracking occurred in the crater part.
[0028]
No. No. 12 was high in the composition containing Na 2 O and TiO 2 which are the arc stabilizers of the wire symbol W12 used, so that a large amount of fumes and spatters were generated, and undercutting occurred. Moreover, since Mn was low, the bead appearance became a convex bead and brohole was also generated.
No. No. 13 had a high Na 2 O equivalent value of the Na 2 O source, which is the arc stabilizer of the wire symbol W13 used, and therefore a large amount of spatter was generated and undercutting occurred. Moreover, since Mn was high, hot cracks occurred in the crater part.
[0029]
No. No. 14 has a high TiO 2 conversion value of the TiO 2 source, which is the arc stabilizer of the wire symbol W14 used, so that a large amount of spatter was generated and undercutting occurred.
No. No. 15 has a low flux filling rate of the wire symbol W15 used, so that the productivity at the time of wire production was poor and the flux filling rate was uneven, the arc was unstable, the amount of spatter was increased, and undercut was also generated.
[0030]
No. No. 16 has a high flux filling rate of the used wire symbol W16, so that a large amount of slag was generated, a large amount of spatter was generated, and a penetration rate was also low. No. 17 and no. In No. 19, the welding current was low, so the arc was unstable and the amount of spatter was increased. Also, the penetration rate was low.
No. 18 and no. In No. 20, since the welding current was high, the arc was excessively blown, the amount of spatter generated was high, and undercut occurred.
[0031]
【The invention's effect】
As described above, according to the one-side horizontal fillet gas shielded arc welding method of the present invention, the arc state is very good, the amount of spatter generated is small, deep penetration can be obtained, and the efficiency of welding can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an inclined stand-up fillet weld which is an object of the present invention.
FIG. 2 is an explanatory diagram for calculating a penetration rate in the present invention.
FIG. 3 is a cross-sectional view of a closed trough type U trough-shaped rib and a vertical cross-sectional view of an open cross-section type vertical rib (b).
[Explanation of symbols]
1 Standing
Claims (2)
ワイヤ径、1.2mmの場合 300〜500A
1.4mmの場合 320〜520A
1.6mmの場合 340〜540A 2. The method of claim 1, wherein the welding current is in the following range .
300-500A when the wire diameter is 1.2mm
In the case of 1.4mm 320-520A
In the case of 1.6mm 340-540A
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001271126A JP3815600B2 (en) | 2001-09-07 | 2001-09-07 | One side horizontal fillet gas shielded arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001271126A JP3815600B2 (en) | 2001-09-07 | 2001-09-07 | One side horizontal fillet gas shielded arc welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003080396A JP2003080396A (en) | 2003-03-18 |
JP3815600B2 true JP3815600B2 (en) | 2006-08-30 |
Family
ID=19096674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001271126A Expired - Fee Related JP3815600B2 (en) | 2001-09-07 | 2001-09-07 | One side horizontal fillet gas shielded arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3815600B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008290116A (en) * | 2007-05-24 | 2008-12-04 | Jfe Steel Kk | Fillet welded joint and fillet welding method |
JP2009022963A (en) | 2007-07-17 | 2009-02-05 | Ihi Corp | Welding method and steel plate floor |
JP6257489B2 (en) * | 2014-09-26 | 2018-01-10 | 株式会社神戸製鋼所 | Gas shield arc welding method |
-
2001
- 2001-09-07 JP JP2001271126A patent/JP3815600B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003080396A (en) | 2003-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4834191B2 (en) | Flux-cored wire for gas shielded arc welding that can be welded in all positions | |
JP4531617B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP2014113615A (en) | Flux-cored wire for carbon dioxide gas shielded arc welding | |
JP5153421B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP5400461B2 (en) | Flux cored wire | |
JP5400472B2 (en) | Flux cored wire | |
JP2015217393A (en) | Flux-cored wire for carbon dioxide gas shielded arc welding | |
JPH09122978A (en) | High-nitrogen flux cored wire for all position welding for cr-ni stainless steel | |
JP5314339B2 (en) | Flux cored wire | |
KR102675635B1 (en) | Flux Cored Wire and Welding Methods | |
JP5014189B2 (en) | Two-electrode fillet gas shielded arc welding method | |
JP4300153B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP2010142873A (en) | Flux-cored wire | |
JPH09239587A (en) | Flux cored wire for gas shielded arc welding | |
JP6385879B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP4425756B2 (en) | Flux-cored wire for horizontal fillet welding | |
WO2020217963A1 (en) | Ni-BASED ALLOY FLUX-CORED WIRE | |
JP2001259888A (en) | Flux cored wire for welding galvanized steel sheet having excellent pit resistance and blowhole resistance | |
JP6599807B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP3815600B2 (en) | One side horizontal fillet gas shielded arc welding method | |
JP2711077B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP2006224178A (en) | Flux-cored wire for gas-shielded arc fillet welding | |
JPH08281476A (en) | Flux cored wire for gas shield arc welding | |
JP3880826B2 (en) | Flux-cored wire for gas shielded arc welding | |
JPH09314383A (en) | High-speed horizontal fillet gas shielded metal arc welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060531 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3815600 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100616 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110616 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110616 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120616 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120616 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130616 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130616 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140616 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |