JP3814640B2 - Distribution system state estimation method and apparatus - Google Patents

Distribution system state estimation method and apparatus Download PDF

Info

Publication number
JP3814640B2
JP3814640B2 JP2001262628A JP2001262628A JP3814640B2 JP 3814640 B2 JP3814640 B2 JP 3814640B2 JP 2001262628 A JP2001262628 A JP 2001262628A JP 2001262628 A JP2001262628 A JP 2001262628A JP 3814640 B2 JP3814640 B2 JP 3814640B2
Authority
JP
Japan
Prior art keywords
section
value
current
load current
assumed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001262628A
Other languages
Japanese (ja)
Other versions
JP2003079071A (en
Inventor
譲 今村
良男 照沼
泰志 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Control Solutions Ltd
Original Assignee
Hitachi Ltd
Hitachi Information and Control Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Information and Control Solutions Ltd filed Critical Hitachi Ltd
Priority to JP2001262628A priority Critical patent/JP3814640B2/en
Publication of JP2003079071A publication Critical patent/JP2003079071A/en
Application granted granted Critical
Publication of JP3814640B2 publication Critical patent/JP3814640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、配電系統の監視・制御に係り、特に、限られた計測情報を基に、監視・制御のベースとなる各区間の負荷電流などを高精度に推定するに好適な配電系統の状態推定方法および装置に関する。
【0002】
【従来の技術】
配電系統は、通常、配電用変電所と供給先の複数の需要家とをそれぞれ配電線を介して接続して構成されている。各配電線は相互に独立して運用されるようになっているとともに、各配電線には、事故部分などの切離しや他の配電線との連係などが可能なように、随所に開閉器が設置され、複数の負荷区間が設定されている。配電線や配電系統の運用の単位となる負荷区間の電力(負荷電流)の把握は極めて重要であるが、通常、配電線の根元での送り出し電流しか計測されていないため、従来、送り出し電流の計測値を各区間の契約電流値(各区間内の需要家契約量の合計値)で按分して各区間の負荷電流などを求めることが行われている。
【0003】
【発明が解決しようとする課題】
配電線には様々な需要家が接続され、区間毎に需要家の種別(タイプ)の組成や負荷変化の特性が異なるので、従来技術のように、全区間一律の負荷変化を前提として、送り出し電流の計測値を各区間の契約電流値で按分して各区間の負荷電流を推定する方法では負荷電流を高精度に推定することはできない。これを補う方法として、例えば、特開2000−245064号公報に記載されているように、部分的に入手可能な計測値を当該区間の推定に利用し、各区間に対して想定した注入電力のばらつきを評価して推定する方法を採用することも考えられるが、現状では、計測個所の数は少なく、より精度を高めることが要望されている。
【0004】
本発明の課題は、限られた計測情報を基に区間負荷を高精度に推定することができる配電系統の状態推定方法および装置を提供することにある。
【0005】
【課題を解決するための手段】
前記課題を解決するために、本発明は、複数の区間に分割された配電線の送出し電流を計測し、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値とその想定精度を基に前記各区間毎の負荷電流推定値とその想定精度を算出し、前記各区間毎の負荷電流推定値から送出し電流の推定値を算出し、前記送出し電流の計測値と前記送出し電流の推定値との偏差を算出し、前記偏差を前記各区間の負荷電流推定値に関する想定精度に応じて配分して前記各区間における補正量を算出し、前記各区間の負荷電流推定値を前記補正量で補正して前記各区間の負荷電流または電力を推定する配電系統の状態推定方法を採用したものである。
【0006】
前記配電系統の状態推定方法を採用するに際しては、各区間毎の負荷電流推定値とその想定精度を算出するための処理として、以下の処理を採用することができる。
【0007】
前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値を基に前記各区間における需要家種別毎の負荷電流想定値を算出し、この負荷電流想定値を基に前記各区間毎の負荷電流推定値を算出し、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定精度を基に前記各区間における需要家種別毎の負荷電流想定値の想定精度を算出し、この負荷電流想定値の想定精度を基に前記各区間毎の負荷電流推定値に関する想定精度を算出する。
【0008】
前記各配電系統の状態推定方法を採用するに際しては、以下の要素を付加することができる。
【0009】
(1)前記各区間における補正量を算出するに際して、前記負荷電流推定値に関する想定精度が高い区間に対しては低い区間よりも補正量を小さくし、逆に前記負荷電流推定値に関する想定精度が低い区間に対しては高い区間よりも補正量を大きくする。
【0010】
(2)前記各区間に含まれる需要家種別毎に関する日負荷変化特性の想定値およびその想定精度は、前記需要家に対して計測して得られた計測情報を利用する。
【0011】
(3)前記偏差を配電系統の状態推定時点毎に保存し、保存された偏差についてその関与分を需要家種別毎に関連づけて算出し、各算出された関与分を指定の配電線または全配電線について加算して合計値を算出し、各合計値を要求に応じて表示する。
【0012】
また、本発明は、複数の区間に分割された配電線の送出し電流を計測する送出し電流計測手段と、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値を基に前記各区間毎の負荷電流推定値を算出する負荷電流推定値算出手段と、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値に関する想定精度を基に前記各区間毎の負荷電流推定値に関する想定精度を算出する想定精度算出手段と、前記負荷電流推定値算出手段の算出結果から送出し電流の推定値を算出する送出し電流推定値算出手段と、前記送出し電流の計測値と前記送出し電流の推定値との偏差を算出する偏差算出手段と、前記偏差を前記想定精度算出手段の算出による想定精度に応じて配分して前記各区間における補正量を算出する補正量算出手段と、前記負荷電流推定値算出手段の算出による各区間の負荷電流推定値を前記補正手段の算出による補正量で補正して前記各区間の負荷電流または電力を推定する推定手段とを備えてなる配電系統の状態推定装置を構成したものである。
【0013】
前記配電系統の状態推定装置を構成するに際しては、前記負荷電流推定値算出手段、前記想定精度算出手段および前記補正量算出手段の代わりに、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値を基に前記各区間における需要家種別毎の負荷電流想定値を算出する負荷電流想定値算出手段と、前記負荷電流想定値算出手段の算出結果を基に負荷電流推定値を算出する負荷電流推定値算出手段と、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値に関する想定精度を基に前記各区間における需要家種別毎の負荷電流想定値の想定精度を算出する第1の想定精度算出手段と、前記第1の想定精度算出手段の算出結果を基に前記各区間ごとの負荷電流推定値に関する想定精度を算出する第2の想定精度算出手段と、前記偏差算出手段の算出による偏差を前記第2の想定精度算出手段の算出による想定精度に応じて配分して前記各区間における補正量を算出する補正量算出手段を用いることができる。
【0014】
前記した手段によれば、各区間に含まれる需要家種別毎の日負荷変化特性の想定値とその想定精度を基に各区間毎の負荷電流推定値とその想定精度を算出し、各区間毎の負荷電流推定値を、例えば、区間毎に加算して送り出し電流の推定値を算出し、送り出し電流の計測値と送り出し電流の推定値との偏差をミスマッチとして算出し、この偏差を負荷電流推定値の想定精度に応じて配分して各区間の補正量を求め、各区間の負荷電流推定値を補正量にしたがって補正するようにしているため、各区間の区間負荷として負荷電流または電力を高精度に推定することができる。
【0015】
また、各区間に種別の相異なる需要家が接続されている場合、各区間に含まれる需要家種別毎の日負荷変化特性の想定値を基に各区間における需要家種別毎の負荷電流想定値を算出し、各区間に含まれる需要家種別毎の日負荷変化特性の想定精度を基に各区間における需要家種別毎の負荷電流想定値の想定精度を算出し、各区間毎の負荷電流推定値および負荷電流想定値に関する想定精度を算出することで、各区間の負荷電流または電力を高精度に推定することができる。
【0016】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。図1は本発明が適用された配電系統とその監視・制御システムの構成図である。図1において、上位側の配電系統に接続された配電用変圧器100は、母線101を介して複数の配電線110、・・・に接続されており、配電線110の線路中には遮断器105、区分開閉器111、112、113、114が設置されている。配電線110は、区分開閉器111、112、113、114によって複数の区間#1、#2、#3、#4に分割されている。区間#1には、需要家として、例えば、一般住宅、工場、オフィス、学校などが接続されている。また区間#2〜#4にも一般住宅や工場などの需要家が接続されている。
【0017】
配電線110の状態を監視・制御するために、遮断器105と区分開閉器111との間の配電線110には変流器121が設置されている。この変流器121は、配電線110の送り出し電流を計測する送り出し電流計測手段として構成されている。変流器121の計測による送り出し電流は通信子局131、通信親局150に伝送され、送り出し電流の計測データとしてデータベース160に格納されるようになっている。
【0018】
また、区分開閉器111〜114の開閉を制御するために、通信子局132、133、134、135が設けられており、各通信子局132〜135は通信線130を介して通信親局150に接続されている。また区間#2の配電線110に接続された他の配電線の線路中に設けられた連系開閉器115には通信子局136が接続されており、この通信子局136は、通信線130を介して通信親局150に接続されている。各通信子局132〜136は開閉器の開閉状態に関する情報を通信線130を介して通信親局150に伝送するように構成されており、これらは、前記送り出し電流等の情報と共に、オンライン情報としてデータベース160に格納されるようになっている。オフライン用のデータベース170には各開閉器の接続状態や配電線110のインピーダンスなどに関する情報が設備情報(設備データ)として格納されている。データベース160、170に記憶されたデータは監視・制御サーバ180によって処理され、この処理結果は、指令情報として通信親局150を経由して各通信子局131〜136に送信されるとともに、マンマシンインターフェイス端末190に転送され、マンマシンインターフェイス端末190の画面上には指令情報に従った画像が表示されるようになっている。
【0019】
監視・制御サーバ180は、データベース160、170に格納されたデータを基に、配電線110や他の配電線の各区間の負荷電流または電力を区間負荷として推定する配電系統の状態推定装置として構成されており、監視・制御サーバ180によって各配電線の各区間における負荷電流または電力を推定するに際して、本実施形態では、説明を簡単にするために、図2に示すように、2つの区間#1、#2のみが存在する配電線210について推定することとしている。この場合、区間#1には需要家として学校が接続され、区間#2には需要家として一般住宅が接続されているものとする。そして各区間の負荷電流の合計値は、力率の相違や損失を無視すれば、配電線210の送り出し電流値と一致することを前提としている。
【0020】
ここで、各区間の負荷電流値は、通常は計測されないが、日負荷変化特性(24時間の間に負荷電流がどのように変化するかを示す特性)の標準パターンは、需要家種別、例えば、契約種別毎に過去の実績などに基づいて大まかには想定することができ、電力会社毎に日負荷曲線として蓄積され、概略が推定可能であることに着目する。この際、個々の需要家やグループ(供給地域毎)の実際の日負荷曲線とは差異があるので、誤差の範囲(バラツキ)も考慮しておく。また需要家種別毎の日負荷曲線の標準パターンは、異なる契約電力の需要家でも共通に利用できるように、各需要家の契約値等で正規化しておく。例えば、2つの区間#1、#2における需要家種別毎の負荷電流が計測され、この計測値が各需要家の契約値で正規化されると、各区間#1、#2に含まれる需要家種別毎の日負荷変化特性の想定値Nj(t)が求められるとともに、その想定精度(バラツキ)ΔNj(t)が求められ、これらのデータはデータベース170に格納される。
【0021】
また、区間#1、#2における日負荷曲線のうち時刻tにおける各区間の負荷電流の推定値は、図3に示すように、I1’、I2’として示す確率で分布しているものとする。ここで、分布の範囲は、負荷電流が、需要家に設置されたブレーカなどで契約電流を超過することがないように調整されているならば、それぞれの契約電流値以下に収まることになる。なお、推定値の分布は、図3では、中央値を挟み左右対象としたグラフで示しているが、このグラフの形状に限定されることはなく、種々形状の分布関数を適用することができる。また図2に示す日負荷曲線のグラフについても、上下の間隔を一様に取る必要はなく、例えば、推定値に対し所定の比率を有する曲線を用いたり、その比率も一定でなくても良い。
【0022】
推定値I1’、I2’の合計値Is’は、配電線の送り出し電流の計測値Isと一致すべきであるが、実際には、多少ミスマッチΔIs’が生じる。そこで、本実施形態では、負荷電流の推定値と送り出し電流の計測値との偏差を示すミスマッチΔIs’を負荷電流推定値I1’、I2’の想定バラツキ(ΔI1、ΔI2)に応じてそれぞれ配分することとしている。すなわち、精度が高いとみなされる負荷電流推定値I1’(グラフの幅が狭く山が高い)に対しては補正量(ΔI1’)を小さくし、精度の低いとみなされる負荷電流推定値I2’に対しては補正量(ΔI2’)を大きくすることとしている。
【0023】
なお、従来の手法では、I1’、I2’は、一律に送り出し電流の計測値Isを各区間の契約電流で按分して求めているので、図3の破線で示すように、グラフの幅が広く山が低い負荷電流分布を想定していることになる。また、図3における各分布のグラフと横軸とで囲まれる部分の面積は、横軸の各電流値で正規化すると1となり、電流分布の形状に関わらず一定である。
【0024】
次に、監視・制御サーバ180を用いて各区間の負荷電流または電力を推定するための処理方法を図4ないし図6にしたがって説明する。なお、監視・制御サーバ180は、図6に示すように、処理統括機能部610、関連情報抽出機能部620、種別毎の想定値・想定バラツキ算出機能部630、区間電流の推定値・バラツキ算出機能部640、送り出し電流推定・ミスマッチ算出機能部650、区間電流補正機能部660、推定結果評価機能部670、表示データ編集機能部680、ファイル625、635、645、655、665、675を備えているものとする。
【0025】
まず、図4のステップ410では、関連情報抽出機能部620による前処理として、図5に示すように、配電線210の各区間(#1、#2)について、需要家の契約電流を種別jごとに加算して契約電流Kijを算出する。例えば、データベース170に記憶されているデータを基に、区間#1における契約電流を120Aとし、区間#2における契約電流を90Aとして求める。次に、ステップ420に移り、算出機能部630の処理により、各区間iについて、需要家種別j毎の日負荷曲線Nj(t)と契約電流Kijとを乗算し、各区間iでの時刻tにおける需要家種別j毎の負荷電流の想定値Iij(t)を算出する。続いて、ステップ430では、算出機能部630の処理により、負荷電流想定値Iij(t)の想定バラツキ(想定精度)ΔIij(t)を、各需要家種別jの日負荷変化特性Nj(t)の想定精度(バラツキ)ΔNj(t)に基づいて算出する。例えば、各区間のΔNj(t)を加算して想定バラツキΔIij(t)を算出する。
【0026】
次に、ステップ440に移り、算出機能部640の処理により、各区間内の全種別jについて加算し、区間iの負荷電流の推定値Ii’(t)=ΣIij(t)、負荷電流推定値Ii’(t)に関する想定バラツキΔIi(t)=ΣΔIij(t)を算出する。なお、バラツキは、ΣΔIij(t)の他に、ΣΔIij(t)の2乗で定義し算出することもできる。この処理により、図5に示すように、各区間における負荷電流推定値I1’(t)=30A、I2’(t)=70A、想定バラツキΔI1’(t)=5A、ΔI2’(t)=15Aが算出される。
【0027】
次に、ステップ450の処理では、算出機能部650の処理により、各区間の負荷電流の推定値Ii’(t)を配電線210について積み上げて、すなわち全区間iについて加算して送り出し電流の推定値Is’(t)=ΣIi’(t)が算出される。例えば、送り出し電流の推定値Is’(t)=30A+70A=100Aが算出される。
【0028】
次に、ステップ460の処理では、算出機能部650の処理により、送り出し電流の計測値Is(t)と送り出し電流の推定値Is’(t)との偏差を示すミスマッチΔIs’(t)が算出される。この場合、送り出し電流の計測値が110Aのときには、ミスマッチΔIs’(t)=110A−100A=10Aが算出される。
【0029】
次に、ステップ470に移り、区間電流補正機能部660の処理により、送り出し電流の推定ミスマッチΔIs’(t)を各区間iの想定バラツキΔIi(t)に応じて配分し、各区間における補正量ΔIi’(t)を求め、各区間における負荷電流推定値Ii’(t)を各補正量ΔIi’(t)にしたがって補正するための処理が行われる。
【0030】
例えば、図5に示すように、区間#1については、I1’(t)=30A+10A×25/(5+15)=32.5Aが求められ、区間#2については、I2’(t)=70A+10A×15/(5+15)=77.5Aが求められる。
【0031】
なお、従来の手法を採用したときには、区間#については、I1’(t)=110A×120/(120+90)=62.8Aが算出され、区間#2については、I2’(t)=110A×90/(120+90)=47.2Aが算出され、本発明により大幅に改善されることになる。
【0032】
次に、ステップ408に移り、推定対象の配電線210について時間断面tでの処理が終了した場合、他の配電線の処理に移行するか、あるいは次の時点(時間断面)に移行するかの判定が行われ、全ての処理が終了した時には、このルーチンでの処理を終了する。
【0033】
なお、ステップ410、420、430の処理においては、ファイル625のデータが用いられ、契約電流の加算値や各区間の需要家種別毎の日負荷変化特性やバラツキの想定値の算出結果がファイル635に格納されるようになっている。さらにステップ440の処理では、ファイル635に格納されたデータも利用され、各区間の負荷電流推定値と想定バラツキの算出結果はファイル645に格納される。
【0034】
また、配電線の電圧は規定範囲内に管理されていることを前提としているので、各区間の負荷電流を推定することで、各区間の電力は容易に推定することができる。
【0035】
区間負荷の推定と補正の処理は以上のように行われるが、本発明では各需要家の負荷特性を該当種別の標準的な日負荷曲線を適用する形で想定しており、これらの日変化特性が実情に則していることが前提となる。すなわち、想定が実情に則していれば配電線毎のミスマッチの値は小さく、則していないときには大きくなる。
【0036】
そこで、本発明では、推定結果評価機能部670により、推定の結果、特に、各配電線におけるミスマッチや各契約種別でのミスマッチの分担状況を、推定の各時点でファイル675に格納するとともに記録し、要求に応じて表示することとしている。推定結果評価機能部670の評価結果は表示データ編集機能部680によって編集処理され、マンマシンインターフェイス端末190の表示画面上に表示される。このときの表示例を図7に示す。
【0037】
図7の(a)には、各配電線のミスマッチが推定の時点毎に棒グラフで表示されている。各棒グラフには、契約種別の内訳((b)のイ、ロ、ハ)も示されており、例えば、区間#1における17時では、ミスマッチの大半が契約種別ロに関わっていると評価されている。また各棒グラフは、ミスマッチ(偏差=計測値−推定値)の正負に応じて、0の位置を示す線の上側または下側に表示される。図示の例の場合、17時と18時においてはミスマッチの値は全て正であるが、19時では、区間#1、#4ではミスマッチは負となっている。なお、ミスマッチの正負は表示色の区分により表示しても良く、ミスマッチを時間軸に対する折線グラフなどとしても良い。
【0038】
図7(b)には、全配電線のミスマッチに対する各契約種別イ、ロ、ハの関与分が棒グラフで表示されており、各棒グラフは、(a)に示す棒グラフから同時刻で同種別のものを抽出して加算したものである。その結果、17時では種別ロ、18では種別ハがミスマッチへの関与分が大きく、破線で示す管理基準を超えていることが分かる。管理基準は、図示の例では、種別に関わらず一律であるが、一律でなくても良い。すなわち、ミスマッチを管理する主要な目的は、推定値および日負荷曲線の精度改善にあるため、全体の一部、例えば、数%が基準を超過するように設定する方法もある(この場合、当初は大きな値とし、実績による想定精度の向上に伴って小さな値とすることも考えられる。)。
【0039】
特に、管理基準を超過するケースについては、今後の日負荷曲線の見直しに備え、データを別途保存しておく。また、超過していないケースについても、種別毎に各時刻の関与分などを保存しておく。各種別の日負荷曲線は、前述したように、Nj(t)として時刻毎に定義されているので、同一時刻の管理分を比較したり、統計的に処理したりすることにより、精度の改善を図ることができる。この場合、比較的短い間隔で推定することに並行してオンライン的に修正することも、長期に年度毎に修正することも考えられる。
【0040】
具体的手法として、種別毎に、同一時刻のミスマッチの平均値が所定の値(前記管理基準より小さくても良い)を超える場合は、当該種別の当時点での日負荷曲線の値をこの平均値に変更する。またバラツキについても、この新たな日負荷曲線の値を基準に分散を求めて修正する。なお、以上の日負荷曲線の見直しに際しては、勿論、季節や曜日なども考慮する。また同一契約種別の需要家全てを一律の日負荷曲線でカバーするのは多少無理があるため、さらに、配電線あるいは配電線の区間当たりの相違も考慮して日負荷曲線を定義することも考えられる。
【0041】
さらに、本発明に使用される需要家種別毎の日負荷特性曲線とそのバラツキは、各配電線の送り出し電流とのミスマッチの他に、一部の実測結果に基づいて評価したり修正することもできる。
【0042】
また一部のオンライン計測情報の利用可能な需要家については、その情報を直接推定に活用する以外に、当該種別の需要家の日負荷特性として、横断的評価にも利用できる。例えば、想定値と計測値との差異が小さければ想定値は裏づけられ、大きければ見直しの候補となる。なお、大きなミスマッチに関与し、信憑性の低い想定値については、想定日負荷特性の更新のため、調査対象として抽出することもできる。また、配電線の途中でオンライン計測の場合も、そこを送り出しとみなし、計測個所の下流側に対し同様の処理が可能である。
【0043】
本実施形態では、配電系統を例に説明したが、例えば、種々特性の機器を複数の建屋で稼動する工場などで、建屋毎の電力しか計測していない場合、建屋内作業場毎の負荷実態の推定およびそれに基づく省エネの検討などにも適用することができる。また分散電源が連系の場合は、出力の電力を逆向きの負荷とみなすことにより、同様に対処することができる。
【0044】
上述したように、本実施形態によれば、現行の極めて少ないオンライン情報(計測情報)を基に配電線の各区間の負荷電流または電力を高精度に推定できる。この結果、設備の過負荷防止、配電線の適正な電圧管理、送電損失の低減および事故や作業時における適切な融通など、運用や計画の多岐に渡る業務に有用である。また想定日負荷特性についても、その信憑性を常時評価できるので、その更新のための調査実施時期や対象の決定などの指針を得る上でも有効である。
【0045】
【発明の効果】
以上説明したように、本発明によれば、限られた計測情報によっても、配電線の各区間の区間負荷を高精度に推定することができる。
【図面の簡単な説明】
【図1】本発明が適用された配電系統と監視・制御システムの構成図である。
【図2】配電線の送り出し電流と各区間の負荷電流推定値との関係を説明するための図である。
【図3】配電線の区間負荷電流の推定値とその推定バラツキとの関係を説明するための図である。
【図4】監視・制御サーバの処理を説明するためのフローチャートである。
【図5】配電線区間電流の推定値およびその推定バラツキの算出方法を説明するための図である。
【図6】監視・制御サーバの具体的構成を示すブロック構成図である。
【図7】推定偏差の表示例を示す図である。
【符号の説明】
100 配電用変圧器
101 母線
105 遮断器
111〜114 区分開閉器
115、116 連系開閉器
130 通信線
131〜136 通信子局
150 通信親局
160、170 データベース
180 監視・制御サーバ
190 マンマシンインターフェイス端末
210 配電線
211、212 区分開閉器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to monitoring and control of a distribution system, and in particular, based on limited measurement information, the state of a distribution system suitable for accurately estimating the load current and the like of each section serving as a base for monitoring and control The present invention relates to an estimation method and apparatus.
[0002]
[Prior art]
The power distribution system is usually configured by connecting a distribution substation and a plurality of customers at a supply destination through distribution lines. Each distribution line is operated independently of each other, and each distribution line has switches everywhere so that it can be disconnected from the accident and linked to other distribution lines. It is installed and a plurality of load sections are set. Understanding the power (load current) in the load section, which is the unit of operation for distribution lines and distribution systems, is extremely important, but normally only the send current at the root of the distribution line has been measured. The measured value is apportioned by the contract current value of each section (the total value of the customer contract amount in each section) to obtain the load current and the like of each section.
[0003]
[Problems to be solved by the invention]
Various customers are connected to the distribution line, and because the composition of the types of customers (types) and the characteristics of load changes differ from section to section, delivery is performed on the premise of uniform load changes in all sections as in the conventional technology. The load current cannot be estimated with high accuracy by the method of estimating the load current of each section by dividing the measured current value by the contract current value of each section. As a method for compensating for this, for example, as described in Japanese Patent Application Laid-Open No. 2000-244504, partially available measurement values are used for estimation of the section, and the injection power assumed for each section is calculated. Although it is conceivable to adopt a method for evaluating and estimating the variation, at present, the number of measurement points is small and there is a demand for higher accuracy.
[0004]
The subject of this invention is providing the state estimation method and apparatus of a distribution system which can estimate area load with high precision based on the limited measurement information.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention measures the sending current of a distribution line divided into a plurality of sections, the assumed value of the daily load change characteristic for each consumer type included in each section, and the assumption thereof The load current estimated value for each section and its assumed accuracy are calculated based on the accuracy, the estimated current value is calculated from the load current estimated value for each section, the measured value of the transmitted current and the A deviation from the estimated value of the sending current is calculated, the deviation is distributed according to an assumed accuracy regarding the load current estimated value in each section, a correction amount in each section is calculated, and the load current estimation in each section is calculated. A distribution system state estimation method is adopted in which the value is corrected by the correction amount and the load current or power in each section is estimated.
[0006]
When adopting the state estimation method of the distribution system, the following process can be adopted as a process for calculating an estimated load current value and its assumed accuracy for each section.
[0007]
Based on the assumed value of the daily load change characteristic for each consumer type included in each section, a load current estimated value for each consumer type in each section is calculated, and for each section based on this load current expected value Load current estimated value, and based on the assumed accuracy of the daily load change characteristics for each consumer type included in each section, to calculate the assumed accuracy of the load current estimated value for each consumer type in each section, Based on the assumed accuracy of the assumed load current value, the assumed accuracy relating to the estimated load current value for each section is calculated.
[0008]
In adopting the state estimation method for each distribution system, the following elements can be added.
[0009]
(1) When calculating the correction amount in each of the sections, the correction amount is made smaller for a section with a high assumed accuracy for the load current estimated value than for a low section, and conversely the assumed accuracy for the load current estimated value is The correction amount is set larger for the lower section than for the higher section.
[0010]
(2) The assumed value of the daily load change characteristic for each consumer type included in each section and the assumed accuracy use measurement information obtained by measuring the consumer.
[0011]
(3) The deviation is stored for each state estimation point of the distribution system, and the contribution of the saved deviation is calculated in association with each customer type, and each calculated contribution is assigned to the designated distribution line or all distributions. Add up the wires to calculate the total value and display each total value on demand.
[0012]
Further, the present invention is based on a sending current measuring means for measuring a sending current of a distribution line divided into a plurality of sections, and an assumed value of daily load change characteristics for each consumer type included in each section. A load current estimated value calculating means for calculating an estimated load current value for each section, and a load for each section based on an assumed accuracy regarding an assumed value of a daily load change characteristic for each consumer type included in each section. Assumed accuracy calculating means for calculating assumed accuracy related to the estimated current value, sent current estimated value calculating means for calculating an estimated value of the sent current from the calculation result of the load current estimated value calculating means, and measurement of the sent current A deviation calculating means for calculating a deviation between a value and an estimated value of the delivery current, and a correction amount for calculating a correction amount in each section by allocating the deviation according to the assumed accuracy calculated by the assumed accuracy calculating means Calculating means and the negative The state of the distribution system comprising: an estimation unit that estimates the load current or power in each section by correcting the load current estimation value in each section calculated by the current estimation value calculation unit with the correction amount calculated by the correction unit An estimation apparatus is configured.
[0013]
When configuring the distribution system state estimation device, instead of the load current estimated value calculation means, the assumed accuracy calculation means, and the correction amount calculation means, daily load change for each consumer type included in each section Load current estimated value calculation means for calculating the load current expected value for each consumer type in each section based on the assumed value of the characteristic, and the load current estimated value is calculated based on the calculation result of the load current assumed value calculation means The estimated accuracy of the load current estimated value for each consumer type in each section based on the estimated accuracy regarding the estimated value of the load current estimated value calculating means and the daily load change characteristic for each consumer type included in each section A first assumed accuracy calculating means for calculating; a second assumed accuracy calculating means for calculating an assumed accuracy relating to a load current estimated value for each section based on a calculation result of the first assumed accuracy calculating means; It can be a deviation by calculating the difference calculating means and distributed according to the assumed accuracy of calculation of the second assumed accuracy computing means using the correction amount calculating means for calculating a correction amount in each section.
[0014]
According to the above-described means, the load current estimated value and the assumed accuracy for each section are calculated based on the assumed value of the daily load change characteristic for each consumer type included in each section and the assumed accuracy, and each section is calculated. For example, the estimated load current value is added for each section to calculate the estimated current value, and the deviation between the measured current value and the estimated current value is calculated as a mismatch. Since the amount of correction for each section is calculated according to the assumed accuracy of the value and the estimated load current value for each section is corrected according to the amount of correction, the load current or power is increased as the section load of each section. The accuracy can be estimated.
[0015]
In addition, when different types of customers are connected to each section, the load current estimated value for each customer type in each section based on the assumed daily load change characteristics for each customer type included in each section Calculate the assumed accuracy of the load current assumption value for each consumer type in each section based on the assumed accuracy of the daily load change characteristics for each consumer type included in each section, and estimate the load current for each section By calculating the assumed accuracy regarding the value and the assumed load current value, the load current or power in each section can be estimated with high accuracy.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a power distribution system to which the present invention is applied and its monitoring / control system. In FIG. 1, a distribution transformer 100 connected to an upper distribution system is connected to a plurality of distribution lines 110 through a bus 101, and a breaker is included in the distribution line 110. 105, division switches 111, 112, 113, 114 are installed. The distribution line 110 is divided into a plurality of sections # 1, # 2, # 3, and # 4 by section switches 111, 112, 113, and 114. For example, ordinary houses, factories, offices, schools, and the like are connected to the section # 1 as consumers. Consumers such as ordinary houses and factories are also connected to the sections # 2 to # 4.
[0017]
In order to monitor and control the state of the distribution line 110, a current transformer 121 is installed in the distribution line 110 between the circuit breaker 105 and the section switch 111. The current transformer 121 is configured as a delivery current measuring unit that measures the delivery current of the distribution line 110. The send-out current measured by the current transformer 121 is transmitted to the communication slave station 131 and the communication master station 150, and stored in the database 160 as send-out current measurement data.
[0018]
In addition, communication slave stations 132, 133, 134, and 135 are provided to control opening and closing of the division switches 111 to 114, and each of the communication slave stations 132 to 135 is connected to the communication master station 150 via the communication line 130. It is connected to the. In addition, a communication slave station 136 is connected to the interconnection switch 115 provided in the line of another distribution line connected to the distribution line 110 in the section # 2, and the communication slave station 136 is connected to the communication line 130. To the communication master station 150. Each of the communication slave stations 132 to 136 is configured to transmit information about the switching state of the switch to the communication master station 150 via the communication line 130, and these are as online information together with the information such as the sending current. It is stored in the database 160. The offline database 170 stores information about the connection state of each switch and the impedance of the distribution line 110 as equipment information (equipment data). The data stored in the databases 160 and 170 is processed by the monitoring / control server 180, and the processing result is transmitted as command information to each of the communication slave stations 131 to 136 via the communication master station 150. The image is transferred to the interface terminal 190, and an image according to the command information is displayed on the screen of the man-machine interface terminal 190.
[0019]
The monitoring / control server 180 is configured as a distribution system state estimation device that estimates load current or power of each section of the distribution line 110 and other distribution lines as section load based on data stored in the databases 160 and 170. In this embodiment, when the load current or power in each section of each distribution line is estimated by the monitoring / control server 180, in this embodiment, as shown in FIG. It is assumed that the distribution line 210 having only 1 and # 2 is estimated. In this case, it is assumed that a school is connected to the section # 1 as a consumer, and a general house is connected to the section # 2 as a consumer. And the total value of the load current of each section assumes that it will correspond with the sending electric current value of the distribution line 210, if the difference in power factor and a loss are disregarded.
[0020]
Here, the load current value of each section is not usually measured, but the standard pattern of daily load change characteristics (characteristics indicating how the load current changes during 24 hours) is a customer type, for example, Note that it can be roughly assumed for each contract type based on past results, etc., and is accumulated as a daily load curve for each power company, and an outline can be estimated. At this time, since there is a difference from the actual daily load curve of each customer or group (each supply area), the range of error (variation) is also taken into consideration. Further, the standard pattern of the daily load curve for each consumer type is normalized with the contract value of each consumer so that it can be used in common by consumers with different contract power. For example, when the load current for each customer type in the two sections # 1 and # 2 is measured and this measured value is normalized with the contract value of each consumer, the demand included in each section # 1 and # 2 The assumed value Nj (t) of the daily load change characteristic for each house type is obtained, and the assumed accuracy (variation) ΔNj (t) is obtained, and these data are stored in the database 170.
[0021]
In addition, the estimated values of the load currents in the respective sections at the time t in the daily load curves in the sections # 1 and # 2 are distributed with the probabilities shown as I1 ′ and I2 ′ as shown in FIG. . Here, if the load current is adjusted so that the load current does not exceed the contract current by a breaker or the like installed in the consumer, the distribution range falls within each contract current value. In addition, in FIG. 3, the distribution of the estimated values is shown as a graph with the median in between, but the shape is not limited to the shape of the graph, and distribution functions of various shapes can be applied. . Also, the daily load curve graph shown in FIG. 2 does not need to have a uniform vertical interval. For example, a curve having a predetermined ratio with respect to the estimated value may be used, or the ratio may not be constant. .
[0022]
The total value Is ′ of the estimated values I1 ′ and I2 ′ should coincide with the measured value Is of the distribution line sending current, but actually, there is a slight mismatch ΔIs ′. Therefore, in the present embodiment, the mismatch ΔIs ′ indicating the deviation between the estimated value of the load current and the measured value of the delivery current is distributed according to the assumed variation (ΔI1, ΔI2) of the estimated load current values I1 ′ and I2 ′. I am going to do that. That is, the correction amount (ΔI1 ′) is reduced for the load current estimated value I1 ′ (the width of the graph is narrow and the mountain is high) that is considered to be highly accurate, and the load current estimated value I2 ′ that is considered to be lowly accurate. In contrast, the correction amount (ΔI2 ′) is increased.
[0023]
In the conventional method, since I1 ′ and I2 ′ are uniformly obtained by dividing the measured value Is of the sending current by the contract current of each section, the width of the graph is as shown by the broken line in FIG. It is assumed that the load current distribution is wide and low. In addition, the area of the portion surrounded by the graph of each distribution and the horizontal axis in FIG.
[0024]
Next, a processing method for estimating the load current or power in each section using the monitoring / control server 180 will be described with reference to FIGS. As shown in FIG. 6, the monitoring / control server 180 includes a processing overall function unit 610, a related information extraction function unit 620, an assumed value / assumed variation calculating function unit 630 for each type, and an estimated value / variation calculation of the section current. A function unit 640, a sending current estimation / mismatch calculation function unit 650, a section current correction function unit 660, an estimation result evaluation function unit 670, a display data editing function unit 680, and files 625, 635, 645, 655, 665, 675 are provided. It shall be.
[0025]
First, in step 410 of FIG. 4, as a pre-process by the related information extraction function unit 620, as shown in FIG. 5, the customer's contract current is classified into type j for each section (# 1, # 2) of the distribution line 210. The contract current Kij is calculated by adding each time. For example, based on the data stored in the database 170, the contract current in the section # 1 is determined as 120A, and the contract current in the section # 2 is determined as 90A. Next, the process proceeds to step 420, and the processing of the calculation function unit 630 multiplies the daily load curve Nj (t) for each consumer type j by the contract current Kij for each section i, and the time t in each section i. The assumed value Iij (t) of the load current for each consumer type j is calculated. Subsequently, in step 430, the calculation function unit 630 processes the assumed variation (assumed accuracy) ΔIij (t) of the estimated load current value Iij (t) to the daily load change characteristic Nj (t) of each consumer type j. Is calculated based on the assumed accuracy (variation) ΔNj (t). For example, ΔNj (t) of each section is added to calculate the assumed variation ΔIij (t).
[0026]
Next, the process proceeds to step 440, where all the types j in each section are added by the processing of the calculation function unit 640, and the load current estimated value Ii ′ (t) = ΣIij (t) in the section i is calculated. An assumed variation ΔIi (t) = ΣΔIij (t) with respect to Ii ′ (t) is calculated. The variation can be defined and calculated by the square of ΣΔIij (t) in addition to ΣΔIij (t). As a result of this processing, as shown in FIG. 5, the estimated load current value I1 ′ (t) = 30A, I2 ′ (t) = 70A, the assumed variation ΔI1 ′ (t) = 5A, ΔI2 ′ (t) = 15A is calculated.
[0027]
Next, in the process of step 450, the estimated value Ii ′ (t) of the load current in each section is accumulated for the distribution line 210 by the process of the calculation function unit 650, that is, added for all the sections i to estimate the sending current. The value Is ′ (t) = ΣIi ′ (t) is calculated. For example, the estimated value Is ′ (t) = 30A + 70A = 100A of the delivery current is calculated.
[0028]
Next, in the process of step 460, the mismatch ΔIs ′ (t) indicating the deviation between the measured value Is (t) of the delivery current and the estimated value Is ′ (t) of the delivery current is calculated by the process of the calculation function unit 650. Is done. In this case, when the measured value of the delivery current is 110 A, mismatch ΔIs ′ (t) = 110A−100A = 10A is calculated.
[0029]
Next, the process proceeds to step 470, and the processing of the section current correction function unit 660 distributes the estimated mismatch ΔIs' (t) of the delivery current according to the assumed variation ΔIi (t) of each section i, and the correction amount in each section ΔIi ′ (t) is obtained, and a process for correcting the estimated load current Ii ′ (t) in each section according to each correction amount ΔIi ′ (t) is performed.
[0030]
For example, as shown in FIG. 5, for section # 1, I1 ′ (t) = 30A + 10A × 25 / (5 + 15) = 32.5A is obtained, and for section # 2, I2 ′ (t) = 70A + 10A × 15 / (5 + 15) = 77.5A is obtained.
[0031]
When the conventional method is adopted, I1 ′ (t) = 110A × 120 / (120 + 90) = 62.8A is calculated for the section #, and I2 ′ (t) = 110A × for the section # 2. 90 / (120 + 90) = 47.2A is calculated and is greatly improved by the present invention.
[0032]
Next, the process proceeds to step 408, and when the processing at the time section t is completed for the distribution line 210 to be estimated, whether to proceed to the processing of another distribution line or whether to proceed to the next time point (time section) When the determination is made and all the processes are finished, the process in this routine is finished.
[0033]
In the processing of steps 410, 420, and 430, the data in the file 625 is used. To be stored in. Further, in the process of step 440, the data stored in the file 635 is also used, and the load current estimation value and the assumed variation calculation result of each section are stored in the file 645.
[0034]
Moreover, since it is assumed that the voltage of the distribution line is managed within a specified range, the power in each section can be easily estimated by estimating the load current in each section.
[0035]
The section load estimation and correction processing is performed as described above, but in the present invention, the load characteristics of each consumer are assumed in the form of applying a standard daily load curve of the corresponding type, and these daily changes The premise is that the characteristics are in line with the actual situation. That is, the mismatch value for each distribution line is small if the assumption is based on the actual situation, and is large if the assumption is not.
[0036]
Therefore, in the present invention, the estimation result evaluation function unit 670 stores and records in the file 675 the estimation results, in particular, the distribution status of mismatches in each distribution line and mismatches in each contract type at each estimation time point. It is supposed to be displayed upon request. The evaluation result of the estimation result evaluation function unit 670 is edited by the display data editing function unit 680 and displayed on the display screen of the man-machine interface terminal 190. A display example at this time is shown in FIG.
[0037]
In FIG. 7A, the mismatch of each distribution line is displayed as a bar graph for each estimated time point. Each bar graph also shows a breakdown of contract types ((b) b, b, c). For example, at 17:00 in section # 1, it is evaluated that most of the mismatches are related to contract type b. ing. Each bar graph is displayed on the upper or lower side of the line indicating the position of 0 according to the sign of the mismatch (deviation = measured value−estimated value). In the example shown in the figure, the mismatch values are all positive at 17:00 and 18:00, but at 19:00, the mismatch is negative in the sections # 1 and # 4. The sign of the mismatch may be displayed by display color classification, or the mismatch may be represented by a line graph with respect to the time axis.
[0038]
In FIG. 7 (b), each contract type a, b, and c is displayed as a bar graph with respect to the mismatch of all distribution lines. Each bar graph is the same type at the same time from the bar graph shown in (a). This is the result of extracting and adding things. As a result, it can be seen that at 17:00, type 2 and type 18 at 18 o'clock are greatly involved in the mismatch, exceeding the management standard indicated by the broken line. In the illustrated example, the management standard is uniform regardless of the type, but may not be uniform. In other words, since the main purpose of managing mismatches is to improve the accuracy of estimated values and daily load curves, there is also a method of setting a part of the whole, for example, a few percent to exceed the standard (in this case, the initial May be a large value, and may be a small value as the assumed accuracy is improved.
[0039]
In particular, for cases where management standards are exceeded, data will be stored separately in preparation for a future review of the daily load curve. Also, for cases that do not exceed, the portion of each time involved is stored for each type. As described above, each type of daily load curve is defined for each time as Nj (t). Therefore, it is possible to improve accuracy by comparing management data at the same time or statistically processing them. Can be achieved. In this case, it is possible to make corrections online in parallel with estimation at relatively short intervals, or to make corrections every year for a long period.
[0040]
As a specific method, when the average value of mismatches at the same time exceeds a predetermined value (may be smaller than the management standard) for each type, the value of the daily load curve at the time of the type is averaged. Change to a value. The variation is also corrected by obtaining the variance based on the value of the new daily load curve. When reviewing the daily load curve, the season and day of the week are taken into account. In addition, since it is somewhat impossible to cover all customers of the same contract type with a uniform daily load curve, it is also possible to define a daily load curve taking into account differences between distribution lines or distribution line segments. It is done.
[0041]
Furthermore, the daily load characteristic curve for each consumer type used in the present invention and its variation can be evaluated or corrected based on some actual measurement results in addition to the mismatch with the delivery current of each distribution line. it can.
[0042]
Moreover, about a consumer who can use some online measurement information, besides using that information for direct estimation, it can also be used for a cross-sectional evaluation as a daily load characteristic of the consumer of that type. For example, if the difference between the assumed value and the measured value is small, the assumed value is supported, and if the difference is large, it becomes a candidate for review. Note that an assumed value that is involved in a large mismatch and has low credibility can also be extracted as a survey target for updating the expected daily load characteristics. Also, in the case of online measurement in the middle of the distribution line, it is regarded as sending out, and the same processing can be performed on the downstream side of the measurement location.
[0043]
In the present embodiment, the power distribution system has been described as an example.For example, in a factory where devices with various characteristics are operated in a plurality of buildings, and only the power for each building is measured, the actual load of each building work place It can also be applied to estimation and energy saving studies based on the estimation. Further, when the distributed power source is interconnected, it can be dealt with in the same way by regarding the output power as a reverse load.
[0044]
As described above, according to the present embodiment, the load current or power of each section of the distribution line can be estimated with high accuracy based on the current very small online information (measurement information). As a result, it is useful for a wide range of operations and planning such as prevention of equipment overload, proper voltage management of distribution lines, reduction of power transmission loss, and proper accommodation during accidents and work. In addition, since the reliability of the expected daily load characteristics can be constantly evaluated, it is also effective in obtaining a guideline for determining the survey implementation time and target for the update.
[0045]
【The invention's effect】
As described above, according to the present invention, the section load of each section of the distribution line can be estimated with high accuracy even with limited measurement information.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a power distribution system and a monitoring / control system to which the present invention is applied.
FIG. 2 is a diagram for explaining a relationship between a delivery current of a distribution line and a load current estimated value in each section.
FIG. 3 is a diagram for explaining a relationship between an estimated value of a section load current of a distribution line and its estimated variation.
FIG. 4 is a flowchart for explaining processing of the monitoring / control server.
FIG. 5 is a diagram for explaining an estimated value of distribution line section current and a method of calculating the estimated variation.
FIG. 6 is a block configuration diagram showing a specific configuration of a monitoring / control server.
FIG. 7 is a diagram illustrating a display example of an estimated deviation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 100 Distribution transformer 101 Bus 105 Breaker 111-114 Section switch 115,116 Interconnection switch 130 Communication line 131-136 Communication slave station 150 Communication master station 160, 170 Database 180 Monitoring / control server 190 Man-machine interface terminal 210 Distribution line 211, 212 Section switch

Claims (7)

複数の区間に分割された配電線の送出し電流を計測し、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値とその想定精度を基に前記各区間毎の負荷電流推定値とその想定精度を算出し、前記各区間毎の負荷電流推定値から送出し電流の推定値を算出し、前記送出し電流の計測値と前記送出し電流の推定値との偏差を算出し、前記偏差を前記各区間の負荷電流推定値に関する想定精度に応じて配分して前記各区間における補正量を算出し、前記各区間の負荷電流推定値を前記補正量で補正して前記各区間の負荷電流または電力を推定する配電系統の状態推定方法。Measure the sending current of the distribution lines divided into a plurality of sections, and estimate the load current for each section based on the assumed value of the daily load change characteristic for each consumer type included in each section and its assumed accuracy Value and its assumed accuracy, calculate the estimated current value from the estimated load current for each section, and calculate the deviation between the measured current value and the estimated current value. The deviation is distributed according to the assumed accuracy related to the load current estimated value in each section to calculate a correction amount in each section, and the load current estimated value in each section is corrected with the correction amount to each section. Method for estimating the state of a distribution system for estimating the load current or power of the power distribution system. 複数の区間に分割された配電線の送出し電流を計測し、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値を基に前記各区間における需要家種別毎の負荷電流想定値を算出し、この負荷電流想定値を基に前記各区間毎の負荷電流推定値を算出し、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定精度を基に前記各区間における需要家種別毎の負荷電流想定値の想定精度を算出し、この負荷電流想定値の想定精度を基に前記各区間毎の負荷電流推定値に関する想定精度を算出し、前記各区間毎の負荷電流推定値から送出し電流の推定値を算出し、前記送出し電流の計測値と前記送出し電流の推定値との偏差を算出し、前記偏差を前記各区間の負荷電流推定値に関する想定精度に応じて配分して前記各区間における補正量を算出し、前記各区間の負荷電流推定値を前記補正量で補正して前記各区間の負荷電流または電力を推定する配電系統の状態推定方法。Measure the sending current of the distribution lines divided into a plurality of sections, and assume the load current for each consumer type in each section based on the assumed daily load change characteristics for each consumer type included in each section A value is calculated, a load current estimated value for each section is calculated based on the estimated load current value, and each section is calculated based on the assumed accuracy of daily load change characteristics for each consumer type included in each section. The assumed accuracy of the load current assumption value for each consumer type is calculated, the assumed accuracy regarding the load current estimated value for each section is calculated based on the assumed accuracy of the load current assumption value, and the load for each section is calculated. An estimated current value is calculated from the estimated current value, a deviation between the measured current value and the estimated current value is calculated, and the deviation is assumed for the estimated load current value in each section. The correction amount in each section is distributed according to Out, state estimation method of distribution system by correcting the load current estimate of the respective sections in the correction amount estimating the load current or power of the each section. 請求項1または2に記載の配電系統の状態推定方法において、前記各区間における補正量を算出するに際して、前記負荷電流推定値に関する想定精度が高い区間に対しては低い区間よりも補正量を小さくし、逆に前記負荷電流推定値に関する想定精度が低い区間に対しては高い区間よりも補正量を大きくすることを特徴とする配電系統の状態推定方法。3. The distribution system state estimation method according to claim 1, wherein when calculating the correction amount in each section, the correction amount is made smaller than a lower section for a section having a high assumed accuracy regarding the load current estimation value. On the contrary, the state estimation method of the distribution system is characterized in that the correction amount is set larger for the section where the assumed accuracy regarding the load current estimated value is lower than that for the higher section. 請求項1、2または3のうちいずれか1項に記載の配電系統の状態推定方法において、前記各区間に含まれる需要家に関する日負荷変化特性の想定値およびその想定精度は、前記需要家に対して計測して得られた計測情報を利用することを特徴とする配電系統の状態推定方法。In the distribution system state estimation method according to any one of claims 1, 2, and 3, the assumed value of the daily load change characteristic and the assumed accuracy of the consumer included in each section are determined by the consumer. A method for estimating the state of a power distribution system, characterized by using measurement information obtained by measurement. 請求項1、2、3または4のうちいずれか1項に記載の配電系統の状態推定方法において、前記偏差を配電系統の状態推定時点毎に保存し、保存された偏差についてその関与分を需要家種別毎に関連づけて算出し、各算出された関与分を指定の配電線または全配電線について加算して合計値を算出し、各合計値を要求に応じて表示することを特徴とする配電系統の状態推定方法。5. The distribution system state estimation method according to claim 1, wherein the deviation is stored at each distribution system state estimation time point, and the stored deviation is requested for its contribution. Distribution calculated by associating each type of house, calculating the total value by adding the calculated contributions for the specified distribution line or all distribution lines, and displaying each total value as requested System state estimation method. 複数の区間に分割された配電線の送出し電流を計測する送出し電流計測手段と、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値を基に前記各区間毎の負荷電流推定値を算出する負荷電流推定値算出手段と、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値に関する想定精度を基に前記各区間毎の負荷電流推定値に関する想定精度を算出する想定精度算出手段と、前記負荷電流推定値算出手段の算出結果から送出し電流の推定値を算出する送出し電流推定値算出手段と、前記送出し電流の計測値と前記送出し電流の推定値との偏差を算出する偏差算出手段と、前記偏差を前記想定精度算出手段の算出による想定精度に応じて配分して前記各区間における補正量を算出する補正量算出手段と、前記負荷電流推定値算出手段の算出による各区間の負荷電流推定値を前記補正手段の算出による補正量で補正して前記各区間の負荷電流または電力を推定する推定手段とを備えてなる配電系統の状態推定装置。A load current measuring means for measuring a send current of a distribution line divided into a plurality of sections, and a load for each section based on an assumed value of a daily load change characteristic for each consumer type included in each section Load current estimated value calculating means for calculating a current estimated value, and assumed accuracy for the load current estimated value for each section based on the assumed accuracy for the assumed value of the daily load change characteristic for each consumer type included in each section An assumed accuracy calculating means for calculating the estimated value, a sending current estimated value calculating means for calculating an estimated value of a sending current from a calculation result of the load current estimated value calculating means, a measured value of the sending current and the sending current A deviation calculating means for calculating a deviation from the estimated value of the output, a correction amount calculating means for calculating the correction amount in each section by allocating the deviation according to the assumed accuracy calculated by the assumed accuracy calculating means, and the load Current estimation value calculation Stage calculation by the correction amount in correcting the state estimating device for a power distribution system comprising a estimating means for estimating a load current or power of the each section of the correction means the load current estimated value of each section by calculating the. 複数の区間に分割された配電線の送出し電流を計測する送出し電流計測手段と、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値を基に前記各区間における需要家種別毎の負荷電流想定値を算出する負荷電流想定値算出手段と、前記負荷電流想定値算出手段の算出結果を基に負荷電流推定値を算出する負荷電流推定値算出手段と、前記各区間に含まれる需要家種別毎の日負荷変化特性の想定値に関する想定精度を基に前記各区間毎における需要家種別毎の負荷電流想定値の想定精度を算出する第1の想定精度算出手段と、前記第1の想定精度算出手段の算出結果を基に前記各区間毎の負荷電流推定値に関する想定精度を算出する第2の想定精度算出手段と、前記負荷電流推定値算出手段の算出結果から送出し電流の推定値を算出する送出し電流推定値算出手段と、前記送出し電流の計測値と前記送出し電流の推定値との偏差を算出する偏差算出手段と、前記偏差を前記第2の想定精度算出手段の算出による想定精度に応じて配分して前記各区間における補正量を算出する補正量算出手段と、前記負荷電流推定値算出手段の算出による各区間の負荷電流推定値を前記補正手段の算出による補正量で補正して前記各区間の負荷電流または電力を推定する推定手段とを備えてなる配電系統の状態推定装置。Consumers in each section based on an assumed value of a daily load change characteristic for each consumer type included in each section, and a transmission current measuring means for measuring a transmission current of a distribution line divided into a plurality of sections A load current estimated value calculating means for calculating a load current estimated value for each type; a load current estimated value calculating means for calculating a load current estimated value based on a calculation result of the load current estimated value calculating means; and A first assumed accuracy calculation means for calculating an assumed accuracy of a load current assumed value for each consumer type in each section based on an assumed accuracy relating to an assumed value of a daily load change characteristic for each included customer type; Based on the calculation result of the first assumption accuracy calculation means, the second assumption accuracy calculation means for calculating the assumption accuracy regarding the load current estimation value for each section, and the calculation result of the load current estimation value calculation means Calculate the estimated current An estimated current calculation value calculating means, a deviation calculating means for calculating a deviation between the measured value of the output current and the estimated value of the output current, and calculating the deviation by the second assumed accuracy calculating means. A correction amount calculating means for allocating according to the assumed accuracy and calculating a correction amount in each section; and a load current estimated value in each section calculated by the load current estimated value calculating means as a correction amount calculated by the correcting means. A distribution system state estimation apparatus comprising: an estimation unit that corrects and estimates the load current or power in each section.
JP2001262628A 2001-08-31 2001-08-31 Distribution system state estimation method and apparatus Expired - Fee Related JP3814640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001262628A JP3814640B2 (en) 2001-08-31 2001-08-31 Distribution system state estimation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001262628A JP3814640B2 (en) 2001-08-31 2001-08-31 Distribution system state estimation method and apparatus

Publications (2)

Publication Number Publication Date
JP2003079071A JP2003079071A (en) 2003-03-14
JP3814640B2 true JP3814640B2 (en) 2006-08-30

Family

ID=19089494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001262628A Expired - Fee Related JP3814640B2 (en) 2001-08-31 2001-08-31 Distribution system state estimation method and apparatus

Country Status (1)

Country Link
JP (1) JP3814640B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246683A (en) * 2005-03-07 2006-09-14 Toshiba Corp Automatic control method of distribution line, program, and distribution line automatic control system equipped with program
JP5000952B2 (en) * 2006-09-05 2012-08-15 中国電力株式会社 Load accommodation judgment method and voltage accommodation judgment method
JP2009050064A (en) * 2007-08-17 2009-03-05 Hitachi Ltd Distribution system status estimating device
JP6454961B2 (en) * 2013-10-31 2019-01-23 富士通株式会社 Equipment selection support program, equipment selection support method, and equipment selection support apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3808550B2 (en) * 1996-07-08 2006-08-16 株式会社東芝 Distribution system monitoring device
JP3701797B2 (en) * 1998-09-11 2005-10-05 中部電力株式会社 Power system power flow monitoring device
JP2000245064A (en) * 1999-02-19 2000-09-08 Hitachi Ltd State estimation equipment of distribution system and its method

Also Published As

Publication number Publication date
JP2003079071A (en) 2003-03-14

Similar Documents

Publication Publication Date Title
CN110687874B (en) System and method for analyzing power quality events in an electrical system
US7551984B1 (en) Method of tracking power outages
JP4025157B2 (en) Power demand forecasting system
US9547285B2 (en) Electricity demand regulating system and demand adjustment executive system
JP2006204039A (en) Method and device for assuming load of distribution system
JP6387617B2 (en) Distribution system accident recovery method, and distribution system's actual load and its width estimating device, method and program
KR102029031B1 (en) Apparatus and method for estimating power loss of distribution line
KR20180060766A (en) Assessment Method and System of Safety Level of High Voltage Electrical Facilities
Wang et al. A load modeling algorithm for distribution system state estimation
KR101625064B1 (en) Section load calculation system for distribution network based on ami power usage
KR20190047529A (en) Transmission system gis system using real time big data analysis and transmission system load prediction method using the thereof
See et al. Real time distribution analysis for electric utilities
CN107093017A (en) The business datum acquisition methods and its device and system of power-off event
JP3814640B2 (en) Distribution system state estimation method and apparatus
Chang et al. Method for computing probability distributions of available transfer capability
JP3970130B2 (en) Method for estimating the state of interconnection of distributed power sources in distribution systems
JP2018147234A (en) Maintenance plan creation device and method
JP7049218B2 (en) Transmission loss calculation device and transmission loss calculation method
Hilber et al. Monetary importance of component reliability in electrical networks for maintenance optimization
Ding et al. Individual nonparametric load estimation model for power distribution network planning
CN110854845B (en) Topology identification method and system for low-voltage distribution network
CN109449930B (en) Power distribution network reliability assessment and repair time parameter modeling method, equipment and medium
KR101926306B1 (en) Distribution Automation System
KR101926308B1 (en) Distribution automation system having dispersion generation
CN109242270A (en) Verification method based on battalion's auxiliary tone perforation data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees