JP3811845B2 - Ice heat storage device for air conditioning - Google Patents

Ice heat storage device for air conditioning Download PDF

Info

Publication number
JP3811845B2
JP3811845B2 JP2000375829A JP2000375829A JP3811845B2 JP 3811845 B2 JP3811845 B2 JP 3811845B2 JP 2000375829 A JP2000375829 A JP 2000375829A JP 2000375829 A JP2000375829 A JP 2000375829A JP 3811845 B2 JP3811845 B2 JP 3811845B2
Authority
JP
Japan
Prior art keywords
ice
pipe
heat storage
storage device
peltier element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000375829A
Other languages
Japanese (ja)
Other versions
JP2002168482A (en
Inventor
栗原  隆
実 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2000375829A priority Critical patent/JP3811845B2/en
Publication of JP2002168482A publication Critical patent/JP2002168482A/en
Application granted granted Critical
Publication of JP3811845B2 publication Critical patent/JP3811845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水の過冷却現象を利用して氷を製造する空調用氷蓄熱装置に関する。
【0002】
【従来の技術】
従来、水を0℃未満にまで冷却して得られる過冷却水から相変化によってシャーベット状の氷を製造しこれを氷蓄熱槽に貯蔵する空調用氷蓄熱装置が知られている。
【0003】
例えば、特開平3−241251号においては、過冷却水を大気に開放、落下させ、下方に設置した衝撃板に衝突させて過冷却を解除し氷を製造するようにしているが、この方式は、衝撃板との間の垂直距離が必要になり装置設置上の高さに制約が生じたり、溶存酸素の増大により配管内に錆が発生したり、氷蓄熱槽内での氷の偏りにより氷充填率が上がりにくいという問題や、過冷却水の吐出口部やエルボなど衝撃が発生する部分で氷の堆積が生じ配管が閉塞する等の問題を有している。
【0004】
この問題を解決するために、特許第2811271号においては、大口径管内に小口径管をノズル状に付き出して配置すると共に、大口径管に過冷却水から氷への相変化を誘発させる相変化誘発装置を設ける提案を行っている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許第2811271号の方式においては、相変化誘発装置としてプロペラや超音波振動子を用いてキャビテーションを発生させる方式であるため、過冷却水を十分に冷却しないと相変化が起こらず、安定した氷の製造ができないという問題を有している。さらに、上記方式においては、小口径管のノズル部外周などに氷が堆積しやすく、これを防止するために大口径管内にバイパス管を設ける必要があり、構造が複雑になるという問題を有している。
【0006】
本発明は、上記従来の問題を解決するものであって、過冷却水の温度を低くしなくても、構造が簡単で且つ安定した氷の製造を行うことができる空調用氷蓄熱装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1記載の空調用氷蓄熱装置は、熱交換器により過冷却水を生成し、過冷却水から相変化によってシャーベット状の氷を製造しこれを氷蓄熱槽に貯蔵する空調用氷蓄熱装置において、過冷却水の配管外周に配設されるペルチエ素子と、該ペルチエ素子の冷却側に設けられ、前記配管内に突出される突起部と、該突起部の上流側に配設されるヒータとを備え、前記突起部の下流側の配管に絞り部を設け、前記ペルチエ素子に通電して突起部を冷却することにより、過冷却を解除して氷核を発生させ連続的に氷を製造することを特徴とし、請求項2記載の発明は、請求項1において、前記配管内に氷が無い状態でペルチエ素子に所定時間通電することを特徴とし、請求項3記載の発明は、請求項1において、前記下流側の配管の絞り部に直管を連結したことを特徴とする。
以上
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は、本発明の空調用氷蓄熱装置の1実施形態を示し、図1(A)は全体構成図、図1(B)は図1(A)の過冷却解除装置の断面図、図1(C)は絞り部の変形例を示す図である。
【0009】
図1(A)において、冷凍機1により冷却されたブラインは、ブライン循環ポンプ2により熱交換器3に供給、循環される。熱交換器3には、氷蓄熱槽4内の水が配管を介して水循環ポンプ5により濾過装置6を経て供給され、熱交換器3にて水が氷点下(過冷却)まで冷却された後、過冷却水解除装置7にてシャーベット状の氷が製造され氷蓄熱槽4内に供給される。氷蓄熱槽4の下部の水は、ポンプ8により空調装置9を循環し氷蓄熱槽4に戻される。前記濾過装置6においては、水中の氷核物質を除去し、水の純度を高めることにより過冷却水の製造を可能にしている。
【0010】
上記過冷却水解除装置7は、図1(B)に示すように、熱交換器3の出口配管10の外壁に設置されるペルチエ素子11を備え、このペルチエ素子11の冷却面に針状の突起部12を設けた銅板を貼り、全体をシリコンコーティングし、突起部12を出口配管10内に2mm程度突出させるように配置している。
【0011】
突起部12の上流側には、配管の内径より小さい開口(絞り部)13aを有する2枚の絞り板13、13を装着し、両絞り板13、13の間に面状のヒータ14を配設している。なお、ヒータ14が出口配管10と接する温度は65〜100℃程度が好ましい。
【0012】
また、ペルチエ素子11の放熱側には熱交換器15を設け、この熱交換器15を過冷却水配管よりはるかに小径のバイパス管16により、熱交換器3と濾過装置6の間の配管と突起部12の下流側に接続している。
【0013】
なお、図1(B)においては、絞り板13により出口配管10を絞るようにしているが、図1(C)に示すように、出口配管10に一体に絞り部10aを形成し、その外周に線状または面状のヒータ14を配設してもよい。また、ヒータ14を絞り部10aとは別の位置に設けるようにしてもよい。
【0014】
また、上記実施形態においては、熱交換器15の冷水を突起部12の下流側に接続しているが、直接、氷蓄熱槽4へバイパスさせてもよく、また上流側も熱交換器3と氷蓄熱槽4に至る配管のどこからでも接続してよい。さらに、ペルチエ素子11を空冷で冷却するようにしてもよい。
【0015】
上記構成からなる本実施形態の作用について説明する。冷凍機1を運転し出口配管10内の過冷却水の温度が−0.2℃〜−0.8℃程度になった場合に、ペルチエ素子11の通電を開始し、突起部12の温度を−20〜−30℃に冷却し、2〜10分間程度通電する。ただし、−0.6℃程度で稼働が始まり−0.7℃程度で停止させるのが好ましい。−0.3℃程度でも氷の生成が始まるが氷生成効率が低い。また、ペルチエ素子11の通電時間を長くすると、突起部12先端部にまとわりついた氷塊が大きく成長し閉塞を起こす場合がある。
【0016】
過冷却水は絞り部13a、10aを通過する際に乱流が発生し、その乱流が突起部12に至ると、冷却された突起部12において過冷却水が刺激され過冷却が解除されて氷核が発生する。この氷核が乱流により突起部12付近を漂い連続的にシャーペット状の氷が生成されることになる。過冷却が解除され氷が生成されると配管内の温度は−0.1〜0.0℃の安定した状態になる。一旦、氷核が生成されればその氷核に接し連続的に過冷却解除が生じる。すなわち、後はペルチエ素子11の通電を止めても氷の生成が持続される。
【0017】
突起部12付近に氷が生成されると、氷は配管の内面を伝わって上流側に遡上する性質があり、やがては熱交換器3の熱交換管を閉塞してしまう。そこで、本発明においては、突起部12の上流側をヒータ14により加熱することにより、氷の遡上を防止するようにしている。
【0018】
図2は、本発明の空調用氷蓄熱装置の他の実施形態を示す側面図である。本実施形態は、出口配管10の口径が大きい場合にも適用される。また、前記実施形態のように出口配管10を絞らずに、ペルチエ素子11の上流側において出口配管10の外周に線状または面状のヒータ14を装着してもよい。これにより、熱交換器3側への氷の遡上を阻止することができ、長時間安定した氷の生成が可能となる。
【0019】
図3は、本発明の空調用氷蓄熱装置の他の実施形態を示す側面図である。本実施形態においては、温度センサ17が配設された温度計測部R1、ヒータ14が配設された氷遡上防止部R2、ペルチエ素子11が配設された過冷却解除部R3、縮拡管(絞り部)18を連結した過冷却解除促進部R4、直管19からなる過冷却解除完了部R5から構成されている。
【0020】
初期運転時等においては、出口配管10内の温度が−1.5〜−2.0℃になる場合があり、この過冷却水がこのまま過冷却解除部R3に至ると、ここで過冷却解除が完全に行われず−0.8℃程度の過冷却水が配管を流れ、エルボ等で氷が固まり配管の閉塞が生じてしまう。
【0021】
そこで、本実施形態においては、過冷却解除部R3の下流側に縮拡管(絞り部)18を連結した過冷却解除促進部R4、直管19からなる過冷却解除完了部R5を連結させている。過冷却度が残った過冷却水は、過冷却解除促進部R4の縮拡管18において乱流が形成され、過冷却解除完了部R5の直管19において前記乱流域を確保するようにし、過冷却を完全に解除した状態で配管を流れるようにする。なお、過冷却解除部R3および過冷却解除促進部R4の配管内面は氷の付着を防止するためにテフロンコーティングなど氷着防止の工夫をすることが望ましい。また、縮拡管18は複数設置してもよく、その場合にはさらに過冷却を完全に解除することができる。
【0022】
実験の結果、過冷却を完全に解除するための、氷遡上防止部R2の配管長は、管径×1〜管径×3(好ましくは管径×2)、過冷却解除部R3の配管長は、管径×4〜管径×6(好ましくは管径×5い)、過冷却解除促進部R4の配管長は、管径×1〜3(好ましくは管径×2)、過冷却解除完了部R5の配管長は、管径×3〜管径×5(好ましくは管径×4)であること確認された。
【0023】
【発明の効果】
以上の説明から明らかなように、本発明によれば、配管内での過冷却解除により製氷を行うので、氷蓄熱槽まで氷を直接搬送することができ、また、配管内での凍結による閉塞を阻止することができ、また、氷蓄熱槽の有効容量の限度まで氷充填率を増加させることができる。さらに、過冷却水の温度を低くしなくても、構造が簡単で且つ安定した氷の製造を行うことができる。
【図面の簡単な説明】
【図1】本発明の空調用氷蓄熱装置の1実施形態を示し、図1(A)は全体構成図、図1(B)は図1(A)の過冷却解除装置の断面図、図1(C)は絞り部の変形例を示す図である。
【図2】本発明の空調用氷蓄熱装置の他の実施形態を示す側面図である。
【図3】本発明の空調用氷蓄熱装置の他の実施形態を示す側面図である。
【符号の説明】
3…熱交換器
4…氷蓄熱槽
10…出口配管
10a、13a、19…絞り部
11…ペルチエ素子
12…突起部
14…ヒータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ice heat storage device for air conditioning that produces ice by utilizing a supercooling phenomenon of water.
[0002]
[Prior art]
Conventionally, an ice heat storage device for air conditioning is known in which sherbet-like ice is produced by phase change from supercooled water obtained by cooling water to below 0 ° C. and stored in an ice heat storage tank.
[0003]
For example, in JP-A-3-241251, supercooled water is released to the atmosphere, dropped, and collided with an impact plate installed below to release supercooling to produce ice. This requires a vertical distance from the impact plate, which restricts the installation height, causes rust to occur in the piping due to an increase in dissolved oxygen, and causes ice in the ice storage tank. There is a problem that the filling rate is difficult to increase, and a problem that the piping is blocked due to the accumulation of ice at a portion where impact occurs, such as a discharge port of an overcooling water or an elbow.
[0004]
In order to solve this problem, in Japanese Patent No. 2811271, a small-diameter pipe is provided in a nozzle-like manner in a large-diameter pipe, and a phase that induces a phase change from supercooled water to ice in the large-diameter pipe. Proposal to install a change induction device.
[0005]
[Problems to be solved by the invention]
However, in the method of the above-mentioned Patent No. 2811271, since it is a method of generating cavitation using a propeller or an ultrasonic vibrator as a phase change induction device, phase change does not occur unless the supercooling water is sufficiently cooled, There is a problem that stable ice cannot be produced. Furthermore, in the above system, ice tends to accumulate on the outer periphery of the nozzle portion of the small diameter pipe, and in order to prevent this, it is necessary to provide a bypass pipe in the large diameter pipe, which has a problem that the structure becomes complicated. ing.
[0006]
The present invention solves the above-described conventional problems, and provides an ice heat storage device for air conditioning that has a simple structure and can stably produce ice without lowering the temperature of supercooled water. The purpose is to do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an ice storage device for air conditioning according to claim 1 of the present invention generates supercooled water by a heat exchanger, and produces sherbet-like ice by phase change from the supercooled water. In the ice heat storage device for air conditioning stored in the ice heat storage tank, a Peltier element disposed on the outer periphery of the supercooled water pipe, a protrusion provided on the cooling side of the Peltier element and projecting into the pipe, A heater disposed on the upstream side of the protruding portion, and a throttle portion is provided in the pipe on the downstream side of the protruding portion, and the supercooling is released by energizing the Peltier element to cool the protruding portion. The invention according to claim 2 is characterized in that ice nuclei are generated and ice is continuously produced. In claim 1, the Peltier element is energized for a predetermined time in the state where there is no ice in the pipe. The invention according to claim 3 is the invention according to claim 1. , Characterized in that the concatenation of the straight pipe in the throttle portion of the downstream piping.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of an ice heat storage device for air conditioning according to the present invention, FIG. 1 (A) is an overall configuration diagram, FIG. 1 (B) is a cross-sectional view of the supercooling release device of FIG. 1 (C) is a diagram showing a modification of the aperture section.
[0009]
In FIG. 1A, the brine cooled by the refrigerator 1 is supplied and circulated to the heat exchanger 3 by the brine circulation pump 2. After the water in the ice heat storage tank 4 is supplied to the heat exchanger 3 through the piping by the water circulation pump 5 through the filtering device 6, the water is cooled to below freezing point (supercooling) in the heat exchanger 3, Sherbet-like ice is produced by the supercooling water release device 7 and supplied into the ice heat storage tank 4. The water below the ice heat storage tank 4 is circulated through the air conditioner 9 by the pump 8 and returned to the ice heat storage tank 4. In the filtering device 6, supercooled water can be produced by removing ice core material in water and increasing the purity of the water.
[0010]
As shown in FIG. 1 (B), the supercooling water release device 7 includes a Peltier element 11 installed on the outer wall of the outlet pipe 10 of the heat exchanger 3, and a needle-like shape is formed on the cooling surface of the Peltier element 11. A copper plate provided with projections 12 is pasted, and the whole is coated with silicon, and the projections 12 are arranged so as to protrude into the outlet pipe 10 by about 2 mm.
[0011]
Two diaphragm plates 13 and 13 having openings (diaphragm portions) 13 a smaller than the inner diameter of the pipe are mounted on the upstream side of the projection 12, and a planar heater 14 is arranged between the two diaphragm plates 13 and 13. Has been established. The temperature at which the heater 14 is in contact with the outlet pipe 10 is preferably about 65 to 100 ° C.
[0012]
Further, a heat exchanger 15 is provided on the heat radiation side of the Peltier element 11, and this heat exchanger 15 is connected to a pipe between the heat exchanger 3 and the filtration device 6 by a bypass pipe 16 having a diameter much smaller than that of the supercooling water pipe. It is connected to the downstream side of the protrusion 12.
[0013]
In FIG. 1 (B), the outlet pipe 10 is throttled by the throttle plate 13, but as shown in FIG. 1 (C), a throttle portion 10a is formed integrally with the outlet pipe 10 and the outer periphery thereof is formed. Alternatively, a linear or planar heater 14 may be provided. Further, the heater 14 may be provided at a position different from the throttle portion 10a.
[0014]
Moreover, in the said embodiment, although the cold water of the heat exchanger 15 is connected to the downstream of the projection part 12, you may make it bypass to the ice thermal storage tank 4 directly, and the upstream is also with the heat exchanger 3. You may connect from anywhere in the piping leading to the ice heat storage tank 4. Further, the Peltier element 11 may be cooled by air cooling.
[0015]
The effect | action of this embodiment which consists of the said structure is demonstrated. When the refrigerator 1 is operated and the temperature of the supercooled water in the outlet pipe 10 is about -0.2 ° C to -0.8 ° C, energization of the Peltier element 11 is started and the temperature of the protrusion 12 is set. Cool to -20 to -30 ° C and energize for 2 to 10 minutes. However, it is preferable to start operation at about -0.6 ° C and stop at about -0.7 ° C. Ice formation begins even at around -0.3 ° C, but ice formation efficiency is low. Further, when the energization time of the Peltier element 11 is lengthened, an ice block clinging to the tip of the protrusion 12 may grow greatly and cause a blockage.
[0016]
When the supercooled water passes through the throttle portions 13a and 10a, a turbulent flow is generated. When the turbulent flow reaches the protruding portion 12, the supercooled water is stimulated in the cooled protruding portion 12, and the supercooling is released. Ice nuclei are generated. This ice nucleus drifts in the vicinity of the protrusion 12 due to the turbulent flow, so that a sharpet-like ice is continuously generated. When the supercooling is released and ice is generated, the temperature in the pipe is in a stable state of -0.1 to 0.0 ° C. Once ice nuclei are generated, the supercooling is released continuously in contact with the ice nuclei. That is, after that, even if the energization of the Peltier element 11 is stopped, the generation of ice is continued.
[0017]
When ice is generated in the vicinity of the protrusion 12, the ice has the property of traveling up the inner surface of the pipe and going up upstream, eventually closing the heat exchange pipe of the heat exchanger 3. Therefore, in the present invention, the upstream side of the protrusion 12 is heated by the heater 14 to prevent the ice from going up.
[0018]
FIG. 2 is a side view showing another embodiment of the ice heat storage device for air conditioning according to the present invention. This embodiment is also applied when the diameter of the outlet pipe 10 is large. Further, a linear or planar heater 14 may be attached to the outer periphery of the outlet pipe 10 on the upstream side of the Peltier element 11 without restricting the outlet pipe 10 as in the above embodiment. Thereby, it is possible to prevent the ice from going up to the heat exchanger 3 side, and it is possible to generate ice stably for a long time.
[0019]
FIG. 3 is a side view showing another embodiment of the ice heat storage device for air conditioning according to the present invention. In the present embodiment, a temperature measuring unit R1 provided with a temperature sensor 17, an ice run-up preventing unit R2 provided with a heater 14, a supercooling release unit R3 provided with a Peltier element 11, a contraction tube ( A supercooling release promoting portion R4 connected with a constricting portion 18 and a supercooling release completion portion R5 including a straight pipe 19 are included.
[0020]
During initial operation, the temperature in the outlet pipe 10 may be -1.5 to -2.0 ° C. When this supercooled water reaches the supercooling release part R3 as it is, the supercooling is released here. Is not performed completely, supercooled water of about -0.8 ° C flows through the pipe, and ice is solidified by an elbow or the like and the pipe is blocked.
[0021]
Therefore, in the present embodiment, the supercooling release promoting part R4, which is connected to the expansion / contraction pipe (throttle part) 18, and the supercooling release completion part R5 including the straight pipe 19 are connected to the downstream side of the supercooling release part R3. . The supercooled water in which the degree of supercooling remains is turbulent in the expansion and contraction pipe 18 of the supercooling release promoting part R4, and the turbulent flow area is secured in the straight pipe 19 of the supercooling release complete part R5. Make sure that the pipes flow in a state where is completely released. In addition, it is desirable to devise icing prevention such as Teflon coating on the inner surface of the pipes of the supercooling release unit R3 and the supercooling release promoting unit R4. Further, a plurality of expansion / contraction tubes 18 may be installed, and in that case, the supercooling can be completely canceled.
[0022]
As a result of the experiment, the pipe length of the ice run-up prevention part R2 for completely canceling the supercooling is pipe diameter × 1 to pipe diameter × 3 (preferably pipe diameter × 2), and the pipe length of the supercooling release part R3 The length is pipe diameter x 4 to pipe diameter x 6 (preferably pipe diameter x 5), and the pipe length of the supercooling release promoting portion R4 is pipe diameter x 1 to 3 (preferably pipe diameter x 2). It has been confirmed that the pipe length of the release completion portion R5 is pipe diameter × 3 to pipe diameter × 5 (preferably pipe diameter × 4).
[0023]
【The invention's effect】
As is clear from the above description, according to the present invention, since ice making is performed by releasing the supercooling in the pipe, the ice can be directly transported to the ice heat storage tank, and the blockage by freezing in the pipe is possible. The ice filling rate can be increased to the limit of the effective capacity of the ice storage tank. Furthermore, it is possible to produce ice with a simple structure and stable without reducing the temperature of the supercooling water.
[Brief description of the drawings]
FIG. 1 shows an embodiment of an ice heat storage device for air conditioning according to the present invention, FIG. 1 (A) is an overall configuration diagram, FIG. 1 (B) is a cross-sectional view of the supercooling release device of FIG. 1 (C) is a diagram showing a modification of the aperture section.
FIG. 2 is a side view showing another embodiment of the ice heat storage device for air conditioning according to the present invention.
FIG. 3 is a side view showing another embodiment of the ice heat storage device for air conditioning according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 ... Heat exchanger 4 ... Ice thermal storage tank 10 ... Outlet piping 10a, 13a, 19 ... Restriction part 11 ... Peltier element 12 ... Protrusion part 14 ... Heater

Claims (3)

熱交換器により過冷却水を生成し、過冷却水から相変化によってシャーベット状の氷を製造しこれを氷蓄熱槽に貯蔵する空調用氷蓄熱装置において、過冷却水の配管外周に配設されるペルチエ素子と、該ペルチエ素子の冷却側に設けられ、前記配管内に突出される突起部と、該突起部の上流側に配設されるヒータとを備え、前記突起部の下流側の配管に絞り部を設け、前記ペルチエ素子に通電して突起部を冷却することにより、過冷却を解除して氷核を発生させ連続的に氷を製造することを特徴とする空調用氷蓄熱装置。In an air-conditioning ice heat storage device that generates supercooled water by a heat exchanger, produces sherbet-like ice from the subcooled water by phase change, and stores it in an ice heat storage tank, it is placed on the outer periphery of the supercooled water piping. A Peltier element, a protrusion provided on the cooling side of the Peltier element, protruding into the pipe, and a heater disposed on the upstream side of the protrusion , and a pipe on the downstream side of the protrusion An ice heat storage device for air conditioning is characterized in that a constricted portion is provided, and the Peltier element is energized to cool the projection to release the supercooling to generate ice nuclei and continuously produce ice. 前記配管内に氷が無い状態でペルチエ素子に所定時間通電することを特徴とする請求項記載の空調用氷蓄熱装置。The air-conditioning ice thermal storage device according to claim 1, wherein the ice in the pipe, characterized in that the energizing predetermined time Peltier element in the absence. 前記下流側の配管の絞り部に直管を連結したことを特徴とする請求項記載の空調用氷蓄熱装置。Air-conditioning the ice heat storage device according to claim 1, characterized in that the concatenation of the straight pipe in the throttle portion of the downstream piping.
JP2000375829A 2000-09-20 2000-12-11 Ice heat storage device for air conditioning Expired - Fee Related JP3811845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000375829A JP3811845B2 (en) 2000-09-20 2000-12-11 Ice heat storage device for air conditioning

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-284876 2000-09-20
JP2000284876 2000-09-20
JP2000375829A JP3811845B2 (en) 2000-09-20 2000-12-11 Ice heat storage device for air conditioning

Publications (2)

Publication Number Publication Date
JP2002168482A JP2002168482A (en) 2002-06-14
JP3811845B2 true JP3811845B2 (en) 2006-08-23

Family

ID=26600307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000375829A Expired - Fee Related JP3811845B2 (en) 2000-09-20 2000-12-11 Ice heat storage device for air conditioning

Country Status (1)

Country Link
JP (1) JP3811845B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1991819A4 (en) * 2006-02-15 2010-06-02 Lg Electronics Inc Générateur de glace et procédé de fabrication de glace
CN102012139A (en) * 2010-11-04 2011-04-13 广州鑫誉蓄能科技有限公司 Indirect heat exchange type ice crystal spread-resistant device

Also Published As

Publication number Publication date
JP2002168482A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
JP2985070B2 (en) Ice making equipment
JP3811845B2 (en) Ice heat storage device for air conditioning
JP4369331B2 (en) Supercooled water dynamic ice storage tank
JP5686639B2 (en) Dynamic type ice making system and dynamic type ice making method
JPH0278893A (en) Heat exchanger and manufacture thereof
JPH08110133A (en) Ice-making apparatus
JP3516314B2 (en) Ice heat storage device using supercooled water
JP4256494B2 (en) Supercooling water generator
JP2597057B2 (en) Subcooled ice heat storage device
JP2003254647A (en) Ice making device
JP2005188896A (en) Ice thermal storage method and ice thermal storage device
JPH0438177Y2 (en)
RU2230201C2 (en) Radiator
JP3642238B2 (en) Ice heat storage device
JPH04332363A (en) Ice heat accumulating device
JPH0744923Y2 (en) Supercooler for ice storage device for air conditioning
JP3304261B2 (en) Ice storage type air conditioner
JP3126521B2 (en) Supply method of ice / water slurry in ice thermal storage method
JPH0438179Y2 (en)
JPS60243467A (en) Heat exchanger for ice making of high-density heat accumulating air-conditioning system
JPH0641063Y2 (en) Ice storage device for air conditioning
JPH10325657A (en) Ice thermal storage device
JPH058412Y2 (en)
JP2004125319A (en) Ice heat storage unit of air conditioner
JP2007101168A (en) Heat exchanger device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees