JP3809897B2 - Combustible gas concentration measuring device - Google Patents

Combustible gas concentration measuring device Download PDF

Info

Publication number
JP3809897B2
JP3809897B2 JP2001039653A JP2001039653A JP3809897B2 JP 3809897 B2 JP3809897 B2 JP 3809897B2 JP 2001039653 A JP2001039653 A JP 2001039653A JP 2001039653 A JP2001039653 A JP 2001039653A JP 3809897 B2 JP3809897 B2 JP 3809897B2
Authority
JP
Japan
Prior art keywords
gas sensor
concentration
gas
combustible gas
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001039653A
Other languages
Japanese (ja)
Other versions
JP2002243686A (en
Inventor
晴一 大谷
克一 芝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP2001039653A priority Critical patent/JP3809897B2/en
Publication of JP2002243686A publication Critical patent/JP2002243686A/en
Application granted granted Critical
Publication of JP3809897B2 publication Critical patent/JP3809897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、接触燃焼式ガスセンサを用いた水素等の可燃性ガスの濃度を測定する装置に関する。
【0002】
【従来の技術】
接触燃焼式ガスセンサは、通電により発熱するヒータコイルを、熱伝導関係を形成するように酸化触媒で包囲して構成されていて、被検出燃焼性ガスに接触すると、酸化触媒が発熱し、熱伝導によりヒータコイルの温度が上昇する。したがって、ヒータコイルの電気抵抗を検出することにより可燃性ガスの濃度を測定することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、酸化触媒による燃焼熱による温度変化を利用する関係上、可燃性ガスの燃焼が不可能な高濃度、つまり酸欠状態の環境では発熱が無く、可燃性ガスの濃度が極めて低い状態と、極めて高い状態とを判別することができないという不都合がある。
本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、低濃度から燃焼不可能な高濃度までの可燃性ガスの濃度を検出することができるガス測定装置を提供することである。
【0004】
【課題を解決するための手段】
このような問題を解消するために本発明においては、通電によりジュール熱により発熱するヒータと、前記ヒータの表面に形成された電気絶縁層と、前記電気絶縁層の表面に形成された可燃性ガスを酸化反応させて発熱する酸化触媒層とを備え、前記酸化触媒層が前記電気絶縁層により前記ヒータと電気絶縁を維持しつつ熱伝導関係を形成して前記ヒータにより加熱される接触燃焼式ガスセンサを用いて空気よりも熱伝導度が高い可燃性ガスを検出する可燃性ガス濃度測定装置において、前記接触燃焼式ガスセンサと一定の作動電圧を按分するように熱伝導式ガスセンサをブリッジ回路に接続し、前記ブリッジ回路の出力と、前記接触燃焼式ガスセンサと熱伝導式ガスセンサとに流れる電流とを検出し、予め検出されている前記可燃性ガスの濃度と、前記ブリッジ回路の出力及び前記接触燃焼式ガスセンサと熱伝導式ガスセンサとに流れる電流との関係に基づいて可燃性ガスの濃度を検出する。
【0005】
【作用】
予め検出されている前記可燃性ガスの濃度と、前記ブリッジ回路の出力及び前記接触燃焼式ガスセンサと熱伝導式ガスセンサとに流れる電流との関係を利用して低濃度領域と高濃度領域とを区別して可燃性ガスの濃度を検出する。
【0006】
【発明の実施の態様】
そこで以下に本発明の詳細を図示した実施例に基づいて説明する。
図1は、本発明の水素濃度測定装置の一実施例を示すものであって、接触燃焼式ガスセンサ1は、図2に示したように通電により発熱するヒータコイル2に、熱伝導関係を形成するように電気絶縁性材料、たとえばアルミナ等の電気絶縁層3を形成し、その外周に可燃性ガスと酸素との酸化反応を促す酸化触媒層4を形成して構成されている。
熱伝導式ガスセンサ5は、温度抵抗係数が大きく、かつ被検ガスに対して触媒作用を奏しない材料、例えば白金に金メッキを施した材料を、被検ガスと熱伝導関係を形成するように配置して構成されている。
【0007】
接触燃焼式ガスセンサ1、及び熱伝導式ガスセンサ5は、基準抵抗8、7とともに大気中ではゼロ出力となるように平衡が取られてブリッジ接続され、電流検出用抵抗8を介して電源9から作動電力が供給され、またブリッジ部10には定電圧維持回路11が接続されている。
【0008】
測定回路12は、センサ1、5に流れるセンサ電流、つまり電流検出用抵抗8の電圧と、これらセンサ1、5のガスの感応度に起因する不平衡電圧、つまりブリッジ出力が入力し、データ記憶手段13に格納されている検量線データからガス濃度を算出するように構成されている。
【0009】
この実施例において、大気中の可燃性ガス、例えば水素ガスの濃度がゼロ%から上昇すると、酸素が十分に存在する状態では、酸化触媒での燃焼熱がガス濃度に比例するため、ヒータコイル2の抵抗値が上昇し、また熱伝導式ガスセンサ5の抵抗値が低下してブリッジ部10の出力が図3の曲線Aの領域Iに示したように上昇する一方、電流検出用抵抗8に流れる電流は、ヒータコイル2の抵抗値の上昇割合が熱伝導式ガスセンサ5の抵抗値の低下の割合に比べて大きいため、図3の曲線Bの領域Iに示したように水素ガスの濃度上昇につれて減少する。
【0010】
さらにガスの濃度が所定の濃度まで上昇すると、接触燃焼式ガスセンサ1は、その酸化触媒層4での燃焼の度合が低くなるために抵抗値が低下し、かつエアに比較して水素ガスの熱伝導度が高いことによる冷却もあいまって温度が低下する。
一方、熱伝導式ガスセンサ5は、エアに比較して熱伝導率が高い水素ガスによる熱放散が大きくなるため温度が低下してやはり抵抗値が低下する。そして、接触燃焼式ガスセンサ1と熱伝導式ガスセンサ5との抵抗値の低下割合は、接触燃焼式ガスセンサ1の方が燃焼が停止した分だけヒータコイル2の方が大きくなる。
このため、水素ガスの濃度が低い場合(領域I)とは反対に、熱伝導式ガスセンサ5の抵抗変化率がガス濃度の変化に大きく影響をうけて図3の領域IIに示すように最大値から水素ガスの濃度上昇につれてセンサ回路10の出力が減少する。
一方、水素ガスの濃度の高い領域では、2つのセンサ1、5の抵抗値が共に低下するから、抵抗8を流れるセンサ電流は増大する。
【0011】
すなわち、接触燃焼式ガスセンサ1の抵抗値は、
RHW+ΔRa−ΔRb
(ただし、RHWはエアに接触している状態での抵抗値、ΔRaは可燃性ガスの燃焼熱による温度上昇に起因する抵抗変化分、ΔRbは、エアよりも高い可燃性ガスの熱伝導率による温度低下に起因する抵抗変化分)
また、熱伝導式ガスセンサ5の抵抗値は、
RTE−ΔRc
(ただし、RTHはエアに接触している状態での抵抗値、ΔRcはエアよりも高い可燃性ガスの熱伝導率による温度低下に起因する抵抗変化分)
と表わすことができ、
また、通常、
ΔRb≒ΔRc
ということができる。
このため領域Iの濃度では、可燃性ガスを十分に燃焼させることできる酸素が存在するので、ΔRaが増大してブリッジ出力も増大する一方、ΔRb≒ΔRc≪ΔRaであるため、電流値は低下する。
領域IIの濃度では、可燃性ガスを十分に燃焼させることができる酸素が存在しないので、ΔRaが低下してブリッジ出力も減少する一方、ΔRb≒ΔRc≪ΔRaであるため、電流値は増大する。
【0012】
他方、同一のセンサ出力に対して2種類のガス濃度値(図3における領域I、及び領域II)が存在することになるが、センサ電流、つまり抵抗8の電圧を測定回路12により検出することにより、領域I、または領域IIのいずれかを特定できる。
【0013】
したがって、測定回路12によりセンサ電流を検出し、その値から領域I、または領域IIのいずれかを判定させる一方、データ記憶手段13に図3に示す曲線A、つまりブリッジ出力と水素濃度との関係を規定する量線データとして格納しておけば、1つの検量線データにより低濃度から高濃度までを、センサ部10の電流値を判定基準に用いて検出することができる。
【0014】
なお、前述のブリッジ出力とセンサ電流との関係は、水素ガス濃度をパラメータに取ると、センサ電圧とセンサ電流との関係を関係式、または辞書データとして記憶手段に格納するとともに、ブリッジ出力とセンサ電流とによりアクセスすることにより、ガス濃度を検出できることは明らかである。
【0015】
また上述の実施例においては、ヒータをコイル状に形成したものに例を採って説明したが、板状のヒータの表面に絶縁層を介して酸化触媒を形成した接触燃焼式ガスセンサを用いても同様の作用を奏することは明らかである。
【0016】
さらに本発明は、エアとの熱伝導率が大きく異なる水素ガスの濃度測定に特に有効であるが、エアよりも熱伝導率が大きな他の燃焼性ガス、例えばメタン(熱伝導率1.64)等の検出にも適用することができる。
【0017】
【発明の効果】
以上、説明したように本発明によれば、予め検出されている前記可燃性ガスの濃度と、前記ブリッジ回路の出力及び前記接触燃焼式ガスセンサと熱伝導式ガスセンサとに流れる電流との関係を利用して低濃度領域と高濃度領域とを区別して可燃性ガスの濃度を検出するため、接触燃焼式ガスセンサと熱伝導式ガスセンサとの特性を使い分けて広い範囲の濃度を検出することができる。
【図面の簡単な説明】
【図1】 本発明の水素濃度測定装置の一実施例を示すブロック図である。
【図2】 接触燃焼式ガスセンサの一実施例を示す断面図である。
【図3】 同上装置におけるブリッジ出力及びセンサ電流と、ガス濃度との関係を示す線図である。
【符号の説明】
1 接触燃焼式ガスセンサ
5 熱伝導式ガスセンサ
8 センサ電流検出用抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring the concentration of a combustible gas such as hydrogen using a catalytic combustion type gas sensor.
[0002]
[Prior art]
The catalytic combustion type gas sensor is configured by enclosing a heater coil that generates heat when energized with an oxidation catalyst so as to form a heat conduction relationship. When contacted with a combustible gas to be detected, the oxidation catalyst generates heat and conducts heat. As a result, the temperature of the heater coil rises. Therefore, the concentration of the combustible gas can be measured by detecting the electric resistance of the heater coil.
[0003]
[Problems to be solved by the invention]
However, because of the use of temperature changes due to combustion heat from the oxidation catalyst, there is no heat generation in a high concentration where combustion of combustible gas is impossible, that is, in an oxygen deficient environment, and the concentration of combustible gas is extremely low, There is an inconvenience that it cannot be distinguished from an extremely high state.
The present invention has been made in view of such problems, and an object of the present invention is to provide a gas measuring device that can detect the concentration of a combustible gas from a low concentration to a high concentration that cannot be combusted. Is to provide.
[0004]
[Means for Solving the Problems]
In order to solve such a problem, in the present invention, a heater that generates heat by Joule heat when energized, an electrical insulating layer formed on the surface of the heater, and a combustible gas formed on the surface of the electrical insulating layer A catalytic combustion type gas sensor that is heated by the heater by forming a heat conduction relationship while maintaining electrical insulation with the heater by the electrical insulating layer. In a combustible gas concentration measuring device for detecting a combustible gas having a thermal conductivity higher than that of air , the heat conductive gas sensor is connected to a bridge circuit so as to apportion a constant operating voltage with the catalytic combustion gas sensor. , Detecting the output of the bridge circuit and the current flowing through the contact combustion gas sensor and the heat conduction gas sensor, and detecting the combustible gas detected in advance. And degrees, for detecting the concentration of combustible gas on the basis of the relationship between the currents flowing through the output and the catalytic combustion type gas sensor and the heat conductive gas sensor of the bridge circuit.
[0005]
[Action]
The low-concentration region and the high-concentration region are distinguished by utilizing the relationship between the concentration of the combustible gas detected in advance, the output of the bridge circuit, and the current flowing through the contact combustion gas sensor and the heat conduction gas sensor. Separately, the concentration of combustible gas is detected .
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Therefore, details of the present invention will be described below based on the illustrated embodiment.
FIG. 1 shows an embodiment of the hydrogen concentration measuring apparatus according to the present invention. The catalytic combustion type gas sensor 1 forms a heat conduction relationship in the heater coil 2 that generates heat when energized as shown in FIG. In this way, an electrical insulating layer 3 made of an electrically insulating material, such as alumina, is formed, and an oxidation catalyst layer 4 that promotes an oxidation reaction between combustible gas and oxygen is formed on the outer periphery thereof.
The heat conduction type gas sensor 5 is arranged so that a material having a large temperature resistance coefficient and having no catalytic action on the test gas, for example, a material in which platinum is plated with gold is formed in a heat conduction relationship with the test gas. Configured.
[0007]
The contact combustion type gas sensor 1 and the heat conduction type gas sensor 5 are balanced and bridge-connected so as to have zero output in the atmosphere together with the reference resistors 8 and 7 and are operated from the power source 9 via the current detection resistor 8. Electric power is supplied, and a constant voltage maintaining circuit 11 is connected to the bridge unit 10.
[0008]
The measurement circuit 12 receives the sensor current flowing through the sensors 1 and 5, that is, the voltage of the current detection resistor 8, and the unbalanced voltage resulting from the gas sensitivity of the sensors 1 and 5, that is, the bridge output, and stores data. The gas concentration is calculated from the calibration curve data stored in the means 13.
[0009]
In this embodiment, when the concentration of the combustible gas in the atmosphere, for example, hydrogen gas, rises from zero%, the combustion heat in the oxidation catalyst is proportional to the gas concentration in the state where oxygen is sufficiently present. The resistance value of the heat conduction type gas sensor 5 decreases and the output of the bridge portion 10 increases as shown in the region I of the curve A in FIG. Since the rate of increase in the resistance value of the heater coil 2 is larger than the rate of decrease in the resistance value of the heat conduction type gas sensor 5, the current increases as the concentration of hydrogen gas increases as shown in region I of curve B in FIG. Decrease.
[0010]
When the gas concentration further rises to a predetermined concentration, the contact combustion type gas sensor 1 has a lower resistance because the degree of combustion in the oxidation catalyst layer 4 becomes lower, and the heat of hydrogen gas compared to air. Cooling due to high conductivity also reduces the temperature.
On the other hand, in the heat conduction type gas sensor 5, since the heat dissipation by the hydrogen gas having a higher heat conductivity than air becomes large, the temperature is lowered and the resistance value is also lowered. The reduction ratio of the resistance values of the catalytic combustion type gas sensor 1 and the thermally conductive gas sensor 5, towards the catalytic combustion type gas sensor 1 it is heat only the amount that the combustion stopped Takoiru 2 large Kikunaru.
Therefore, contrary to the case where the concentration of hydrogen gas is low (region I), the resistance change rate of the heat conduction type gas sensor 5 is greatly affected by the change in gas concentration, and the maximum value is shown in region II of FIG. As the hydrogen gas concentration increases, the output of the sensor circuit 10 decreases.
On the other hand, in the region where the concentration of hydrogen gas is high, the resistance values of the two sensors 1 and 5 both decrease, so that the sensor current flowing through the resistor 8 increases.
[0011]
That is, the resistance value of the catalytic combustion type gas sensor 1 is
RHW + ΔRa−ΔRb
(However, RHW is a resistance value in contact with air, ΔRa is a resistance change caused by temperature rise due to combustion heat of combustible gas, and ΔRb is a thermal conductivity of combustible gas higher than air. Resistance change due to temperature drop)
In addition, the resistance value of the heat conduction type gas sensor 5 is
RTE-ΔRc
(However, RTH is the resistance value in contact with air, and ΔRc is the resistance change caused by the temperature drop due to the thermal conductivity of combustible gas higher than air)
Can be expressed as
Also usually
ΔRb ≒ ΔRc
It can be said.
For this reason, in the concentration of the region I, since oxygen that can sufficiently burn the combustible gas exists, ΔRa increases and the bridge output also increases. On the other hand, since ΔRb≈ΔRc << ΔRa, the current value decreases. .
At the concentration in region II, since there is no oxygen that can sufficiently burn the combustible gas, ΔRa decreases and the bridge output also decreases. On the other hand, since ΔRb≈ΔRc << ΔRa, the current value increases.
[0012]
On the other hand, two types of gas concentration values (region I and region II in FIG. 3) exist for the same sensor output, but the sensor current, that is, the voltage of the resistor 8 is detected by the measurement circuit 12. Thus, either region I or region II can be specified.
[0013]
Therefore, the sensor current is detected by the measurement circuit 12, and either the region I or the region II is determined from the value, while the data storage means 13 causes the curve A shown in FIG. 3, that is, the relationship between the bridge output and the hydrogen concentration. Can be detected as a standard curve using a single calibration curve data from a low concentration to a high concentration using the current value of the sensor unit 10 as a criterion.
[0014]
Incidentally, the relationship between the bridge output and the sensor current described above, taking the hydrogen gas concentration in the parameter, and stores in the memory means the relation between the sensor voltage and the sensor current relationship, or as the dictionary data, and the bridge output It is clear that the gas concentration can be detected by accessing with the sensor current.
[0015]
In the above embodiment, the heater is formed in a coil shape. However, a catalytic combustion type gas sensor in which an oxidation catalyst is formed on the surface of the plate heater through an insulating layer may be used. It is clear that the same effect is achieved.
[0016]
Furthermore, the present invention is particularly effective for measuring the concentration of hydrogen gas having a thermal conductivity significantly different from that of air, but other combustible gases having a thermal conductivity higher than that of air, such as methane (thermal conductivity 1.64). It can be applied to the detection of the above.
[0017]
【The invention's effect】
As described above, according to the present invention, the relationship between the concentration of the combustible gas detected in advance, the output of the bridge circuit, and the current flowing through the catalytic combustion gas sensor and the heat conduction gas sensor is used. Thus, since the concentration of the combustible gas is detected by distinguishing the low concentration region from the high concentration region, it is possible to detect a wide range of concentrations by selectively using the characteristics of the catalytic combustion type gas sensor and the heat conduction type gas sensor .
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a hydrogen concentration measuring apparatus according to the present invention.
FIG. 2 is a cross-sectional view showing an embodiment of a catalytic combustion type gas sensor.
FIG. 3 is a diagram showing the relationship between the bridge output and sensor current and the gas concentration in the apparatus.
[Explanation of symbols]
1 Contact Combustion Gas Sensor 5 Thermal Conduction Gas Sensor 8 Sensor Current Detection Resistance

Claims (1)

通電によりジュール熱により発熱するヒータと、前記ヒータの表面に形成された電気絶縁層と、前記電気絶縁層の表面に形成された可燃性ガスを酸化反応させて発熱する酸化触媒層とを備え、前記酸化触媒層が前記電気絶縁層により前記ヒータと電気絶縁を維持しつつ熱伝導関係を形成して前記ヒータにより加熱される接触燃焼式ガスセンサを用いて空気よりも熱伝導度が高い可燃性ガスを検出する可燃性ガス濃度測定装置において、
前記接触燃焼式ガスセンサと一定の作動電圧を按分するように熱伝導式ガスセンサをブリッジ回路に接続し、前記ブリッジ回路の出力と、前記接触燃焼式ガスセンサと熱伝導式ガスセンサとに流れる電流とを検出し、予め検出されている前記可燃性ガスの濃度と、前記ブリッジ回路の出力及び前記接触燃焼式ガスセンサと熱伝導式ガスセンサとに流れる電流との関係に基づいて可燃性ガスの濃度を検出する可燃性ガス濃度測定装置。
A heater that generates heat by Joule heat when energized, an electrical insulating layer formed on the surface of the heater, and an oxidation catalyst layer that generates heat by oxidizing a combustible gas formed on the surface of the electrical insulating layer , A flammable gas having a thermal conductivity higher than that of air using a contact combustion gas sensor in which the oxidation catalyst layer is electrically insulated from the heater by the electrical insulation layer and forms a heat conduction relationship and is heated by the heater. In the combustible gas concentration measuring device that detects
A heat conduction gas sensor is connected to a bridge circuit so as to apportion a constant operating voltage to the contact combustion gas sensor, and the output of the bridge circuit and the current flowing through the contact combustion gas sensor and the heat conduction gas sensor are detected. The combustible gas concentration is detected based on the relationship between the concentration of the combustible gas detected in advance, the output of the bridge circuit and the current flowing through the contact combustion gas sensor and the heat conduction gas sensor. Sex gas concentration measuring device.
JP2001039653A 2001-02-16 2001-02-16 Combustible gas concentration measuring device Expired - Fee Related JP3809897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039653A JP3809897B2 (en) 2001-02-16 2001-02-16 Combustible gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001039653A JP3809897B2 (en) 2001-02-16 2001-02-16 Combustible gas concentration measuring device

Publications (2)

Publication Number Publication Date
JP2002243686A JP2002243686A (en) 2002-08-28
JP3809897B2 true JP3809897B2 (en) 2006-08-16

Family

ID=18902396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039653A Expired - Fee Related JP3809897B2 (en) 2001-02-16 2001-02-16 Combustible gas concentration measuring device

Country Status (1)

Country Link
JP (1) JP3809897B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5021400B2 (en) * 2006-12-04 2012-09-05 日本特殊陶業株式会社 Combustible gas detector
JP6815352B2 (en) * 2017-09-15 2021-01-20 日本特殊陶業株式会社 Gas sensor
JP7199875B2 (en) * 2018-08-23 2023-01-06 株式会社チノー hydrogen sensor

Also Published As

Publication number Publication date
JP2002243686A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP4820528B2 (en) Catalyst sensor
JP3385248B2 (en) Gas sensor
AU2001285148A1 (en) Catalytic sensor
US4723439A (en) Humidity detector
US4528086A (en) Oxygen sensor with heater
US4134818A (en) Solid electrolyte sensor for monitoring combustibles in an oxygen containing environment
JP3809897B2 (en) Combustible gas concentration measuring device
JPH11194055A (en) Decision method for exhaust-gas temperature and air fuel ratio number (lambda) and sensor device for execution of the same
JP5927647B2 (en) Gas detector
JP3929845B2 (en) Combustible gas detector
JP5021400B2 (en) Combustible gas detector
JP3929846B2 (en) Intermittent drive type combustible gas detector
EP1736768A1 (en) Device and method for gas sensing
JP3809898B2 (en) Combustible gas detector
JP2008304291A (en) Gas sensor
JP3912243B2 (en) Gas sensor
JP3944637B2 (en) Power-saving carbon monoxide gas sensor
KR100873058B1 (en) Contact combustion mode gas sensor for insertion with thermistor
JP5144046B2 (en) Contact combustion type gas sensor
JP2003194759A (en) Combustible-gas detector
JP2007155502A (en) Detector
JPS6249251A (en) Gas sensor
JPH08233763A (en) Combustible gas sensor
JP3698494B2 (en) Oxygen concentration measuring device
JPS62235555A (en) Contact combustion type gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150602

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees