JP7199875B2 - hydrogen sensor - Google Patents

hydrogen sensor Download PDF

Info

Publication number
JP7199875B2
JP7199875B2 JP2018156559A JP2018156559A JP7199875B2 JP 7199875 B2 JP7199875 B2 JP 7199875B2 JP 2018156559 A JP2018156559 A JP 2018156559A JP 2018156559 A JP2018156559 A JP 2018156559A JP 7199875 B2 JP7199875 B2 JP 7199875B2
Authority
JP
Japan
Prior art keywords
flow path
sensor
concentration
gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018156559A
Other languages
Japanese (ja)
Other versions
JP2020030137A (en
Inventor
康秀 梅島
美菜子 金澤
益博 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP2018156559A priority Critical patent/JP7199875B2/en
Publication of JP2020030137A publication Critical patent/JP2020030137A/en
Application granted granted Critical
Publication of JP7199875B2 publication Critical patent/JP7199875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、雰囲気中の水素ガスの濃度を測定する水素センサに関するものである。 The present invention relates to a hydrogen sensor for measuring the concentration of hydrogen gas in atmosphere.

例えば下記非特許文献1に記載されるように、雰囲気中の水素ガスの濃度を測定する水素センサは、様々な検知方式が知られており、これら各種の検知方式を用いた水素センサは、これまでに様々なガス専門メーカーで発売されている。 For example, as described in Non-Patent Document 1 below, various detection methods are known for hydrogen sensors that measure the concentration of hydrogen gas in an atmosphere. It has been sold by various gas manufacturers.

化学工学 2017年 第81巻 第8号 第410~413頁「特集 ガスセンサの進歩と新たな応用」Kagaku Kogaku 2017, Vol. 81, No. 8, pp. 410-413 "Special Issue: Progress and New Applications of Gas Sensors"

ところで、この種の水素センサは、図5に示すように、検知方式によって測定範囲が異なり、また長所と短所がある。一般的に、半導体式、接触燃焼式、電気化学式の水素センサは、熱伝導式の水素センサの測定範囲の下限値(1%)よりも低い濃度で高感度の測定が行える利点があるが、濃度が10%以上の測定が行えないという欠点がある。これに対し、熱伝導式の水素センサは、1-100%までの広範囲で測定が行える利点があるが、濃度が1%以下の低濃度側での高感度の測定が行えないという欠点がある。 By the way, as shown in FIG. 5, this type of hydrogen sensor has different measurement ranges depending on the detection method, and also has advantages and disadvantages. In general, semiconductor, catalytic combustion, and electrochemical hydrogen sensors have the advantage of being able to measure with high sensitivity at concentrations lower than the lower limit (1%) of the measurement range of thermal conductivity hydrogen sensors. It has the disadvantage that it cannot measure concentrations of 10% or more. On the other hand, the thermal conductivity type hydrogen sensor has the advantage of being able to measure in a wide range from 1% to 100%, but has the disadvantage of not being able to measure with high sensitivity at the low concentration side of 1% or less. .

このため、従来は濃度が1%以下の低濃度から10%以上の高濃度による幅広い測定範囲で水素ガスを測定できる水素センサは存在しなかった。また、半導体式や電気化学式などの低濃度用の水素センサは、高分解能(ppmオーダー)な測定ができる反面、測定状態がONのまま高濃度の水素ガスに曝されると、ドリフト(測定値ずれ、誤差)や故障などが発生するという問題があった。そのため、使用環境を考慮して水素ガスの検知方式を選ぶ必要があった。 For this reason, there has been no conventional hydrogen sensor capable of measuring hydrogen gas in a wide measurement range from low concentrations of 1% or less to high concentrations of 10% or more. In addition, semiconductor type and electrochemical type hydrogen sensors for low concentrations can measure with high resolution (ppm order), but on the other hand, drift (measured value There is a problem that deviation, error) and failure occur. Therefore, it was necessary to select a hydrogen gas detection method in consideration of the usage environment.

そこで、本発明は上記問題点に鑑みてなされたものであって、異なる検知方式の互いの短所を補って幅広い測定範囲で水素ガスの測定が可能な水素センサを提供することを目的としている。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a hydrogen sensor capable of measuring hydrogen gas over a wide measurement range by compensating for the disadvantages of the different detection methods.

上記目的を達成するため、本発明の請求項1に記載された水素センサは、検知方式が異なる複数種類のセンサを用いて雰囲気中の水素ガスの濃度を測定する水素センサであって、
前記雰囲気中の水素ガスが導入/導出されるガス流路と、
前記ガス流路の上流側で分岐し、前記ガス流路の下流側で合流する分岐流路と、
前記分岐流路の上流側の空間に配置される熱伝導式センサと、
前記ガス流路のガス導入口に設けられ、前記雰囲気中の水素ガスを吸引して応答速度を速めるための第1の吸引手段と、
前記分岐流路の下流側の空間に配置され、前記熱伝導式センサの測定範囲の下限値よりも低濃度側に測定範囲の下限値がある低濃度側センサと、
前記分岐流路における前記ガス流路の下流側との合流部分に設けられ、前記ガス流路の上流側で分岐された水素ガスを吸引するための第2の吸引手段と、
前記熱伝導式センサの測定電源をオンして当該熱伝導式センサにて測定される水素ガスの濃度が測定範囲の下限値以下と判定したときに、前記低濃度側センサの測定電源をオンして前記水素ガスの濃度の測定を行うように制御する制御手段とを備えたことを特徴とする。
In order to achieve the above object, a hydrogen sensor according to claim 1 of the present invention is a hydrogen sensor that measures the concentration of hydrogen gas in an atmosphere using a plurality of types of sensors with different detection methods,
a gas flow path through which the hydrogen gas in the atmosphere is introduced/outflowed;
a branch flow path that branches upstream of the gas flow path and merges on the downstream side of the gas flow path;
a thermal conductivity sensor arranged in a space on the upstream side of the branch flow path ;
a first suction means provided at the gas introduction port of the gas flow path for suctioning hydrogen gas in the atmosphere to speed up the response speed;
a low-concentration-side sensor disposed in a space on the downstream side of the branch flow path and having a lower limit of the measurement range on the lower-concentration side than the lower limit of the measurement range of the thermal conductivity sensor;
a second suction means provided at a confluence portion of the branched flow path with the downstream side of the gas flow path for suctioning the hydrogen gas branched on the upstream side of the gas flow path;
When the measurement power source of the thermal conductivity sensor is turned on and the concentration of hydrogen gas measured by the thermal conductivity sensor is determined to be equal to or lower than the lower limit of the measurement range, the measurement power source of the low concentration side sensor is turned on. and a control means for controlling to measure the concentration of the hydrogen gas.

請求項2に記載された水素センサは、検知方式が異なる複数種類のセンサを用いて雰囲気中の水素ガスの濃度を測定する水素センサであって、
前記雰囲気中の水素ガスが導入/導出されるガス流路と、
前記ガス流路の上流側で分岐し、前記ガス流路の下流側で合流する分岐流路と、
前記分岐流路の上流側の空間に配置される熱伝導式センサと、
前記ガス流路のガス導入口に設けられ、前記雰囲気中の水素ガスを吸引して応答速度を速めるための第1の吸引手段と、
前記分岐流路の下流側の空間に配置され、前記熱伝導式センサの測定範囲の下限値よりも低濃度側に測定範囲の下限値がある複数種類のセンサの組み合わせで構成される低濃度側センサと、
前記分岐流路における前記ガス流路の下流側との合流部分に設けられ、前記ガス流路の上流側で分岐された水素ガスを吸引するための第2の吸引手段と、
前記熱伝導式センサの測定電源をオンして当該熱伝導式センサにて測定される水素ガスの濃度が測定範囲の下限値以下と判定したときに、前記低濃度側センサを構成する複数種類のセンサの何れかの測定電源を選択的にオンして前記水素ガスの濃度の測定を行うように制御する制御手段とを備えたことを特徴とする。
The hydrogen sensor according to claim 2 is a hydrogen sensor that measures the concentration of hydrogen gas in an atmosphere using a plurality of types of sensors with different detection methods,
a gas flow path through which the hydrogen gas in the atmosphere is introduced/outflowed;
a branch flow path that branches upstream of the gas flow path and merges on the downstream side of the gas flow path;
a thermal conductivity sensor arranged in a space on the upstream side of the branch flow path ;
a first suction means provided at the gas introduction port of the gas flow path for suctioning hydrogen gas in the atmosphere to speed up the response speed;
A low-concentration side composed of a combination of a plurality of types of sensors arranged in a space on the downstream side of the branch flow path and having a lower-concentration lower-limit measurement range than the lower-limit measurement range of the thermal conductivity sensor. a sensor;
a second suction means provided at a confluence portion of the branched flow path with the downstream side of the gas flow path for suctioning the hydrogen gas branched on the upstream side of the gas flow path;
When it is determined that the concentration of hydrogen gas measured by the thermal conductivity sensor is equal to or lower than the lower limit of the measurement range after turning on the measurement power supply of the thermal conductivity sensor, the plurality of types of the low concentration side sensor constituting the and control means for selectively turning on any of the measurement power sources of the sensors to measure the concentration of the hydrogen gas.

本発明によれば、異なる検知方式の複数種類のセンサを用いて幅広い測定範囲(数ppm~100%)で水素ガスの濃度測定を行うことができる。 According to the present invention, hydrogen gas concentration can be measured in a wide measurement range (several ppm to 100%) using a plurality of types of sensors with different detection methods.

本発明に係る水素センサの内部構造の概略図である。1 is a schematic diagram of the internal structure of a hydrogen sensor according to the present invention; FIG. 本発明に係る水素センサの電気的構成を示すブロック図である。1 is a block diagram showing the electrical configuration of a hydrogen sensor according to the present invention; FIG. 本発明に係る水素センサに用いられる電気化学式センサの回路構成の概略図である。1 is a schematic diagram of a circuit configuration of an electrochemical sensor used in a hydrogen sensor according to the present invention; FIG. 本発明に係る水素センサの測定アルゴリズムのフローチャートである。4 is a flow chart of a measurement algorithm for the hydrogen sensor according to the present invention; 検知方式が異なる複数種類の水素センサそれぞれの測定範囲を示す図である。FIG. 4 is a diagram showing measurement ranges of multiple types of hydrogen sensors with different detection methods.

以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated in detail, referring attached drawings.

[水素センサの用途について]
本発明に係る水素センサは、対象となる雰囲気中の水素ガスの濃度を測定するもので、例えば水素ステーション、水素プラント、運搬、貯蔵庫などの水素ガスを利用するインフラ設備での漏れ検知に用いられる。
[Usage of hydrogen sensor]
The hydrogen sensor according to the present invention measures the concentration of hydrogen gas in a target atmosphere, and is used for leak detection in infrastructure facilities that use hydrogen gas, such as hydrogen stations, hydrogen plants, transportation, and storage. .

[水素センサの構成について]
次に、本実施の形態の水素センサの構成について図1を参照しながら説明する。図1に示すように、水素センサ1は、矩形状の装置本体2の上面にガス導入口3が形成され、ガス導入口3と対向してガス導出口4が装置本体2の下面に形成されており、ガス導入口3とガス導出口4との間が直線状の貫通穴からなるガス流路R1を形成している。ガス導入口3には、雰囲気中の水素ガスを吸引して応答速度を速めるため、例えばファンやポンプなどの吸引手段5が設けられる。
[Regarding the structure of the hydrogen sensor]
Next, the configuration of the hydrogen sensor of this embodiment will be described with reference to FIG. As shown in FIG. 1, the hydrogen sensor 1 has a gas inlet 3 formed on the upper surface of a rectangular device main body 2 and a gas outlet 4 formed on the lower surface of the device main body 2 so as to face the gas inlet 3 . A gas flow path R1 composed of a linear through-hole is formed between the gas inlet 3 and the gas outlet 4. As shown in FIG. The gas inlet 3 is provided with a suction means 5 such as a fan or a pump for sucking hydrogen gas in the atmosphere to speed up the response speed.

これにより、雰囲気中の水素ガスは、図1の白矢印の順路A1→A2→A3→A4で示すように、装置本体2のガス導入口3から吸引手段5にてガス流路R1内に吸引され、ガス流路R1を通ってガス導出口4から導出される。 As a result, the hydrogen gas in the atmosphere is sucked into the gas flow path R1 from the gas introduction port 3 of the apparatus main body 2 by the suction means 5, as indicated by the white arrows A1→A2→A3→A4 in FIG. and is led out from the gas outlet 4 through the gas flow path R1.

ガス流路R1には、図1の黒矢印の順路B1→B2→B3で示すように、ガス導入口3から導入された水素ガスがガス流路R1の上流側で分岐された後にガス流路R1と並行に流れてガス流路R1の下流側で合流する分岐流路R2が形成される。分岐流路R2におけるガス流路R1の下流側との合流部分には、ガス流路R1の上流側で分岐された水素ガスを吸引するため、例えばファンやポンプなどの吸引手段6が設けられる。 In the gas flow path R1, as indicated by the black arrows B1->B2->B3 in FIG. A branch flow path R2 is formed that flows parallel to R1 and joins downstream of the gas flow path R1. A suction means 6 such as a fan or a pump is provided at the junction of the branched flow path R2 and the downstream side of the gas flow path R1 to suck the hydrogen gas branched off from the upstream side of the gas flow path R1.

分岐流路R2は、上流側の空間R2aに熱伝導式センサS1が配置され、下流側の空間R2bに低濃度側センサとしての電気化学式センサS2が配置される。そして、このような配置構成において、電気化学式センサS2は、後述するように、熱伝導式センサS1が測定した水素ガスの濃度が1%以下にならなければ測定電源をONして測定を開始することがないので、電気化学式センサS2が高濃度の水素ガスに曝されることによる劣化や故障を防ぐことができる。 In the branch flow path R2, the thermal conductivity sensor S1 is arranged in the space R2a on the upstream side, and the electrochemical sensor S2 as a low concentration side sensor is arranged in the space R2b on the downstream side. In such an arrangement configuration, the electrochemical sensor S2 turns on the measurement power source and starts measurement, as will be described later, unless the concentration of hydrogen gas measured by the thermal conductivity sensor S1 becomes 1% or less. Therefore, it is possible to prevent deterioration and failure of the electrochemical sensor S2 due to exposure to high-concentration hydrogen gas.

熱伝導式センサS1は、図5に示すように、水素ガスの測定範囲が1%(下限値)~100%(上限値)であり、水素ガスと基準ガス(例えば空気)との熱伝導率の差を利用して分岐流路R2に流れる水素ガスの濃度を検出するものである。 As shown in FIG. 5, the thermal conductivity sensor S1 has a hydrogen gas measurement range of 1% (lower limit) to 100% (upper limit), and the thermal conductivity between hydrogen gas and a reference gas (for example, air) is used to detect the concentration of hydrogen gas flowing in the branch flow path R2.

電気化学式センサS2は、図5に示すように、水素ガスの測定範囲が0.01(下限値)~1%(上限値)であって、測定範囲の下限値が熱伝導式センサS1の測定範囲の下限値よりも低濃度側にあり、電解液を介して2つの電極間を導体で電気的に接続し、電極間に電位差が生じたときの電極表面の酸化反応と還元反応によって導体に流れる電流の大きさから分岐流路R2に流れる水素ガスの濃度を検出するものである。 As shown in FIG. 5, the electrochemical sensor S2 has a hydrogen gas measurement range of 0.01 (lower limit) to 1% (upper limit), and the lower limit of the measurement range is the measurement of the thermal conductivity sensor S1. It is on the lower concentration side than the lower limit of the range, and the two electrodes are electrically connected with a conductor through the electrolyte. The concentration of hydrogen gas flowing in the branch flow path R2 is detected from the magnitude of the flowing current.

[水素センサの電気的な構成について]
次に、水素センサ1の電気的な構成について図2を参照しながら説明する。図2に示すように、熱伝導式センサS1の出力は、熱伝導式用測定回路11を介してA/D変換回路12に入力される。電気化学式センサS2の出力は、電気化学式用測定回路13を介してA/D変換回路12に接続される。
[Regarding the electrical configuration of the hydrogen sensor]
Next, the electrical configuration of the hydrogen sensor 1 will be described with reference to FIG. As shown in FIG. 2, the output of the thermal conductivity sensor S1 is input to the A/D conversion circuit 12 via the thermal conductivity measuring circuit 11. As shown in FIG. The output of the electrochemical sensor S2 is connected to the A/D conversion circuit 12 via the electrochemical measurement circuit 13. FIG.

A/D変換回路12は、各測定回路11,13にて測定された水素ガスの濃度に応じた出力電圧(アナログ信号)をそれぞれデジタルデータに変換する。 The A/D conversion circuit 12 converts output voltages (analog signals) corresponding to the concentrations of hydrogen gas measured by the measurement circuits 11 and 13 into digital data.

制御回路(CPU)14は、A/D変換回路12から入力される熱伝導式センサS1のデジタルデータに基づく水素ガスの濃度に応じて測定ON/OFF回路15のON/OFFを制御する。 A control circuit (CPU) 14 controls ON/OFF of the measurement ON/OFF circuit 15 according to the hydrogen gas concentration based on the digital data of the thermal conductivity sensor S1 input from the A/D conversion circuit 12 .

さらに説明すると、制御回路14は、熱伝導式センサS1から得られた出力電圧値から水素ガスの濃度を算出し、水素ガスの濃度が1%(測定範囲の下限値)以下の場合は測定ON/OFF回路15を介して後述する測定ON/OFFスイッチSW1,SW2,SW3をONし、電気化学式センサS2の測定も開始するように制御する。 More specifically, the control circuit 14 calculates the hydrogen gas concentration from the output voltage value obtained from the thermal conductivity sensor S1, and when the hydrogen gas concentration is 1% (the lower limit of the measurement range) or less, the measurement is turned on. Measurement ON/OFF switches SW1, SW2, and SW3, which will be described later, are turned on via the /OFF circuit 15, and control is performed so that the measurement of the electrochemical sensor S2 is also started.

これに対し、制御回路14は、熱伝導式センサS1から得られた出力電圧値から算出した水素ガスの濃度が1%(測定範囲の下限値)より大きい場合、測定ON/OFF回路15を介して後述する測定ON/OFFスイッチSW1,SW2,SW3をOFFのままとし、熱伝導式センサS1のみで水素ガスの濃度を測定するように制御する。 On the other hand, when the hydrogen gas concentration calculated from the output voltage value obtained from the thermal conductivity sensor S1 is greater than 1% (the lower limit of the measurement range), the control circuit 14 controls the measurement ON/OFF circuit 15. Then, measurement ON/OFF switches SW1, SW2, and SW3, which will be described later, are kept OFF, and control is performed so that the concentration of hydrogen gas is measured only by the thermal conductivity sensor S1.

出力回路としてのD/A変換回路16は、最終的に、水素ガスの濃度が1%より大きければ熱伝導式センサS1の出力に基づいて算出した水素ガスの濃度をアナログ信号(水素濃度値)に変換して出力し、水素ガスの濃度が1%以下であれば電気化学式センサS2の出力に基づいて算出した水素ガスの濃度をアナログ信号(水素濃度値)に変換して出力する。 The D/A conversion circuit 16 as an output circuit finally converts the concentration of hydrogen gas calculated based on the output of the thermal conductivity sensor S1 into an analog signal (hydrogen concentration value) if the concentration of hydrogen gas is greater than 1%. If the concentration of hydrogen gas is 1% or less, the concentration of hydrogen gas calculated based on the output of the electrochemical sensor S2 is converted into an analog signal (hydrogen concentration value) and output.

ここで、電気化学式センサS2が接続される電気化学式用測定回路13の回路構成について図3を参照しながら説明する。 Here, the circuit configuration of the electrochemical measurement circuit 13 to which the electrochemical sensor S2 is connected will be described with reference to FIG.

電気化学式用測定回路13は、図3に示すように、前段増幅回路13a、ボルテージフォロア回路13b、I-V変換回路13cを備えており、電気化学式センサS2のリファレンス極REに一定のバイアス電圧Vrefを与えた状態で、電気化学式センサS2の対極CEと検知極WEとの間の水素濃度に対応した電流を測定する。 As shown in FIG. 3, the electrochemical measurement circuit 13 includes a preamplifier circuit 13a, a voltage follower circuit 13b, and an IV conversion circuit 13c. is applied, the current corresponding to the hydrogen concentration between the counter electrode CE and the sensing electrode WE of the electrochemical sensor S2 is measured.

前段増幅回路13aは、オペアンプOP1の非反転入力端子が抵抗R1を介して接地され、反転入力端子にバイアス電圧Vrefが入力され、出力端子が測定ON/OFFスイッチSW1を介して電気化学式センサS2の対極CEに接続される。 In the preamplifier circuit 13a, the non-inverting input terminal of the operational amplifier OP1 is grounded via a resistor R1, the bias voltage Vref is input to the inverting input terminal, and the output terminal is connected to the electrochemical sensor S2 via the measurement ON/OFF switch SW1. It is connected to the counter electrode CE.

ボルテージフォロワ回路13bは、オペアンプOP2の非反転入力端子が測定ON/OFFスイッチSW2を介して電気化学式センサS2のリファレンス極REに接続され、オペアンプOP2の反転入力端子が出力端子に接続され、出力端子が前段増幅回路13aのオペアンプOP1の反転入力端子に接続される。 In the voltage follower circuit 13b, the non-inverting input terminal of the operational amplifier OP2 is connected to the reference electrode RE of the electrochemical sensor S2 via the measurement ON/OFF switch SW2, and the inverting input terminal of the operational amplifier OP2 is connected to the output terminal. is connected to the inverting input terminal of the operational amplifier OP1 of the preamplifier circuit 13a.

ボルテージフォロワ回路13bは、電気化学式センサS2のリファレンス極REに電流が流れ込まないようにするとともに、リファレンス極REの電位がバイアス電圧Vrefを保つようにする。 The voltage follower circuit 13b prevents current from flowing into the reference electrode RE of the electrochemical sensor S2 and keeps the potential of the reference electrode RE at the bias voltage Vref.

I-V変換回路13cは、電気化学式センサS2からの測定電流を電圧に変換する回路であり、オペアンプOP3の非反転入力端子が抵抗R2を介して接地され、オペアンプOP3の反転入力端子が電気化学式センサS2の検知極WEに接続されるとともに抵抗R3を介してオペアンプOP3の出力端子に接続される。また、I-V変換回路13cのオペアンプOP3の出力には、測定ON/OFFスイッチSW3が接続される。 The IV conversion circuit 13c is a circuit that converts the measured current from the electrochemical sensor S2 into a voltage. It is connected to the detection electrode WE of the sensor S2 and to the output terminal of the operational amplifier OP3 via the resistor R3. A measurement ON/OFF switch SW3 is connected to the output of the operational amplifier OP3 of the IV conversion circuit 13c.

図3の回路構成において、電気化学式センサS2は、図2の制御回路14により測定ON/OFF回路15を介して制御される測定ON/OFFスイッチSW1,SW2,SW3がOFF状態のときに化学反応が止まり、電流が流れないようにできる。 In the circuit configuration of FIG. 3, the electrochemical sensor S2 reacts chemically when the measurement ON/OFF switches SW1, SW2, and SW3 controlled by the control circuit 14 of FIG. stops and no current flows.

[水素ガスの濃度測定方法について]
次に、上記のように構成される水素センサ1にて雰囲気中の水素ガスの濃度を測定する方法について図4の測定アルゴリズムを参照しながら説明する。
[Method for measuring concentration of hydrogen gas]
Next, a method for measuring the concentration of hydrogen gas in the atmosphere with the hydrogen sensor 1 configured as described above will be described with reference to the measurement algorithm shown in FIG.

雰囲気中の水素ガスの濃度を測定するにあたっては、まず、熱伝導式センサS1の測定電源をONする(ST1)。熱伝導式センサS1は、測定電源がONすると、雰囲気中の水素ガスの濃度測定を開始する(ST2)。 To measure the concentration of hydrogen gas in the atmosphere, first, the measurement power source of the thermal conductivity sensor S1 is turned on (ST1). When the measurement power supply is turned on, the thermal conductivity sensor S1 starts measuring the concentration of hydrogen gas in the atmosphere (ST2).

次に、制御回路14は、熱伝導式センサS1にて測定した水素濃度が1%以下か否かを判別する(ST3)。そして、熱伝導式センサS1にて測定した水素濃度が1%以下であると判定すると(ST3-Yes)、測定ON/OFF回路15にて測定ON/OFFスイッチSW1,SW2,SW3をONし、電気化学式センサS2の測定電源をONする(ST4)。そして、電気化学式センサS2は、測定電源がONすると、雰囲気中の水素ガスの濃度測定を開始する(ST5)。これにより、熱伝導式センサS1と電気化学式センサS2にて雰囲気中の水素ガスの濃度が測定される。 Next, the control circuit 14 determines whether the hydrogen concentration measured by the thermal conductivity sensor S1 is 1% or less (ST3). When it is determined that the hydrogen concentration measured by the thermal conductivity sensor S1 is 1% or less (ST3-Yes), the measurement ON/OFF circuit 15 turns on the measurement ON/OFF switches SW1, SW2, and SW3, The measurement power source of the electrochemical sensor S2 is turned on (ST4). Then, when the power source for measurement is turned on, the electrochemical sensor S2 starts measuring the concentration of hydrogen gas in the atmosphere (ST5). As a result, the concentration of hydrogen gas in the atmosphere is measured by the thermal conductivity sensor S1 and the electrochemical sensor S2.

その後、制御回路14は、測定終了か否かを判別し(ST6)、測定終了であると判定すると(ST6-Yes)、そのときの電気化学式センサS2による水素濃度値を出力する(ST7)。これに対し、測定終了ではないと判定すると(ST6-No)、ST2に戻り、熱伝導式センサS1と電気化学式センサS2による雰囲気中の水素ガスの濃度の測定を継続する。 After that, the control circuit 14 determines whether or not the measurement has ended (ST6), and if it determines that the measurement has ended (ST6-Yes), it outputs the hydrogen concentration value obtained by the electrochemical sensor S2 at that time (ST7). On the other hand, if it is determined that the measurement is not completed (ST6-No), the process returns to ST2, and the measurement of the hydrogen gas concentration in the atmosphere is continued by the thermal conductivity sensor S1 and the electrochemical sensor S2.

一方、制御回路14は、ST3において、熱伝導式センサS1にて測定した水素濃度が1%以下ではない、すなわち、水素濃度が1%未満であると判定すると(ST3-No)、電気化学式センサS2の測定電源をOFFのままとし(ST8)、測定終了か否かを判別する(ST9)。 On the other hand, when the control circuit 14 determines in ST3 that the hydrogen concentration measured by the thermal conductivity sensor S1 is not 1% or less, that is, the hydrogen concentration is less than 1% (ST3-No), the electrochemical sensor The measurement power supply in S2 is kept OFF (ST8), and it is determined whether or not the measurement is completed (ST9).

そして、制御回路14は、測定終了であると判定すると(ST9-Yes)、そのときの熱伝導式センサS1による水素濃度値を出力する(ST10)。これに対し、測定終了ではないと判定すると(ST9-No)、ST2に戻り、熱伝導式センサS1による雰囲気中の水素ガスの濃度の測定を継続する。 When the control circuit 14 determines that the measurement is completed (ST9-Yes), it outputs the hydrogen concentration value obtained by the thermal conductivity sensor S1 at that time (ST10). On the other hand, if it is determined that the measurement is not finished (ST9-No), the process returns to ST2, and the measurement of the hydrogen gas concentration in the atmosphere by the thermal conductivity sensor S1 is continued.

このように、本実施の形態によれば、検知方式の異なる熱伝導式センサと電気化学式センサを用い、熱伝導式センサにて測定した雰囲気中の水素ガスが高濃度の場合には熱伝導式センサにて水素ガスの濃度測定を継続し、熱伝導式センサにて測定した雰囲気中の水素ガスが1%以下の低濃度の場合には電気化学式センサの測定電源をONして水素ガスの濃度測定を行う。これにより、検知方式の異なる熱伝導式センサと電気化学式センサの互いの短所を補って幅広い測定範囲(数ppm~100%)で水素ガスの濃度測定が行え、ユーザは水素ガスの濃度を気にせずに使用することが可能となる。 Thus, according to the present embodiment, a thermal conductivity sensor and an electrochemical sensor with different detection methods are used. Continue to measure the concentration of hydrogen gas with the sensor, and if the concentration of hydrogen gas in the atmosphere measured by the thermal conductivity sensor is 1% or less, turn on the measurement power supply of the electrochemical sensor and check the concentration of hydrogen gas. take measurements. As a result, it is possible to measure the concentration of hydrogen gas over a wide measurement range (several ppm to 100%) by compensating for the shortcomings of the thermal conductivity sensor and the electrochemical sensor, which have different detection methods. can be used without

また、雰囲気中の水素ガスが導入/導出されるガス流路の上流側に熱伝導式センサを配置し、ガス流路の下流側に電気化学式センサを配置し、熱伝導式センサが測定する水素ガスの濃度に応じて電気化学式センサの測定電源をON/OFF制御すれば、高濃度の水素ガスに電気化学式センサが曝された場合に劣化や故障を防ぐことができる。 In addition, a thermal conductivity sensor is placed upstream of the gas flow path through which hydrogen gas in the atmosphere is introduced/discharged, and an electrochemical sensor is placed downstream of the gas flow path. By ON/OFF-controlling the measurement power supply of the electrochemical sensor according to the gas concentration, it is possible to prevent deterioration and failure when the electrochemical sensor is exposed to high-concentration hydrogen gas.

さらに、検知方式の異なる熱伝導式センサと電気化学式センサを併用するので、高湿度環境で使用した場合には、熱伝導式センサは湿度の影響を受けて指示ズレを起こすおそれがあるが、電気化学式センサはほぼ影響を受けないため補正が可能となる。 Furthermore, since a thermal conductivity sensor and an electrochemical sensor with different detection methods are used together, when used in a high-humidity environment, the thermal conductivity sensor may be affected by humidity and cause indication deviation. The chemical sensor is almost unaffected and can be corrected.

ところで、上述した実施の形態において、制御回路14は、熱伝導式センサS1が測定する水素ガスの濃度に応じて電気化学式センサS2の測定電源をON/OFF制御しているが、例えば雰囲気中の水素ガスの濃度が急激に高くなり、熱伝導式センサS1または電気化学式センサS2が測定する水素ガスの濃度の変化量が所定量以上となったときに、電気化学式センサS2の測定電源をOFF制御してもよい。 By the way, in the above-described embodiment, the control circuit 14 controls ON/OFF of the measurement power supply of the electrochemical sensor S2 according to the concentration of hydrogen gas measured by the thermal conductivity sensor S1. When the concentration of hydrogen gas suddenly increases and the amount of change in the concentration of hydrogen gas measured by the thermal conductivity sensor S1 or the electrochemical sensor S2 exceeds a predetermined amount, the measurement power supply of the electrochemical sensor S2 is turned off. You may

また、上述した実施の形態では、図1に示すように、水素ガスの流速の影響を小さくするため、ガス導入口3から導入された水素ガスがガス流路R1の上流側で分岐された後にガス流路R1と並行に流れてガス流路R1の下流側で合流する分岐流路R2を形成し、分岐流路R2の上流側に熱伝導式センサS1を配置し、分岐流路R2の下流側に電気化学式センサS2を配置する構成としている。また、ガス導入口3から導入された水素ガスを電気化学式センサS2まで行き届かせるため、ガス導入口3とガス導出口4に吸引手段5,6を設けた構成としている。しかし、これらの構成に限定されるものではない。例えばガス流路R1を中心として、それぞれの検出面がガス流路R1に向くように熱伝導式センサS1と電気化学式センサS2とを対向配置してもよい。 Further, in the above-described embodiment, as shown in FIG. 1, in order to reduce the influence of the flow velocity of the hydrogen gas, after the hydrogen gas introduced from the gas inlet 3 is branched upstream of the gas flow path R1, A branch flow path R2 that flows in parallel with the gas flow path R1 and merges on the downstream side of the gas flow path R1 is formed. An electrochemical sensor S2 is arranged on the side. Also, in order to allow the hydrogen gas introduced from the gas inlet 3 to reach the electrochemical sensor S2, the gas inlet 3 and the gas outlet 4 are provided with suction means 5 and 6 . However, it is not limited to these configurations. For example, the thermal conductivity sensor S1 and the electrochemical sensor S2 may be arranged so as to face the gas flow path R1 with their detection surfaces facing the gas flow path R1.

さらに、上述した実施の形態では、熱伝導式センサS1と電気化学式センサS2による検知方式が異なる2種類のセンサを装置本体2に内蔵した構成として説明したが、この構成に限定されるものではない。 Furthermore, in the above-described embodiment, two types of sensors with different detection methods, the thermal conductivity sensor S1 and the electrochemical sensor S2, are incorporated in the device main body 2, but the configuration is not limited to this. .

すなわち、本実施の形態では、測定範囲が水素濃度1%以上の熱伝導式センサS1を必須の構成とするが、低濃度側センサに関しては、熱伝導式センサS1の測定範囲の下限値よりも低濃度側に測定範囲の下限値があるセンサであれば電気化学式センサS2以外のセンサ(例えば半導体式センサ、接触燃焼式センサなど)でも良い。 That is, in the present embodiment, the thermal conductivity sensor S1 with a hydrogen concentration of 1% or more is essential, but the low-concentration sensor is higher than the lower limit of the measurement range of the thermal conductivity sensor S1. A sensor other than the electrochemical sensor S2 (for example, a semiconductor sensor, a catalytic combustion sensor, etc.) may be used as long as the sensor has a lower limit of the measurement range on the low concentration side.

また、複数種類のセンサを適宜組み合わせて低濃度側センサを構成し、熱伝導式センサS1が測定した水素濃度が1%以下になったときに、低濃度側センサを構成する複数種類のセンサの何れかの測定電源を選択的にONして水素ガスの濃度を測定することもできる。例えば低濃度側センサとして、電気化学式センサ、半導体式センサ、接触燃焼式センサによる3種類のセンサを用いた場合には、熱伝導式センサS1が測定した水素濃度が1%以下になったときに、水素濃度が0.1~1%では接触燃焼式センサの測定電源をONし、水素濃度が0.01~0.1%では電気化学式センサの測定電源をONし、0.001~0.1%では半導体センサの測定電源をONして水素ガスの濃度を測定する。 Further, a plurality of types of sensors are appropriately combined to constitute a low concentration side sensor, and when the hydrogen concentration measured by the thermal conductivity sensor S1 becomes 1% or less, the plurality of types of sensors constituting the low concentration side sensor The concentration of hydrogen gas can also be measured by selectively turning on any measurement power source. For example, when three types of sensors, an electrochemical sensor, a semiconductor sensor, and a catalytic combustion sensor, are used as low-concentration sensors, when the hydrogen concentration measured by the thermal conductivity sensor S1 becomes 1% or less, , when the hydrogen concentration is 0.1 to 1%, the catalytic combustion sensor is turned on, and when the hydrogen concentration is 0.01 to 0.1%, the electrochemical sensor is turned on. At 1%, the measurement power source of the semiconductor sensor is turned on to measure the concentration of hydrogen gas.

以上、本発明に係る水素センサの最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術などはすべて本発明の範疇に含まれることは勿論である。 Although the best mode of the hydrogen sensor according to the present invention has been described above, the present invention is not limited by the description and drawings according to this mode. In other words, other forms, embodiments, operation techniques, etc. made by those skilled in the art based on this form are all included in the scope of the present invention.

1 水素センサ
2 装置本体
3 ガス導入口
4 ガス導出口
5,6 吸引手段
11 熱伝導式用測定回路
12 A/D変換回路
13 電気化学式用測定回路
13a 前段増幅回路
13b ボルテージフォロア回路
13c I-V変換回路
14 制御回路(CPU)
15 測定ON/OFF回路
16 D/A変換回路
S1 熱伝導式センサ
S2 電気化学式センサ
R1 ガス流路
R2 分岐流路
SW1,SW2,SW3 測定ON/OFFスイッチ
RE リファレンス極
CE 対極
WE 検知極
1 Hydrogen sensor 2 Apparatus body 3 Gas inlet 4 Gas outlet 5, 6 Suction means 11 Thermal conductivity measurement circuit 12 A/D conversion circuit 13 Electrochemical measurement circuit 13a Preamplifier circuit 13b Voltage follower circuit 13c IV Conversion circuit 14 control circuit (CPU)
15 Measurement ON/OFF circuit 16 D/A conversion circuit S1 Thermal conductivity sensor S2 Electrochemical sensor R1 Gas channel R2 Branch channel SW1, SW2, SW3 Measurement ON/OFF switch RE Reference electrode CE Counter electrode WE Detection electrode

Claims (2)

検知方式が異なる複数種類のセンサを用いて雰囲気中の水素ガスの濃度を測定する水素センサであって、
前記雰囲気中の水素ガスが導入/導出されるガス流路と、
前記ガス流路の上流側で分岐し、前記ガス流路の下流側で合流する分岐流路と、
前記分岐流路の上流側の空間に配置される熱伝導式センサと、
前記ガス流路のガス導入口に設けられ、前記雰囲気中の水素ガスを吸引して応答速度を速めるための第1の吸引手段と、
前記分岐流路の下流側の空間に配置され、前記熱伝導式センサの測定範囲の下限値よりも低濃度側に測定範囲の下限値がある低濃度側センサと、
前記分岐流路における前記ガス流路の下流側との合流部分に設けられ、前記ガス流路の上流側で分岐された水素ガスを吸引するための第2の吸引手段と、
前記熱伝導式センサの測定電源をオンして当該熱伝導式センサにて測定される水素ガスの濃度が測定範囲の下限値以下と判定したときに、前記低濃度側センサの測定電源をオンして前記水素ガスの濃度の測定を行うように制御する制御手段とを備えたことを特徴とする水素センサ。
A hydrogen sensor that measures the concentration of hydrogen gas in an atmosphere using a plurality of types of sensors with different detection methods,
a gas flow path through which the hydrogen gas in the atmosphere is introduced/outflowed;
a branch flow path that branches upstream of the gas flow path and merges on the downstream side of the gas flow path;
a thermal conductivity sensor arranged in a space on the upstream side of the branch flow path ;
a first suction means provided at the gas introduction port of the gas flow path for suctioning hydrogen gas in the atmosphere to speed up the response speed;
a low-concentration-side sensor disposed in a space on the downstream side of the branch flow path and having a lower limit of the measurement range on the lower-concentration side than the lower limit of the measurement range of the thermal conductivity sensor;
a second suction means provided at a confluence portion of the branched flow path with the downstream side of the gas flow path for suctioning the hydrogen gas branched on the upstream side of the gas flow path;
When the measurement power source of the thermal conductivity sensor is turned on and the concentration of hydrogen gas measured by the thermal conductivity sensor is determined to be equal to or lower than the lower limit of the measurement range, the measurement power source of the low concentration side sensor is turned on. and control means for controlling to measure the concentration of the hydrogen gas.
検知方式が異なる複数種類のセンサを用いて雰囲気中の水素ガスの濃度を測定する水素センサであって、
前記雰囲気中の水素ガスが導入/導出されるガス流路と、
前記ガス流路の上流側で分岐し、前記ガス流路の下流側で合流する分岐流路と、
前記分岐流路の上流側の空間に配置される熱伝導式センサと、
前記ガス流路のガス導入口に設けられ、前記雰囲気中の水素ガスを吸引して応答速度を速めるための第1の吸引手段と、
前記分岐流路の下流側の空間に配置され、前記熱伝導式センサの測定範囲の下限値よりも低濃度側に測定範囲の下限値がある複数種類のセンサの組み合わせで構成される低濃度側センサと、
前記分岐流路における前記ガス流路の下流側との合流部分に設けられ、前記ガス流路の上流側で分岐された水素ガスを吸引するための第2の吸引手段と、
前記熱伝導式センサの測定電源をオンして当該熱伝導式センサにて測定される水素ガスの濃度が測定範囲の下限値以下と判定したときに、前記低濃度側センサを構成する複数種類のセンサの何れかの測定電源を選択的にオンして前記水素ガスの濃度の測定を行うように制御する制御手段とを備えたことを特徴とする水素センサ。
A hydrogen sensor that measures the concentration of hydrogen gas in an atmosphere using a plurality of types of sensors with different detection methods,
a gas flow path through which the hydrogen gas in the atmosphere is introduced/outflowed;
a branch flow path that branches upstream of the gas flow path and merges on the downstream side of the gas flow path;
a thermal conductivity sensor arranged in a space on the upstream side of the branch flow path ;
a first suction means provided at the gas introduction port of the gas flow path for suctioning hydrogen gas in the atmosphere to speed up the response speed;
A low-concentration side composed of a combination of a plurality of types of sensors arranged in a space on the downstream side of the branch flow path and having a lower-concentration lower-limit measurement range than the lower-limit measurement range of the thermal conductivity sensor. a sensor;
a second suction means provided at a confluence portion of the branched flow path with the downstream side of the gas flow path for suctioning the hydrogen gas branched on the upstream side of the gas flow path;
When it is determined that the concentration of hydrogen gas measured by the thermal conductivity sensor is equal to or lower than the lower limit of the measurement range after turning on the measurement power supply of the thermal conductivity sensor, the plurality of types of the low concentration side sensor constituting the and control means for selectively turning on any measurement power source of the sensor to measure the concentration of the hydrogen gas.
JP2018156559A 2018-08-23 2018-08-23 hydrogen sensor Active JP7199875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018156559A JP7199875B2 (en) 2018-08-23 2018-08-23 hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018156559A JP7199875B2 (en) 2018-08-23 2018-08-23 hydrogen sensor

Publications (2)

Publication Number Publication Date
JP2020030137A JP2020030137A (en) 2020-02-27
JP7199875B2 true JP7199875B2 (en) 2023-01-06

Family

ID=69624278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018156559A Active JP7199875B2 (en) 2018-08-23 2018-08-23 hydrogen sensor

Country Status (1)

Country Link
JP (1) JP7199875B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243686A (en) 2001-02-16 2002-08-28 Riken Keiki Co Ltd Measuring instrument for combustible gas concentration
JP2005156364A (en) 2003-11-26 2005-06-16 Ngk Spark Plug Co Ltd Flammable gas detector
JP2006047275A (en) 2004-06-29 2006-02-16 Honda Motor Co Ltd Gas detector
JP2006317196A (en) 2005-05-10 2006-11-24 Akihisa Inoue Hydrogen gas sensor
JP2009103605A (en) 2007-10-24 2009-05-14 Yazaki Corp Circuit and method for measuring gas concentration
JP2012163514A (en) 2011-02-09 2012-08-30 Honda Motor Co Ltd Gas detection system
CN204010249U (en) 2014-05-31 2014-12-10 哈尔滨爱生智能技术开发有限公司 The parallel composition formula flammable gas alarm of a kind of fast-response, resistance to high humidity, antipollution, high reliability
CN205091261U (en) 2015-09-27 2016-03-16 电子科技大学中山学院 Composite sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243686A (en) 2001-02-16 2002-08-28 Riken Keiki Co Ltd Measuring instrument for combustible gas concentration
JP2005156364A (en) 2003-11-26 2005-06-16 Ngk Spark Plug Co Ltd Flammable gas detector
JP2006047275A (en) 2004-06-29 2006-02-16 Honda Motor Co Ltd Gas detector
JP2006317196A (en) 2005-05-10 2006-11-24 Akihisa Inoue Hydrogen gas sensor
JP2009103605A (en) 2007-10-24 2009-05-14 Yazaki Corp Circuit and method for measuring gas concentration
JP2012163514A (en) 2011-02-09 2012-08-30 Honda Motor Co Ltd Gas detection system
CN204010249U (en) 2014-05-31 2014-12-10 哈尔滨爱生智能技术开发有限公司 The parallel composition formula flammable gas alarm of a kind of fast-response, resistance to high humidity, antipollution, high reliability
CN205091261U (en) 2015-09-27 2016-03-16 电子科技大学中山学院 Composite sensor

Also Published As

Publication number Publication date
JP2020030137A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP4692026B2 (en) Gas sensor
KR101124093B1 (en) Powder flow measuring device and powder flow measuring method
JP2013533480A5 (en)
US10948207B2 (en) Air purifier and air purification method
EP1980848B1 (en) Electrochemical sensor with short-circuiting switch and method of zero-calibration
US7633386B2 (en) Amplifier for multi-use of single environmental sensor
US20120247184A1 (en) Gas detecting apparatus and gas detecting method
US20190086351A1 (en) Gas sensor
CN113758606A (en) Temperature sensor and temperature measuring equipment
JP2009020101A (en) Coriolis type fluid flowmeter
JP7199875B2 (en) hydrogen sensor
CN102879648A (en) Resistance change detection device for thin film resistive gas sensor
WO2003029759A1 (en) Flow rate measuring instrument
US20160061756A1 (en) Gas detector and program
US9322742B2 (en) Hydrogen flame ionization type exhaust gas analyzer
US10024813B2 (en) Gas detection apparatus
CN105455809B (en) Semiconductor device and AC resistance measurement system including the same
JPH04102056A (en) Apparatus for detecting oxygen concentration
JP5091055B2 (en) Gas concentration detection device, gas concentration detection system
WO2015131539A1 (en) Temperature measurement device
CN103235011B (en) Semiconductor ozone sensor measuring circuit
JP4791342B2 (en) Ion sensor and analyzer using the same
KR101849635B1 (en) Measuring High Concentration F2 Gas Using Different Cross Sensitivity Cl2 EC Sensors
CN216770823U (en) High-precision temperature measuring device
EP0108141A1 (en) Oxygen analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221221

R150 Certificate of patent or registration of utility model

Ref document number: 7199875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150