JP3698494B2 - Oxygen concentration measuring device - Google Patents

Oxygen concentration measuring device Download PDF

Info

Publication number
JP3698494B2
JP3698494B2 JP23045796A JP23045796A JP3698494B2 JP 3698494 B2 JP3698494 B2 JP 3698494B2 JP 23045796 A JP23045796 A JP 23045796A JP 23045796 A JP23045796 A JP 23045796A JP 3698494 B2 JP3698494 B2 JP 3698494B2
Authority
JP
Japan
Prior art keywords
gas
oxygen concentration
electrode
detection element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23045796A
Other languages
Japanese (ja)
Other versions
JPH1073562A (en
Inventor
浩二 守家
孝弘 佐古
良一 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP23045796A priority Critical patent/JP3698494B2/en
Publication of JPH1073562A publication Critical patent/JPH1073562A/en
Application granted granted Critical
Publication of JP3698494B2 publication Critical patent/JP3698494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質からなる基材に、酸素ガスをイオン化可能な材料からなる第一電極、及び、第二電極を設け、前記各電極へのガス接触率を異ならせる規制手段を設けてあるガス検知素子を備え、前記ガス検知素子の両電極間に電圧を印加する電圧供給部を備え、前記ガス検知素子を加熱する加熱手段を設けて、前記ガス検知素子を加熱した状態で、そのガス検知素子に電圧を供給したときに流れる出力電流に基づいて前記電極に接触したガス中の酸素濃度を測定可能に構成して、メタンを主成分とした燃料ガスの燃焼機器排ガス中の酸素濃度を測定する酸素濃度測定装置に関する。
つまり、このような酸素濃度測定装置は、メタンを主成分とした燃料ガスの前記燃焼機器排ガス中に含まれる酸素をモニタすることによって、例えば、前記燃焼機器の空燃比を制御するなどして燃焼を制御するなどの用途に利用されるものである。
【0002】
【従来の技術】
従来、この種の酸素濃度測定装置は、燃焼排ガス中の酸素濃度を測定するような場合であっても、排ガスを直接検知する構成を採用していた。
【0003】
【発明が解決しようとする課題】
上述した従来の酸素濃度測定装置によれば、メタンを主成分とした燃料ガスの燃焼機器排ガス中の酸素濃度を測定する場合に、酸素濃度が正確には測定されず、特に燃料過多の燃焼条件で酸素濃度が過少に測定されてしまうことがあるという問題点があり、燃焼機器の燃焼状態を誤って認識してしまう虞があった。
【0004】
従って、本発明の目的は、上記欠点に鑑み、燃焼条件によらず正確に酸素濃度を測定する事のできる酸素濃度測定装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、先の問題点が、排ガス中に未燃メタンガス成分が含まれている事に起因するものであるという知見を新たに見いだし、このような現象は、排ガスの温度が通常600℃にも達しているという状況から、前記未燃メタンガスが前記酸素濃度測定装置におけるガス検知素子の電極上で酸化され、前記電極上でのメタンガスの酸化にともない酸素が消費され(CH4+2O2→CO2+2H2O)、消費された酸素分だけ出力電流が減少してしまう現象に基づくのではないかと考え、前記メタンガスが電極上で酸化される条件を調べたところ、例えば、白金電極においては、ガス温度が400℃を越える条件下で酸化されはじめるなど、メタンガスと電極との関係で限界温度が求められ、その限界温度以下のガス温度では先の問題点がほとんど起きないという新知見を得た。
本発明は、これら新知見に基づきなされた物であって、
上記目的を達成するための本発明の特徴構成は、固体電解質からなる基材に、酸素ガスをイオン化可能な材料からなる第一電極、及び、第二電極を設け、前記各電極へのガス接触率を異ならせる規制手段を設けてあるガス検知素子を備え、前記ガス検知素子の両電極間に電圧を印加する電圧供給部を備え、前記ガス検知素子を加熱する加熱手段を設けて、前記ガス検知素子を加熱した状態で、そのガス検知素子に電圧を供給したときに流れる出力電流に基づいて前記電極に接触したガス中の酸素濃度を測定可能に構成して、メタンを主成分とした燃料ガスの燃焼機器排ガス中の酸素濃度を測定する酸素濃度測定装置に、
前記第一電極上でメタンガスが酸化する限界温度以下の設定温度に、前記第一電極の温度を維持する温度維持機構を設けたことにあり、
前記燃焼機器排ガスを前記設定温度以下に冷却して、前記ガス検知素子に導入する排ガス冷却導入機構を設けてあれば好ましく、
前記酸素ガスをイオン化可能な材料が白金であり、前記設定温度が380℃以上400℃以下であればよい。
【0006】
〔作用効果〕
つまり、前記第一電極上でメタンガスが酸化する限界温度以下の設定温度に、前記第一電極の温度を維持する温度維持機構を設けたことによって前記ガス検知素子による酸素濃度測定をガス温度が前記限界温度以下に維持された状態で酸素ガス濃度測定を行う事ができるようになる。そのため、酸素濃度を測定中に、そのガス中に含まれるメタンの酸化反応がほとんど起きないように抑制することができ、酸素濃度測定の際にメタンの酸化に伴う酸素消費に基づく出力電流の減少が検出されてしまうような状況は起きにくくなった。そのため、前記ガス検知素子による酸素に対する出力電流のみを正確に求めることができるようになって、酸素濃度を正確に求めることができるようになった。
また、前記温度維持機構としては、排ガスの温度を前記設定温度以下に冷却するものとしてあれば、前記ガス検知素子の加熱に伴っても、前記排ガスの温度は前記ガス検知素子の温度までしか上昇せず、前記ガス検知素子の温度を前記限界温度以下で酸素検知容易な温度域に設定するだけの通常の設定で、前記メタンの酸化を抑制することが出来る。
尚、前記第一電極としては、白金等の貴金属材料が一般に用いられるが、白金を用いる場合には、先の限界温度が約400℃であるという新知見に基づき前記設定温度を、通常前記ガス検知素子を用いる380℃以上400℃以下設定しておくことが望ましい。というのは、前記ガス検知素子の基材は、例えば380℃以下の低温では、固体電解質としての性質を示しにくくなるからである。
【0007】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図2に示すように、固体電解質からなる基材10に、酸素をイオン化可能な材料からなる第一電極11、及び、第二電極12を設けるとともに、前記各電極11、12へのガス接触効率を異ならせる規制手段13を設け、前記各電極11、12および基材10を加熱する加熱手段14を設けてあるガス検知素子1を備え、図1に示すように、前記ガス検知素子1の両電極11、12間に電圧を印加する電圧可変機構21内蔵の電圧供給部20を備え、燃焼制御機構31を内蔵してあるガス燃焼機器30からの排ガス路32にバイパス路33を設けて、前記ガス検知素子1を配設して酸素濃度測定装置を構成してある。
前記バイパス路33には外側壁に多数のフィン34を設けるとともに、外気と接触容易にして、前記バイパス路33に流通する排ガスを冷却する排ガス冷却導入機構Fを構成してある。
【0008】
前記固体電解質は、通常酸化ジルコニウムに、酸化マグネシウム、酸化カルシウム、酸化イットリウム等を10モル%程度添加して安定化させたものを用い、前記第一電極および第二電極は、酸素をイオン化可能な材料のうち、貴金属が好適に用いられ、例えば、白金、パラジウム、ロジウム等が用いられる。
前記規制手段は、前記基材10の前記第一電極11側を覆うカバー部材13aを設けるとともに、そのカバー部材13aにガス流通孔13bを設けて構成し、前記第一電極11に対するガス接触率を前記第二電極12に対するガス接触率よりも低くなるように設定するものであり、このような構成に替えて、多孔質のフィルタを前記第一電極11を被覆した状態に設けて構成してあってもよい。
前記加熱手段14は、前記ガス検知素子1の近傍に、加熱用コイル14aを設け、前記電圧供給部20からの電圧供給を受け、ジュール熱を発生させられる構成にしてあるものである。
【0009】
前記酸素濃度測定装置は、都市ガス燃焼装置の排ガス路に設けて用いられ、例えば450℃の排ガスが前記バイパス路に流入した場合には、前記排ガスは350℃以下に冷却された状態で前記ガス検知素子に達し、前記ガス検知素子が400℃でガス濃度を測定するものであると、前記排ガス中のメタンは、ほぼ400℃に加熱された状態になり、電極上ではほとんど酸化されないが、排ガス中の酸素は、前記電極でイオン化されるとともに、固体電解質に検知されるので、前記メタンの影響を受けることなく、前記酸素濃度に基づく出力電流を生じることになる。そのため、排ガス中の未燃メタンによらない正確な酸素濃度測定を行うことができる。
このようにして得られた酸素濃度は、ガス燃焼機器の燃焼制御情報として前記ガス燃焼機器の燃焼制御機構に入力され、ガス供給量や、空気供給量の調整などの燃焼制御に利用される。
【0010】
【実施例】
白金電極にメタンを接触させたときの酸化活性の温度依存性を調べたところ、図3に示すようになった。図3より、白金電極上では400℃以下の環境では酸化が促進せず、ほとんど酸素検知に影響しないことがわかった。
また、このように温度維持機構を設けた本発明の酸素濃度測定装置と、温度維持機構を設けていない従来の酸素濃度測定装置とをガスエンジンの排ガス中の酸素濃度測定に適用したところ、その出力特性は図4に示すようになった。
図4より、本発明の酸素濃度測定装置は、酸素濃度と出力とが酸素濃度の低濃度領域から高濃度領域にかけて全般的に比例関係にあるのに対し、従来のものは、酸素濃度の上昇にともなって、次第に低下していることが分かり、前記ガスエンジンの燃焼効率低下に伴う未燃メタンガスの酸化にともなう電子移動のため、出力電圧が低下して観測されているものと考えられる。
尚、本発明においては、前記排ガス冷却導入機構と、前記ガス検知素子を加熱する加熱手段とを合わせて、温度維持機構と称するものであるが、この温度維持機構は上述の構成に限ることなく、
前記ガス検知素子の温度を検知するセンサ類を設けるとともに、そのガス検知素子の加熱手段及び冷却手段を設け、前記ガス検知素子を所定温度に加熱・冷却制御する制御装置を設けて構成するなど、種々の態様を採用することができる。
【図面の簡単な説明】
【図1】本発明の酸素濃度測定装置の概略図
【図2】ガス検知素子の要部縦断斜視図
【図3】白金電極による限界温度を示すグラフ
【図4】本発明の酸素濃度測定装置と従来の酸素濃度測定装置との長期安定性の比較グラフ
【符号の説明】
1 ガス検知素子
20 電圧供給部
30 燃焼機器
F 温度維持機構
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a first electrode made of a material capable of ionizing oxygen gas and a second electrode are provided on a base material made of a solid electrolyte, and a regulating means for making the gas contact ratio to each electrode different is provided. A gas detection element, a voltage supply unit for applying a voltage between both electrodes of the gas detection element, a heating means for heating the gas detection element, and the gas detection element in a heated state; The oxygen concentration in the gas in contact with the electrode can be measured based on the output current that flows when a voltage is supplied to the sensing element, and the oxygen concentration in the exhaust gas of the combustion equipment of fuel gas mainly composed of methane is determined. The present invention relates to an oxygen concentration measuring apparatus for measuring.
In other words, such an oxygen concentration measurement apparatus monitors the oxygen contained in the combustion equipment exhaust gas of the fuel gas mainly composed of methane, for example, by controlling the air-fuel ratio of the combustion equipment, etc. It is used for purposes such as controlling
[0002]
[Prior art]
Conventionally, this type of oxygen concentration measuring apparatus employs a configuration that directly detects exhaust gas even when measuring the oxygen concentration in combustion exhaust gas.
[0003]
[Problems to be solved by the invention]
According to the above-described conventional oxygen concentration measuring apparatus, when measuring the oxygen concentration in the exhaust gas of combustion equipment of fuel gas mainly composed of methane, the oxygen concentration is not accurately measured, and particularly the combustion condition of excessive fuel However, there is a problem that the oxygen concentration may be measured too low, and there is a possibility that the combustion state of the combustion device may be mistakenly recognized.
[0004]
Accordingly, an object of the present invention is to provide an oxygen concentration measuring apparatus that can accurately measure the oxygen concentration regardless of the combustion conditions in view of the above-mentioned drawbacks.
[0005]
[Means for Solving the Problems]
The present inventors have found a new finding that the above problem is caused by the fact that the unburned methane gas component is contained in the exhaust gas. Such a phenomenon is caused when the temperature of the exhaust gas is usually 600. In view of the situation where the temperature also reaches 0 ° C., the unburned methane gas is oxidized on the electrode of the gas detection element in the oxygen concentration measuring device, and oxygen is consumed as the methane gas is oxidized on the electrode (CH 4 + 2O 2). → CO 2 + 2H 2 O), considering the phenomenon that the output current decreases by the amount of consumed oxygen, and the conditions under which the methane gas is oxidized on the electrode were examined. The critical temperature is required due to the relationship between the methane gas and the electrode, such as when the gas temperature starts to exceed 400 ° C, and the above problems are encountered at gas temperatures below that critical temperature. To obtain a new finding that almost does not occur.
The present invention has been made based on these new findings,
In order to achieve the above object, the present invention is characterized in that a first electrode made of a material capable of ionizing oxygen gas and a second electrode are provided on a substrate made of a solid electrolyte, and gas contact with each electrode is made. A gas detecting element provided with a regulating means for varying the rate, a voltage supply section for applying a voltage between both electrodes of the gas detecting element, and a heating means for heating the gas detecting element. A fuel mainly composed of methane, which can measure the oxygen concentration in the gas in contact with the electrode based on the output current that flows when a voltage is supplied to the gas sensing element while the sensing element is heated. In the oxygen concentration measuring device that measures the oxygen concentration in the exhaust gas of gas combustion equipment,
There is a temperature maintaining mechanism for maintaining the temperature of the first electrode at a set temperature below the limit temperature at which methane gas is oxidized on the first electrode,
Preferably, an exhaust gas cooling introduction mechanism for cooling the combustion equipment exhaust gas below the set temperature and introducing it into the gas detection element is provided,
The material capable of ionizing the oxygen gas is platinum, and the set temperature may be 380 ° C. or higher and 400 ° C. or lower.
[0006]
[Function and effect]
That is, by providing a temperature maintaining mechanism for maintaining the temperature of the first electrode at a set temperature that is lower than the limit temperature at which methane gas is oxidized on the first electrode, the gas temperature is measured by the gas sensing element. Oxygen gas concentration measurement can be performed while the temperature is kept below the limit temperature. Therefore, during the measurement of the oxygen concentration, it is possible to suppress the oxidation reaction of methane contained in the gas to hardly occur, and the output current is reduced based on the oxygen consumption accompanying the oxidation of methane during the oxygen concentration measurement. Situations that would have been detected are less likely to occur. For this reason, only the output current for oxygen by the gas detection element can be accurately determined, and the oxygen concentration can be accurately determined.
Further, if the exhaust gas temperature is cooled below the set temperature as the temperature maintaining mechanism, the exhaust gas temperature only rises to the temperature of the gas detection element even when the gas detection element is heated. Without oxidizing the methane, it is possible to suppress the oxidation of the methane by a normal setting in which the temperature of the gas detection element is set to a temperature range that is equal to or lower than the limit temperature and easy to detect oxygen.
As the first electrode, a noble metal material such as platinum is generally used. However, when platinum is used, the set temperature is usually set to the gas based on the new knowledge that the limit temperature is about 400 ° C. It is desirable to set the temperature of 380 ° C. or more and 400 ° C. or less using the detection element. This is because the base material of the gas detection element is less likely to exhibit properties as a solid electrolyte at a low temperature of, for example, 380 ° C. or lower.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 2, a base electrode 10 made of a solid electrolyte is provided with a first electrode 11 and a second electrode 12 made of a material capable of ionizing oxygen, and gas contact efficiency with each of the electrodes 11 and 12. 1 is provided, and the gas detection element 1 provided with the heating means 14 for heating the electrodes 11 and 12 and the base material 10 is provided. As shown in FIG. A voltage supply unit 20 with a built-in voltage variable mechanism 21 for applying a voltage between the electrodes 11 and 12 is provided, and a bypass path 33 is provided in an exhaust gas path 32 from a gas combustion device 30 with a built-in combustion control mechanism 31. A gas detection element 1 is provided to constitute an oxygen concentration measuring device.
The bypass passage 33 is provided with a large number of fins 34 on the outer wall, and an exhaust gas cooling introduction mechanism F that cools the exhaust gas flowing through the bypass passage 33 to facilitate contact with outside air.
[0008]
The solid electrolyte is usually a zirconium oxide that is stabilized by adding about 10 mol% of magnesium oxide, calcium oxide, yttrium oxide, etc., and the first electrode and the second electrode can ionize oxygen. Of the materials, noble metals are preferably used, for example, platinum, palladium, rhodium and the like.
The regulating means includes a cover member 13a that covers the first electrode 11 side of the base material 10, and a gas flow hole 13b is provided in the cover member 13a, and the gas contact rate with respect to the first electrode 11 is set. The gas contact rate with respect to the second electrode 12 is set to be lower, and instead of such a configuration, a porous filter is provided so as to cover the first electrode 11. May be.
The heating means 14 is provided with a heating coil 14a in the vicinity of the gas detection element 1, and is configured to receive voltage supply from the voltage supply unit 20 to generate Joule heat.
[0009]
The oxygen concentration measuring device is used by being provided in an exhaust gas passage of a city gas combustion device. For example, when an exhaust gas of 450 ° C. flows into the bypass passage, the exhaust gas is cooled to 350 ° C. or lower and the gas is cooled. When the gas reaches the sensing element and the gas sensing element measures the gas concentration at 400 ° C., the methane in the exhaust gas is heated to almost 400 ° C., and is hardly oxidized on the electrode. The oxygen therein is ionized by the electrode and detected by the solid electrolyte, so that an output current based on the oxygen concentration is generated without being influenced by the methane. Therefore, it is possible to accurately measure the oxygen concentration regardless of unburned methane in the exhaust gas.
The oxygen concentration thus obtained is input to the combustion control mechanism of the gas combustion device as combustion control information of the gas combustion device and used for combustion control such as adjustment of the gas supply amount and the air supply amount.
[0010]
【Example】
The temperature dependence of the oxidation activity when methane was brought into contact with the platinum electrode was as shown in FIG. From FIG. 3, it was found that oxidation was not promoted on the platinum electrode in an environment of 400 ° C. or lower, and oxygen detection was hardly affected.
Further, when the oxygen concentration measuring device of the present invention provided with the temperature maintaining mechanism and the conventional oxygen concentration measuring device not provided with the temperature maintaining mechanism are applied to the oxygen concentration measurement in the exhaust gas of the gas engine, the The output characteristics are as shown in FIG.
As shown in FIG. 4, in the oxygen concentration measuring apparatus according to the present invention, the oxygen concentration and the output are generally proportional to each other from the low concentration region to the high concentration region. Accordingly, it is understood that the output voltage gradually decreases, and it is considered that the output voltage is observed to decrease due to the electron transfer accompanying the oxidation of the unburned methane gas accompanying the decrease in the combustion efficiency of the gas engine.
In the present invention, the exhaust gas cooling introduction mechanism and the heating means for heating the gas detection element are collectively referred to as a temperature maintenance mechanism, but the temperature maintenance mechanism is not limited to the above-described configuration. ,
In addition to providing sensors for detecting the temperature of the gas detection element, a heating means and a cooling means for the gas detection element are provided, and a control device for controlling the heating and cooling of the gas detection element to a predetermined temperature is provided. Various aspects can be employed.
[Brief description of the drawings]
FIG. 1 is a schematic view of an oxygen concentration measuring apparatus according to the present invention. FIG. 2 is a longitudinal sectional perspective view of a main part of a gas detection element. FIG. 3 is a graph showing a limit temperature by a platinum electrode. Comparison graph of long-term stability between conventional and oxygen concentration measuring device
DESCRIPTION OF SYMBOLS 1 Gas detection element 20 Voltage supply part 30 Combustion equipment F Temperature maintenance mechanism

Claims (3)

固体電解質からなる基材に、酸素ガスをイオン化可能な材料からなる第一電極、及び、第二電極を設け、前記各電極へのガス接触率を異ならせる規制手段を設けてあるガス検知素子を備え、前記ガス検知素子の両電極間に電圧を印加する電圧供給部を備え、前記ガス検知素子を加熱する加熱手段を設けて、前記ガス検知素子を加熱した状態で、そのガス検知素子に電圧を供給したときに流れる出力電流に基づいて前記電極に接触したガス中の酸素濃度を測定可能に構成して、メタンを主成分とした燃料ガスの燃焼機器排ガス中の酸素濃度を測定する酸素濃度測定装置であって、
前記第一電極上でメタンガスが酸化する限界温度以下の設定温度に、前記第一電極の温度を維持する温度維持機構を設けた酸素濃度測定装置。
A gas detection element provided with a first electrode made of a material capable of ionizing oxygen gas and a second electrode on a substrate made of a solid electrolyte, and provided with a regulating means for varying the gas contact rate to each electrode. Provided with a voltage supply section for applying a voltage between both electrodes of the gas detection element, provided with heating means for heating the gas detection element, and in a state where the gas detection element is heated, a voltage is applied to the gas detection element. Oxygen concentration to measure the oxygen concentration in the combustion equipment exhaust gas of fuel gas mainly composed of methane based on the output current that flows when the gas is supplied A measuring device,
An oxygen concentration measurement apparatus provided with a temperature maintaining mechanism for maintaining the temperature of the first electrode at a set temperature equal to or lower than a limit temperature at which methane gas is oxidized on the first electrode.
前記燃焼機器排ガスを前記設定温度以下に冷却して、前記ガス検知素子に導入する排ガス冷却導入機構を設けてある、請求項1に記載の酸素濃度測定装置。The oxygen concentration measuring device according to claim 1, further comprising an exhaust gas cooling introduction mechanism that cools the combustion equipment exhaust gas to the set temperature or less and introduces it into the gas detection element. 前記酸素ガスをイオン化可能な材料が白金であり、前記設定温度が380℃以上400℃以下である請求項1〜2のいずれか1項に記載の酸素濃度測定装置。The oxygen concentration measuring apparatus according to claim 1, wherein the material capable of ionizing the oxygen gas is platinum, and the set temperature is 380 ° C. or higher and 400 ° C. or lower.
JP23045796A 1996-08-30 1996-08-30 Oxygen concentration measuring device Expired - Fee Related JP3698494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23045796A JP3698494B2 (en) 1996-08-30 1996-08-30 Oxygen concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23045796A JP3698494B2 (en) 1996-08-30 1996-08-30 Oxygen concentration measuring device

Publications (2)

Publication Number Publication Date
JPH1073562A JPH1073562A (en) 1998-03-17
JP3698494B2 true JP3698494B2 (en) 2005-09-21

Family

ID=16908167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23045796A Expired - Fee Related JP3698494B2 (en) 1996-08-30 1996-08-30 Oxygen concentration measuring device

Country Status (1)

Country Link
JP (1) JP3698494B2 (en)

Also Published As

Publication number Publication date
JPH1073562A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
US4543176A (en) Oxygen concentration detector under temperature control
US4541988A (en) Constant temperature catalytic gas detection instrument
JP4580405B2 (en) Hydrogen gas sensor
US4134818A (en) Solid electrolyte sensor for monitoring combustibles in an oxygen containing environment
JPH09274011A (en) Nitrogen oxide detector
JP2001141696A (en) Gas-detecting apparatus
US5772965A (en) Method and system for detecting deterioration of exhaust gas control catalyst
JPS6149623B2 (en)
JP2008175623A (en) Sulfur component detection device
JP2001099808A (en) Sensor for measuring concentration of component gas in mixed gas
JP3698494B2 (en) Oxygen concentration measuring device
JP3669788B2 (en) Oxygen concentration measuring device
JP5021400B2 (en) Combustible gas detector
JP3929846B2 (en) Intermittent drive type combustible gas detector
JP3809897B2 (en) Combustible gas concentration measuring device
JPH05126789A (en) Oxygen concentration detector
JP2001242114A (en) Compensation element for gas detector for fuel cell, thermal conductivity type gas detector and gas upply apparatus for fuel cell
JP3897459B2 (en) Gas concentration detection method and apparatus
JP2002303601A (en) Controller for gas concentration sensor
JPS644147B2 (en)
JPS60159517A (en) Device for detecting flame and combustion state
JP3809898B2 (en) Combustible gas detector
JPS6128857A (en) Air-fuel ratio detector
JPH09269308A (en) Heat ray type semiconductor gas detection element and gas detector
JPH04256851A (en) Gas detecting apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees