JPH09269308A - Heat ray type semiconductor gas detection element and gas detector - Google Patents
Heat ray type semiconductor gas detection element and gas detectorInfo
- Publication number
- JPH09269308A JPH09269308A JP8020396A JP8020396A JPH09269308A JP H09269308 A JPH09269308 A JP H09269308A JP 8020396 A JP8020396 A JP 8020396A JP 8020396 A JP8020396 A JP 8020396A JP H09269308 A JPH09269308 A JP H09269308A
- Authority
- JP
- Japan
- Prior art keywords
- gas detection
- state
- gas
- less
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、貴金属線コイルを
覆って酸化スズを主成分とする半導体から形成される感
応部を設けてある熱線型半導体式ガス検知素子、及び、
熱線型半導体式ガス検知素子をガス検知回路に組み込む
とともに、そのガス検知回路に電圧を供給する電圧供給
部を設けて、前記熱線型半導体式ガス検知素子からの出
力を検知自在に構成したガス検知装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-wire semiconductor type gas sensing element having a sensitive portion formed of a semiconductor containing tin oxide as a main component, which covers a noble metal wire coil, and
A gas detector that incorporates a hot-wire semiconductor gas detection element into a gas detection circuit and is provided with a voltage supply unit that supplies a voltage to the gas detection circuit so that the output from the hot-wire semiconductor gas detection element can be detected freely. Regarding the device.
【0002】[0002]
【従来の技術】従来、この種の熱線型半導体式ガス検知
素子としては、体積が2.1×10-2mm3 程度の小さ
なものに形成してあるものが知られており、このような
熱線型半導体式ガス検知素子をガス検知回路に組み込ん
でガス検知装置を構成していた。また、他のガス検知素
子としては、感応部が半導体厚膜からなる半導体厚膜式
ガス検知素子や、感応部が半導体薄膜からなるマイクロ
チップが知られている。2. Description of the Related Art Heretofore, it has been known that a hot wire type semiconductor gas detecting element of this kind is formed in a small volume of about 2.1 × 10 -2 mm 3. A gas detection device has been constructed by incorporating a hot wire semiconductor type gas detection element into a gas detection circuit. As other gas detection elements, there are known a semiconductor thick film type gas detection element having a sensitive portion made of a semiconductor thick film and a microchip having a sensitive portion made of a semiconductor thin film.
【0003】[0003]
【発明が解決しようとする課題】上述した従来のガス検
知素子は、体積の小さなものほど、総熱容量が小さく、
小消費電力で作動温度を維持できるという観点から好ま
しいとされている。つまり、半導体厚膜よりも、半導体
薄膜のほうが消費電力が小さいという点では好ましいの
である。しかし、マイクロチップのようにガス検知素子
の体積を小さく形成するにしても、その消費電力を低下
させることはできても、たとえば大気中のオゾンに高感
度であるなどの原因から、他のガス検知素子に比べて、
出力が干渉ガスによって不安定になったり、長期安定性
に乏しくなるという問題点があった。また、それにとも
ない、メタンや、一酸化炭素のような検知を必要とされ
るガスを検知できないのが現状であった。In the conventional gas detection element described above, the smaller the volume, the smaller the total heat capacity,
It is said to be preferable from the viewpoint that the operating temperature can be maintained with low power consumption. That is, the semiconductor thin film is preferable to the semiconductor thick film in that it consumes less power. However, even if the gas sensing element is formed to have a small volume like a microchip, its power consumption can be reduced, but it is highly sensitive to ozone in the atmosphere. Compared to the sensing element,
There are problems that the output becomes unstable due to the interference gas and the long-term stability becomes poor. In addition, along with this, it is the current situation that gases such as methane and carbon monoxide that need to be detected cannot be detected.
【0004】従って、本発明の目的は、上記欠点に鑑
み、消費電力が小さく、かつ、干渉ガスに対する出力安
定性や、長期安定性に優れたガス検知素子、あるいは、
これに加えて応答速度の速いガス検知素子を提供するこ
とにある。またさらに本発明の目的は、そのような熱線
型半導体式ガス検知素子が小電力であることから利用容
易なガス検知装置を提供することにもある。Therefore, in view of the above-mentioned drawbacks, an object of the present invention is to provide a gas detection element which consumes less power and is excellent in output stability against interference gas and long-term stability, or
In addition to this, it is to provide a gas detection element having a high response speed. Still another object of the present invention is to provide a gas detection device which is easy to use because such a hot wire type semiconductor gas detection element has low power consumption.
【0005】[0005]
【課題を解決するための手段】本発明者らは、体積が
6.5×10-5mm3 以上8.2×10-3mm3 以下の
熱線型半導体式ガス検知素子に通電した場合の消費電力
や、応答速度は、貴金属線コイルのコイル部から、その
熱線型半導体式ガス検知素子の感応部外表面までの距離
に大きく依存しているという新知見を得た。また、前記
熱線型半導体式ガス検知素子の感応部外表面までの距離
は、50μm以下(0μm、つまり金属線コイルのコイ
ル部が感応部外表面に位置する場合も含む)である場合
に、特に応答速度を高くできるという新知見を得てい
る。本発明はこれらの新知見に基づき成されたものであ
る。[Means for Solving the Problems] The present inventors have found that when a hot wire type semiconductor gas sensing element having a volume of 6.5 × 10 −5 mm 3 or more and 8.2 × 10 −3 mm 3 or less is energized. We obtained a new finding that power consumption and response speed depended largely on the distance from the coil part of the noble metal wire coil to the outer surface of the sensitive part of the hot wire semiconductor gas sensing element. Further, particularly when the distance to the outer surface of the sensitive portion of the hot wire semiconductor type gas detection element is 50 μm or less (0 μm, that is, including the case where the coil portion of the metal wire coil is located on the outer surface of the sensitive portion). We have obtained new knowledge that the response speed can be increased. The present invention is based on these new findings.
【0006】〔構成1〕図1を参照して説明すれば、上
記目的を達成するための本発明の熱線型半導体式ガス検
知素子の特徴構成は、貴金属線コイル2を覆って酸化ス
ズを主成分とする半導体から形成される感応部3を設け
てある熱線型半導体式ガス検知素子において、前記感応
部3を、その長径d2が短径d3の1.5倍以下で、か
つ、体積が6.5×10-5mm3 以上8.2×10-3m
m3 以下に形成し、前記貴金属線コイル2のコイル部2
aから前記感応部3外表面までの距離を50μm以下に
形成してあることにあり、二次粒子径が平均0.3μm
以上0.8μm以下の酸化スズを主成分とする半導体を
焼結させて前記感応部3を形成してあることが好まし
い。尚、本発明の特徴構成を説明するのに図面を参照し
たが、本発明は図面に限られるものではない。[Structure 1] Referring to FIG. 1, the characteristic structure of the hot-wire type semiconductor gas detecting element of the present invention for achieving the above-mentioned object is that the noble metal wire coil 2 is covered with tin oxide. In the hot-wire semiconductor gas detection element provided with a sensitive section 3 formed of a semiconductor as a component, the sensitive section 3 has a major axis d2 of 1.5 times or less of a minor axis d3 and a volume of 6 0.5 × 10 -5 mm 3 or more 8.2 × 10 -3 m
The coil portion 2 of the precious metal wire coil 2 is formed to have a size of m 3 or less.
The distance from a to the outer surface of the sensitive portion 3 is 50 μm or less, and the average secondary particle diameter is 0.3 μm.
It is preferable that the sensitive portion 3 is formed by sintering a semiconductor containing tin oxide having a thickness of 0.8 μm or less as a main component. Although the drawings are referred to for describing the characteristic configuration of the present invention, the present invention is not limited to the drawings.
【0007】〔作用効果〕つまり、前記感応部の体積が
8.2×10-3mm3 以下に形成してあることで、上述
した従来の熱線型半導体式ガス検知素子よりも、さらに
消費電力を低減させられることが分かる。また、先の新
知見に基づけば、前記貴金属線コイルのコイル部から前
記感応部外表面までの距離(以下感応部厚さと称する)
を50μm以下に形成してあることで、さらに低い消費
電力で作動させられ、かつ高い応答性が得られる(例え
ば、体積9.2×10-4mm3 、感応部厚さ20μmの
ガス検知素子は、体積8.7×10-2mm3 、感応部厚
さ145μm程度の従来のガス検知素子の40倍の応答
速度を発揮する)。また、このような熱線型半導体式ガ
ス検知素子を形成する場合には、その体積の小ささか
ら、感応部の長径が短径よりも大きくなるなど、表面積
の大きなものとなり、吸・放熱の熱収支の関係等から、
特性の安定した熱線型半導体式ガス検知素子を形成しに
くくなるのに対して、長径を短径の1.5倍以下に制御
しておくことで、特性の安定した熱線型半導体式ガス検
知素子を形成しやすい。尚、前記感応部を形成する半導
体は、二次粒子径が小さいほど感応部と貴金属線コイル
との密着性が良く、ガス検知特性が長期安定性を設定し
やすいと考えられるので、前記感応部を酸化スズを主成
分とする半導体で構成する場合には、二次粒子径が平均
0.8μm以下であることが好ましい。ところが、前記
熱線型半導体式ガス検知素子によるガス検知の応答性に
は、前記感応部内へのガス拡散速度が関与しているもの
とかんがえられ、感応部があまりにも緻密である場合に
は、感応部外表面側から、コイル部側へのガス拡散が阻
害され、前記感応部の外表面側と、コイル部側とで検知
すべきガスの濃度が均一になるのに時間を要し、その濃
度差が大きいときには出力が安定しないので、安定した
出力が得られるまでの応答速度が遅くなると予想され
る。そのため、前記二次粒子径としては、平均0.3μ
m以上であることが好ましい。つまり、ガスに対する応
答速度を大幅に向上させることにより、必要以上に長時
間前記感応部を高温に維持することなく、定常状態にお
いてガスを正確に検知することが出来、そのため、前記
感応部の温度を所定温度域に維持するための通電時間
を、必要最小限に抑制するような作動制御を行うことが
出来るようになり、消費電力の抑制に役立てるのに有用
な感応部を形成することが出来るようになった。尚、前
記感応部の温度は、通電により約2m秒で安定させるこ
とができる[バーズ社製 赤外線顕微鏡型温度計 mo
del RM−2A(測定精度2μ秒)により測定]の
に対して、先のガスに対する応答速度は、本発明の熱線
型半導体式ガス検知素子にあっても200m秒程度であ
り、感応部の熱応答に比べ、極めて長時間を要すること
になり、正確にガス検知を行うための通電時間は前記ガ
スに対する応答速度に大きく依存する。[Operation and Effect] That is, since the volume of the sensitive portion is formed to be 8.2 × 10 −3 mm 3 or less, the power consumption is further increased as compared with the above-described conventional hot-wire semiconductor gas detection element. It can be seen that can be reduced. Further, based on the above new knowledge, the distance from the coil part of the precious metal wire coil to the outer surface of the sensitive part (hereinafter referred to as the sensitive part thickness)
Is formed to have a thickness of 50 μm or less, it can be operated with lower power consumption and high responsiveness can be obtained (for example, a gas detection element having a volume of 9.2 × 10 −4 mm 3 and a sensitive portion thickness of 20 μm). Exhibits a response speed 40 times that of a conventional gas detection element having a volume of 8.7 × 10 -2 mm 3 and a sensitive portion thickness of about 145 μm). In addition, when forming such a hot-wire type semiconductor gas detection element, due to its small volume, the surface area becomes large, such as the major axis of the sensitive section being larger than the minor axis, and the heat absorption and heat dissipation is increased. From the balance of payments etc.,
While it is difficult to form a hot-line semiconductor gas detection element with stable characteristics, a hot-line semiconductor gas detection element with stable characteristics can be obtained by controlling the major axis to be 1.5 times the minor axis or less. Easy to form. In the semiconductor forming the sensitive portion, the smaller the secondary particle diameter, the better the adhesion between the sensitive portion and the precious metal wire coil, and it is considered that the gas detection characteristics can easily set the long-term stability. When is composed of a semiconductor containing tin oxide as a main component, the average secondary particle size is preferably 0.8 μm or less. However, it is considered that the gas detection responsiveness by the hot-wire semiconductor type gas detection element is related to the gas diffusion rate into the sensitive section, and if the sensitive section is too dense, It takes time for the gas diffusion from the outer surface side to the coil side to be hindered and for the outer surface side of the sensitive section and the coil side to have a uniform gas concentration to be detected. Since the output is not stable when the difference is large, the response speed until stable output is expected to be slow. Therefore, the average secondary particle size is 0.3 μm.
It is preferably m or more. In other words, by greatly improving the response speed to gas, it is possible to accurately detect the gas in a steady state without maintaining the temperature of the sensitive section at a high temperature for an unnecessarily long time, and therefore, the temperature of the sensitive section is increased. It becomes possible to perform an operation control that suppresses the energization time for maintaining the temperature in a predetermined temperature range to a necessary minimum, and it is possible to form a sensitive section useful for suppressing power consumption. It became so. The temperature of the sensitive part can be stabilized in about 2 msec by energization [Infrared microscope type thermometer by Birds Co., mo.
del RM-2A (measurement accuracy 2 μsec)], the response speed to the above gas is about 200 msec even with the hot-wire semiconductor gas detection element of the present invention, and the heat of the sensitive part It takes an extremely long time as compared with the response, and the energization time for accurately detecting the gas greatly depends on the response speed to the gas.
【0008】〔構成2〕図2を参照して説明すれば、上
記目的を達成するための本発明のガス検知装置の特徴構
成は、熱線型半導体式ガス検知素子1をガス検知回路に
組み込むとともに、そのガス検知回路に電圧を供給する
電圧供給部4を設けて、前記熱線型半導体式ガス検知素
子からの出力を検知自在に構成したガス検知装置におい
て、熱線型半導体式ガス検知素子1として先の熱線型半
導体式ガス検知素子1を用い、かつ、前記電圧供給部4
を電池によって電力供給可能に構成してある点にあり、
前記ガス検知回路に電力を供給するON状態と、前記ガ
ス検知回路への電力供給を停止するOFF状態とを交互
に切り替える回路切替手段6を設けるとともに、前記O
N状態の継続時間を1秒以下にするとともに、前記ON
状態とOFF状態との時間比率(ON状態/OFF状
態)を1/10以下に制御する制御装置7を設けてあれ
ば好ましく、また、前記制御装置7の設定は、前記ON
状態の継続時間を0.5秒以下にするとともに、前記O
N状態とOFF状態との時間比率(ON状態/OFF状
態)を1/40以下にすることがさらに好ましい。ま
た、前記制御装置7が、前記熱線型半導体式ガス検知素
子1を350℃以上550℃以下の設定温度に維持制御
可能に構成してあれば好ましい。尚、本発明の特徴構成
を説明するのに図面を参照したが、本発明は図面に限ら
れるものではない。[Structure 2] Referring to FIG. 2, a characteristic structure of the gas detecting apparatus of the present invention for achieving the above-mentioned object is that the hot wire semiconductor type gas detecting element 1 is incorporated in a gas detecting circuit. In the gas detecting device configured to freely detect the output from the hot wire semiconductor gas detecting element by providing a voltage supply unit 4 for supplying a voltage to the gas detecting circuit, the hot wire semiconductor gas detecting element 1 is first Using the hot wire semiconductor type gas detection element 1 of the above, and the voltage supply unit 4
Is configured to be able to supply power by a battery,
The circuit switching means 6 is provided for alternately switching between an ON state for supplying electric power to the gas detection circuit and an OFF state for stopping the electric power supply to the gas detection circuit.
Keeping the N state for 1 second or less
It is preferable to provide a control device 7 for controlling the time ratio between the ON state and the OFF state (ON state / OFF state) to 1/10 or less. Further, the setting of the control device 7 is the ON state.
The duration of the state is set to 0.5 seconds or less, and the O
More preferably, the time ratio between the N state and the OFF state (ON state / OFF state) is 1/40 or less. Further, it is preferable that the control device 7 be configured to maintain and control the hot-wire semiconductor gas detection element 1 at a set temperature of 350 ° C. or higher and 550 ° C. or lower. Although the drawings are referred to for describing the characteristic configuration of the present invention, the present invention is not limited to the drawings.
【0009】〔作用効果〕つまり、本発明のガス検知装
置は、先の熱線型半導体式ガス検知素子を備えたもので
あるから、小電力でガス検知容易なものとなり、電池に
よって駆動することができる。また、前記ガス検知回路
に電力を供給するON状態と、前記ガス検知回路への電
力供給を停止するOFF状態とを交互に切り替える回路
切替手段を設けると、そのガス検知回路に組み込んだ熱
線型半導体式ガス検知素子に電力を供給する状態と電力
を供給停止する状態とを切り換えることが出来る。その
ため、ON状態の時に正確なガス検知を行うことが出来
るとともに、ガス検知を行わないときには、前記熱線型
半導体式ガス検知素子に通電せずに電力消費を抑制可能
な構成を実現できる。そして、前記ON状態の継続時間
を1秒以下にするとともに、前記ON状態とOFF状態
との時間比率(ON状態/OFF状態)を1/10以下
に、さらに好ましくは、前記ON状態の継続時間を0.
5秒以下にするとともに、前記ON状態とOFF状態と
の時間比率(ON状態/OFF状態)を1/40以下に
制御する制御装置を設けてあれば、前記熱線型半導体式
ガス検知素子を、長時間ガス検知作動させても、その通
電時間は作動時間の1/10以下あるいは1/40以下
にできることになる。そのため、前記熱線型半導体式ガ
ス検知素子を、より一層小電力で作動出来、電池を電源
として作動する場合にも、その電池の寿命を長くするこ
とができる。そのため、長期にわたってそのガス検知装
置を安定して利用できる。そこで、電池を電源とする電
圧供給部を設けて前記ガス検知装置を形成すれば、従来
のガス検知装置のようにコンセントを電源とするガス検
知装置の場合には、設置場所に制約が生じたり、コード
を張り巡らせねばならないなど設置が困難になったりす
る場合も考えられるのに対して、設置場所に制限を受け
にくく、従来利用することの出来なかったような場所で
の利用を図ることが出来、また、ガス検知装置を可搬式
のものに出来、ガス検知装置の設置に要するコストを低
減可能にし、ガス検知装置の利用性を向上させることが
できた。また、上述の切替駆動に加えて、前記制御装置
を、前記熱線型半導体式ガス検知素子を350℃以上5
50℃以下の設定温度に維持制御可能にすれば、妨害ガ
スによる被毒に耐久性を付与することが出来るととも
に、切替駆動に基づき前記感応部は高温に維持されにく
いので、焼結が進行してガス検知特性の変化したものと
なるような不都合を生じにくく、前記感応部の長期安定
性を高めることができる。前記熱線型半導体式ガス検知
素子が安定したガス検知を行えるとともに、前記熱線型
半導体式ガス検知素子自体を劣化しにくい環境に維持し
やすいので、ガス検知装置を長期使用した場合にも熱線
型半導体式ガス検知素子の劣化などに伴う不都合を抑制
できる。[Operation and Effect] That is, since the gas detection device of the present invention is provided with the above-mentioned hot-wire type semiconductor gas detection element, it becomes easy to detect the gas with a small amount of power and can be driven by a battery. it can. Further, when a circuit switching means for alternately switching between an ON state for supplying electric power to the gas detection circuit and an OFF state for stopping the electric power supply to the gas detection circuit is provided, a hot wire semiconductor incorporated in the gas detection circuit is provided. It is possible to switch between a state in which power is supplied to the gas detector element and a state in which power is stopped. Therefore, it is possible to realize a configuration in which accurate gas detection can be performed in the ON state, and when the gas detection is not performed, power consumption can be suppressed without energizing the hot-wire semiconductor gas detection element. Then, the duration of the ON state is set to 1 second or less, and the time ratio between the ON state and the OFF state (ON state / OFF state) is set to 1/10 or less, and more preferably, the duration of the ON state. 0.
If a controller for controlling the time ratio between the ON state and the OFF state (ON state / OFF state) to 1/40 or less is provided for 5 seconds or less, the hot-wire semiconductor gas detection element Even if the gas detection operation is performed for a long time, the energization time can be set to 1/10 or less or 1/40 or less of the operation time. Therefore, the hot-wire semiconductor type gas detection element can be operated with a smaller amount of electric power, and the life of the battery can be extended even when the battery is operated with the power source. Therefore, the gas detection device can be stably used for a long period of time. Therefore, if the gas detection device is formed by providing a voltage supply unit that uses a battery as a power source, in the case of a gas detection device that uses an outlet as a power source like a conventional gas detection device, there are restrictions on the installation location. In some cases, it may be difficult to install the product, such as having to run a cord around, but it is difficult to be restricted in the installation place and it is possible to use it in a place where it could not be used in the past. In addition, the gas detector can be made portable, the cost required for installing the gas detector can be reduced, and the usability of the gas detector can be improved. In addition to the above-described switching drive, the control device may be arranged so that the hot-wire semiconductor gas detection element is 350 ° C. or higher.
If the temperature can be maintained and controlled at a set temperature of 50 ° C. or less, durability against poisoning by interfering gas can be imparted, and it is difficult to keep the sensitive part at a high temperature due to switching drive, so sintering proceeds. As a result, it is difficult for the inconvenience that the gas detection characteristic is changed to occur, and the long-term stability of the sensitive portion can be enhanced. Since the hot-wire semiconductor gas detection element can perform stable gas detection and it is easy to maintain the hot-wire semiconductor gas detection element itself in an environment where deterioration is difficult, the hot-wire semiconductor can be used even when the gas detection device is used for a long period of time. It is possible to suppress the inconvenience caused by the deterioration of the gas sensor.
【0010】[0010]
【発明の実施の形態】以下に本発明の実施の形態の一例
を図面に基づいて説明する。図2に示すように、本発明
のガス検知装置は、熱線型半導体式ガス検知素子1をブ
リッジ回路に組み込んで構成してある。前記ガス検知素
子1は、コイル径d1が約80μmの白金コイル線2を
覆って、平均二次粒子径が約0.6μmの酸化スズを主
成分とする半導体を、長径d2が短径d3とほぼ等しい
ほぼ120μmの球形に設けて乾燥したのち、その酸化
スズを主成分とする半導体を600℃で1時間焼成して
感応部3を形成してある。つまり、前記白金コイル線2
のコイル部2aから感応部3の外表面までの距離d4は
20μmに形成してある。また、前記ガス検知装置に
は、もし電圧印加を持続させ続ければそのガス検知素子
1の最終到達温度を、350〜550℃にできる電圧を
印加自在な電圧供給装置4、及び、前記ガス検知素子1
を検知回路部5に接続してある。また、前記電圧供給装
置4には、制御規則に従って、前記パルス電圧の電圧印
加(ON)と、前記パルス電圧の電圧印加停止(OF
F)とを、切り替え制御する制御機構6を設け、前記検
知回路部5には、前記パルス電圧の印加に基づくガス検
知素子からの出力を被検知ガスの検知情報(警報音)と
して出力する出力装置(警報装置)8を設けてある。BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 2, the gas detection device of the present invention is configured by incorporating the hot-wire semiconductor gas detection element 1 into a bridge circuit. The gas detection element 1 covers a platinum coil wire 2 having a coil diameter d1 of about 80 μm, a semiconductor containing tin oxide as a main component having an average secondary particle diameter of about 0.6 μm, and a major axis d2 of a minor axis d3. After being provided in a substantially equal spherical shape of approximately 120 μm and dried, the semiconductor containing tin oxide as a main component is baked at 600 ° C. for 1 hour to form the sensitive portion 3. That is, the platinum coil wire 2
The distance d4 from the coil portion 2a to the outer surface of the sensitive portion 3 is 20 μm. Further, in the gas detection device, if a voltage is continuously applied, a voltage supply device 4 capable of applying a voltage capable of making the final temperature of the gas detection device 1 350 to 550 ° C., and the gas detection device. 1
Is connected to the detection circuit unit 5. In addition, according to the control rule, the voltage supply device 4 applies voltage of the pulse voltage (ON) and stops voltage application of the pulse voltage (OF).
F) is provided with a control mechanism 6 for switching control, and the detection circuit unit 5 outputs the output from the gas detection element based on the application of the pulse voltage as detection information (alarm sound) of the gas to be detected. A device (alarm device) 8 is provided.
【0011】このガス検知装置は、例えば以下のような
制御規則に従って、マイコンで切替制御されガス検知に
用いられる。 ◎第一規則:電圧印加される状態の持続時間が(電圧印
加(ON)持続時間)0.1秒に達したときに、その電
圧印加を停止する。 ◎第二規則:電圧印加を停止された状態の持続時間(電
圧印加停止(OFF)持続時間)が前記電圧印加(O
N)持続時間の200倍(20秒間)に達したときに
(作動時間比(ON/OFF)が1/200になったと
きに)電圧印加を開始する。This gas detection device is switch-controlled by a microcomputer and used for gas detection in accordance with the following control rules, for example. ⊚ First rule: When the duration of voltage application reaches 0.1 seconds (voltage application (ON) duration), the voltage application is stopped. ◎ Second rule: The duration of the state where the voltage application is stopped (voltage application stop (OFF) duration) is the voltage application (O
N) The voltage application is started when the time reaches 200 times (20 seconds) the duration (when the operating time ratio (ON / OFF) becomes 1/200).
【0012】つまり、第一、第二規則に従って制御する
と、前記ガス検知素子1には、パルス電圧が印加される
ことになり、そのため、ほぼ20秒あたり0.1秒通電
する動作を繰り返すことによって、前記ガス検知素子1
を所定温度に維持しつつ、前記ガス検知素子1の抵抗値
の変化に基づく出力を得ると、そのガス検知素子1に接
触している可燃性ガス濃度を測定することが出来る。That is, when the control is performed according to the first and second rules, a pulse voltage is applied to the gas detecting element 1, and therefore, by repeating the operation of energizing for about 0.1 second for about 20 seconds, , The gas detection element 1
When the output based on the change in the resistance value of the gas detecting element 1 is obtained while maintaining the temperature at a predetermined temperature, the concentration of the combustible gas in contact with the gas detecting element 1 can be measured.
【0013】この様な切替制御を行うと、前記所定温度
が500℃のとき、前記ガス検知素子1の消費電力は2
50μWと極めて低く設定でき、例えば単一電池2本を
直列に配し駆動電力を供給した場合に、約5年間ガス検
知を行える構成が得られる。When such switching control is performed, when the predetermined temperature is 500 ° C., the power consumption of the gas detection element 1 is 2
It can be set to an extremely low value of 50 μW. For example, when two single batteries are arranged in series and drive power is supplied, a configuration capable of gas detection for about 5 years can be obtained.
【0014】[0014]
<1> 前記ガス検知素子1でガス検知したときの応答
特性を図3実線に示す。尚、図中破線は、上述と同様の
工程で製作した従来のガス検知素子によってガス検知し
たときの応答特性であり、この従来のガス検知素子は、
ほぼ550μmの球形であり、白金コイル線2のコイル
部2aから感応部3の外表面までの距離d4は145μ
mに形成してある。図3より、本発明のガス検知素子1
は各可燃性ガスに対して素早く応答して安定した出力を
示すことがわかる。<1> The response characteristics when gas is detected by the gas detection element 1 are shown by the solid line in FIG. The broken line in the figure is the response characteristic when gas is detected by the conventional gas detecting element manufactured in the same process as described above.
It has a spherical shape of approximately 550 μm, and the distance d4 from the coil portion 2a of the platinum coil wire 2 to the outer surface of the sensitive portion 3 is 145 μm.
m. From FIG. 3, the gas detection element 1 of the present invention is shown.
It can be seen that indicates a stable output with quick response to each flammable gas.
【0015】<2> 次に、前記ガス検知素子1の白金
コイル線2の外径寸法や、感応部3の外径寸法を種々に
変更して、前記白金コイル線2の外径から感応部3の外
表面までの距離d4と、そのガス検知素子の応答速度と
の関係を調べたところ表1のようになった。尚、表中の
数値は従来のガス検知素子の応答速度を1とした比応答
速度である。<2> Next, the outer diameter of the platinum coil wire 2 of the gas detecting element 1 and the outer diameter of the sensitive portion 3 are variously changed to change the outer diameter of the platinum coil wire 2 to the sensitive portion. When the relationship between the distance d4 to the outer surface of No. 3 and the response speed of the gas detecting element was examined, the results are shown in Table 1. The numerical values in the table are specific response speeds where the response speed of the conventional gas detection element is 1.
【0016】[0016]
【表1】 [Table 1]
【0017】表1より白金コイル線2の外径寸法につい
ても、前記白金コイル線2の外径から感応部3の外表面
までの距離d4についても、全体としてガス検知素子1
を小さくする構成が好ましく、応答速度の改善に大きく
役立っていることがわかり、例えば、距離d4=50μ
m、コイル外径d1=145μmのもので従来のもの
(距離d4=145μm、コイル外径d1=260μm
のもの)の10倍の応答速度が得られている。ここで、
ガス検知素子の応答速度について考察すると、ガス検知
出力は、主に白金コイル線2近傍での検知ガスと、半導
体との反応に基づいて得られるため、応答速度は、検知
ガスがガス検知素子表面から白金コイル線2近傍に達す
るまでの時間に依存するものと言える。また、検知ガス
は感応部3を拡散して白金コイル線2近傍に達するわけ
であるから、前記ガス検知素子内で均一な反応が起きる
条件(濃度が平衡状態)になって初めて安定した出力を
生じるものといえ、つまり、前記応答速度は、検知ガス
の拡散時間に大きく寄与する感応部厚さに依存すると言
える。本発明のガス検知素子は、小体積でかつ感応部厚
さが薄いので、ガス検知素子内(特に白金コイル線近
傍)に達する検知ガス濃度が平衡濃度になるまでに要す
る時間が短くてすみ、従来のガス検知素子では体積が大
きいために、ガス検知出力が一定になるまで長時間要し
ていたのに比較して、応答速度を高めることが出来たの
である。尚、本発明において、コイル部2aから感応部
3の外表面までの距離d4を50μm以下としてあるの
は、従来のガス検知素子の応答速度の10倍以上の応答
速度を得られていることによるものであって、最小条件
を考えれば、白金コイル線2が前記感応部3の外表面に
露出している(平均距離が0μm)状況を含む。From Table 1, both the outer diameter of the platinum coil wire 2 and the distance d4 from the outer diameter of the platinum coil wire 2 to the outer surface of the sensitive portion 3 are totally the gas detecting element 1
It is found that a configuration in which is smaller is preferable, and that it is greatly useful for improving the response speed. For example, the distance d4 = 50 μ
m, coil outer diameter d1 = 145 μm, conventional one (distance d4 = 145 μm, coil outer diameter d1 = 260 μm
The response speed of 10 times that of here,
Considering the response speed of the gas detection element, the gas detection output is obtained mainly based on the reaction between the detection gas in the vicinity of the platinum coil wire 2 and the semiconductor. It can be said that it depends on the time from when it reaches the vicinity of the platinum coil wire 2. Further, since the detection gas diffuses through the sensitive section 3 and reaches the vicinity of the platinum coil wire 2, a stable output can be obtained only under a condition (a concentration equilibrium state) in which a uniform reaction occurs in the gas detection element. It can be said that this occurs, that is, the response speed depends on the thickness of the sensitive part that greatly contributes to the diffusion time of the detection gas. Since the gas detecting element of the present invention has a small volume and a thin sensing portion, the time required for the detected gas concentration reaching the inside of the gas detecting element (particularly in the vicinity of the platinum coil wire) to reach an equilibrium concentration can be short, Since the conventional gas detection element has a large volume, it takes a long time for the gas detection output to become constant, which allows the response speed to be increased. In the present invention, the reason why the distance d4 from the coil portion 2a to the outer surface of the sensitive portion 3 is 50 μm or less is that the response speed is 10 times or more the response speed of the conventional gas detection element. In consideration of the minimum condition, the situation includes the situation where the platinum coil wire 2 is exposed on the outer surface of the sensitive section 3 (the average distance is 0 μm).
【0018】<3> また、前記感応部3を構成する酸
化スズを主成分とする半導体の平均二次粒子径と、その
ガス検知素子のガス感度(出力)の経時安定性との関係
を調べたところ、図4のようになった。図4より、感応
部3を構成する粒子の平均二次粒子径が小さいほど粒子
と、白金コイル線との接着性が良くなり、長期的な安定
性が得られるものと考えられ、ほぼ0.3〜0.8μm
の範囲であれば、前記粒子の製造容易性及び出力安定
性、十分な応答速度を兼ね備えるので、実用的に好まし
い。<3> In addition, the relationship between the average secondary particle diameter of the semiconductor containing tin oxide as the main constituent of the sensitive part 3 and the temporal stability of the gas sensitivity (output) of the gas detection element is investigated. After a while, it became like Figure 4. From FIG. 4, it is considered that the smaller the average secondary particle diameter of the particles forming the sensitive part 3 is, the better the adhesion between the particles and the platinum coil wire is, and the long-term stability is obtained. 3 to 0.8 μm
Within the range, it is practically preferable since the particles have both ease of production, output stability, and sufficient response speed.
【0019】<4> さらに、このガス検知素子が可燃
性ガスを検知する場合の前記感応部3の被毒試験を行っ
た。まず、先の実施の形態におけるガス検知条件で、ヘ
キサメチルジシロキサンを用いて前記ガス検知素子を被
毒させたときのガス感度(出力)の変化を測定すること
により行ったところ、図5のようになった。図5より、
このガス検知素子は、ヘキサメチルジシロキサンによる
被毒に対しても強い耐性を有することが判明した。次
に、高濃度の水素ガスに対して各ガス検知素子を暴露さ
せ、その暴露を行う前後でのガス検知素子の出力特性の
変化を調べたところ、表2のようになった。尚、表3に
先述の従来のガス検知素子について、出力特性の変化を
同様に調べた結果を合わせて示す。<4> Further, a poisoning test was conducted on the sensitive part 3 when the gas detecting element detects a combustible gas. First, when the change in gas sensitivity (output) when the gas detection element was poisoned with hexamethyldisiloxane was measured under the gas detection conditions of the previous embodiment, the results of FIG. It became so. From FIG.
It has been found that this gas detection element has a strong resistance to poisoning by hexamethyldisiloxane. Next, each gas detection element was exposed to high-concentration hydrogen gas, and changes in the output characteristics of the gas detection element before and after the exposure were examined. It should be noted that Table 3 also shows the results of similarly examining the change in the output characteristics of the above-described conventional gas detection element.
【0020】[0020]
【表2】 [Table 2]
【0021】[0021]
【表3】 [Table 3]
【0022】表2より、本発明のガス検知素子は、高濃
度のガスに対しても劣化しにくく、安定した出力を得や
すいという特性を有することが分かった。これは、応答
速度が速く、かつ、ガス検知素子自体が高温に維持され
る時間が短く設定されていることとが相乗的に作用した
ことによる。From Table 2, it was found that the gas detecting element of the present invention has characteristics that it is less likely to deteriorate even with a high-concentration gas and a stable output is easily obtained. This is because the response speed is fast and the gas detection element itself is set to be kept at a high temperature for a short time, which synergistically acts.
【0023】〔別実施形態〕先の実施の形態においては
貴金属線コイルとして白金コイル線2を用いたが、これ
に替えて、白金ロジウム合金線、ジルコニウム安定化白
金線等ガス検知に伴う抵抗値変化を検出可能な貴金属線
のコイルであれば良い。また、前記コイル部から感応部
外表面までの距離d4は、感応部3の外径の短径寸法を
d3、コイル部2aの径をd1として数1で表されるも
のとする。[Other Embodiments] In the previous embodiment, the platinum coil wire 2 was used as the noble metal wire coil, but instead of this, a platinum rhodium alloy wire, zirconium-stabilized platinum wire, or other resistance value associated with gas detection is used. Any coil of noble metal wire that can detect changes may be used. Further, the distance d4 from the coil portion to the outer surface of the sensitive portion is expressed by the equation 1 with the minor axis dimension of the outer diameter of the sensitive portion 3 being d3 and the diameter of the coil portion 2a being d1.
【0024】[0024]
【数1】d4=(d3−d1)/2## EQU1 ## d4 = (d3-d1) / 2
【図1】本発明の実施の形態におけるガス検知素子の部
分断面斜視図FIG. 1 is a partial cross-sectional perspective view of a gas detection element according to an embodiment of the present invention.
【図2】ガス検知装置の概略図FIG. 2 is a schematic diagram of a gas detection device.
【図3】本発明の実施例(応答速度試験)を示すグラフFIG. 3 is a graph showing an example (response speed test) of the present invention.
【図4】本発明の実施例(経時安定性)を示すグラフFIG. 4 is a graph showing an example (stability over time) of the present invention.
【図5】本発明の実施例(被毒安定性)を示すグラフFIG. 5 is a graph showing an example (poisoning stability) of the present invention.
2 貴金属線コイル 2a コイル部 3 感応部 4 電力供給部 6 回路切替手段 7 制御装置 d2 長径 d3 短径 2 noble metal wire coil 2a coil part 3 sensitive part 4 power supply part 6 circuit switching means 7 control device d2 major axis d3 minor axis
Claims (6)
分とする半導体から形成される感応部を設けてある熱線
型半導体式ガス検知素子であって、前記感応部を、その
長径が短径の1.5倍以下で、かつ、体積が6.5×1
0-5mm3 以上8.2×10-3mm3 以下に形成し、前
記貴金属線コイルのコイル部から前記感応部外表面まで
の距離を50μm以下に形成してある熱線型半導体式ガ
ス検知素子。1. A hot-wire type semiconductor gas detecting element, comprising a sensitive part formed of a semiconductor containing tin oxide as a main component, covering the noble metal wire coil, wherein the sensitive part has a major axis of a minor axis. 1.5 times or less and the volume is 6.5 × 1
A hot-wire semiconductor gas detector which is formed to have a size of 0 -5 mm 3 or more and 8.2 × 10 -3 mm 3 or less, and a distance from the coil portion of the precious metal wire coil to the outer surface of the sensitive portion is 50 μm or less. element.
μm以下の酸化スズを主成分とする半導体を焼結させて
前記感応部を形成してある請求項1に記載の熱線型半導
体式ガス検知素子。2. The average secondary particle diameter is 0.3 μm or more and 0.8.
The hot wire semiconductor type gas detection element according to claim 1, wherein the sensitive portion is formed by sintering a semiconductor containing tin oxide having a size of not more than μm as a main component.
回路に組み込むとともに、そのガス検知回路に電圧を供
給する電圧供給部を設けて、前記熱線型半導体式ガス検
知素子からの出力を検知自在に構成したガス検知装置で
あって、熱線型半導体式ガス検知素子として請求項1〜
2の熱線型半導体式ガス検知素子を用い、かつ、前記電
圧供給部を電池によって電力供給可能に構成してあるガ
ス検知装置。3. A hot wire semiconductor gas detecting element is incorporated in a gas detecting circuit, and a voltage supply section for supplying a voltage to the gas detecting circuit is provided to detect the output from the hot wire semiconductor gas detecting element. The gas detection device configured as described above, wherein the gas detector is a hot wire semiconductor type gas detection element.
2. A gas detecting device using the hot-wire semiconductor type gas detecting element of 2 and configured so that power can be supplied to the voltage supply unit by a battery.
状態と、前記ガス検知回路への電力供給を停止するOF
F状態とを交互に切り替える回路切替手段を設けるとと
もに、前記ON状態の継続時間を1秒以下にするととも
に、前記ON状態とOFF状態との時間比率(ON状態
/OFF状態)を1/10以下に制御する制御装置を設
けた請求項3に記載のガス検知装置。4. ON for supplying electric power to the gas detection circuit
State and OF for stopping the power supply to the gas detection circuit
A circuit switching means for alternately switching between the F state and the F state is provided, the duration of the ON state is set to 1 second or less, and the time ratio between the ON state and the OFF state (ON state / OFF state) is 1/10 or less. The gas detection device according to claim 3, further comprising a control device for controlling the gas detection device.
状態と、前記ガス検知回路への電力供給を停止するOF
F状態とを交互に切り替える回路切替手段を設けるとと
もに、前記ON状態の継続時間を0.5秒以下にすると
ともに、前記ON状態とOFF状態との時間比率(ON
状態/OFF状態)を1/40以下に制御する制御装置
を設けた請求項3〜4のいずれかに記載のガス検知装
置。5. An ON circuit for supplying power to the gas detection circuit
State and OF for stopping the power supply to the gas detection circuit
A circuit switching means for alternately switching between the F state and the F state is provided, the duration of the ON state is set to 0.5 seconds or less, and the time ratio between the ON state and the OFF state (ON
5. The gas detection device according to claim 3, further comprising a control device for controlling the (state / OFF state) to 1/40 or less.
ス検知素子を350℃以上550℃以下の設定温度に維
持制御可能に構成してある請求項4〜5のいずれかに記
載のガス検知装置。6. The gas detection device according to claim 4, wherein the controller is configured to maintain and control the hot-wire semiconductor gas detection element at a set temperature of 350 ° C. or higher and 550 ° C. or lower. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8020396A JPH09269308A (en) | 1996-04-02 | 1996-04-02 | Heat ray type semiconductor gas detection element and gas detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8020396A JPH09269308A (en) | 1996-04-02 | 1996-04-02 | Heat ray type semiconductor gas detection element and gas detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09269308A true JPH09269308A (en) | 1997-10-14 |
Family
ID=13711833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8020396A Pending JPH09269308A (en) | 1996-04-02 | 1996-04-02 | Heat ray type semiconductor gas detection element and gas detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09269308A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001330578A (en) * | 2000-05-22 | 2001-11-30 | New Cosmos Electric Corp | Gas detection method and device |
JP2008051715A (en) * | 2006-08-25 | 2008-03-06 | Yoshiharu Nagamatsu | Wireless tag type sensor |
JP2013130441A (en) * | 2011-12-21 | 2013-07-04 | Fis Inc | Semiconductor gas sensor element, manufacturing method of semiconductor gas sensor element and gas detection device |
JP2016211896A (en) * | 2015-04-30 | 2016-12-15 | 日本写真印刷株式会社 | Semiconductor type gas sensor and gas detection device including the same |
-
1996
- 1996-04-02 JP JP8020396A patent/JPH09269308A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001330578A (en) * | 2000-05-22 | 2001-11-30 | New Cosmos Electric Corp | Gas detection method and device |
JP4497658B2 (en) * | 2000-05-22 | 2010-07-07 | 新コスモス電機株式会社 | Gas detection method and apparatus |
JP2008051715A (en) * | 2006-08-25 | 2008-03-06 | Yoshiharu Nagamatsu | Wireless tag type sensor |
JP2013130441A (en) * | 2011-12-21 | 2013-07-04 | Fis Inc | Semiconductor gas sensor element, manufacturing method of semiconductor gas sensor element and gas detection device |
JP2016211896A (en) * | 2015-04-30 | 2016-12-15 | 日本写真印刷株式会社 | Semiconductor type gas sensor and gas detection device including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110291385B (en) | Comparative diagnostics for combustible gas sensors including catalytic structures | |
JP4580405B2 (en) | Hydrogen gas sensor | |
JPH07174725A (en) | Method and device for detecting gas | |
US20210109052A1 (en) | Power reduction in combustible gas sensors | |
US11703473B2 (en) | Operation of combustible gas sensor in a dynamic mode with a constant resistance setpoint | |
US4134818A (en) | Solid electrolyte sensor for monitoring combustibles in an oxygen containing environment | |
EP0432962B1 (en) | Flammable gas detection | |
JP2000275202A (en) | Gas detecting device | |
JPH09269308A (en) | Heat ray type semiconductor gas detection element and gas detector | |
JPH09269306A (en) | Heat ray type semiconductor gas detection element and gas detector | |
CN112585453A (en) | Gas detection device | |
JP2007071642A (en) | Hydrogen gas detection element and hydrogen gas detector | |
JP4210758B2 (en) | Gas alarm | |
JP2002286668A (en) | Gas detection output correction method and gas detector | |
JP6203214B2 (en) | Semiconductor gas sensor manufacturing method and gas detector | |
JP2018179842A (en) | Gas detection device | |
JP3549322B2 (en) | Gas detection method and gas detection device | |
JP4094795B2 (en) | Method for diagnosing deterioration in sensitivity of gas detector, and gas detector having sensitivity deterioration diagnosis function | |
JP7203662B2 (en) | Temperature control method and temperature control device | |
JP3933216B2 (en) | Gas detector | |
JPH10282031A (en) | Device and method for gas detection | |
JPH0949820A (en) | Device and method for discriminating gasoline and gas oil from each other | |
JPS5821156A (en) | Gas sensor | |
JPH10332629A (en) | Oxygen gas and carbon monoxide gas sensor as well as apparatus and method for measurement of oxygen and carbon monoxide | |
JPH0755745A (en) | Carbon monoxide gas detecting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040604 |
|
A131 | Notification of reasons for refusal |
Effective date: 20040617 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20040810 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20041111 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050329 |