JP3808416B2 - Apparatus and method for removing sulfur compounds in fuel gas at room temperature - Google Patents

Apparatus and method for removing sulfur compounds in fuel gas at room temperature Download PDF

Info

Publication number
JP3808416B2
JP3808416B2 JP2002266887A JP2002266887A JP3808416B2 JP 3808416 B2 JP3808416 B2 JP 3808416B2 JP 2002266887 A JP2002266887 A JP 2002266887A JP 2002266887 A JP2002266887 A JP 2002266887A JP 3808416 B2 JP3808416 B2 JP 3808416B2
Authority
JP
Japan
Prior art keywords
fuel gas
room temperature
gas
adsorbent
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002266887A
Other languages
Japanese (ja)
Other versions
JP2004099826A (en
Inventor
重夫 里川
恵理子 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2002266887A priority Critical patent/JP3808416B2/en
Publication of JP2004099826A publication Critical patent/JP2004099826A/en
Application granted granted Critical
Publication of JP3808416B2 publication Critical patent/JP3808416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、燃料ガス中の硫黄化合物の常温除去装置及び除去方法に関し、より詳しくは都市ガスやLPガス(LPG)、あるいは天然ガスなどの燃料ガス中の硫黄化合物を常温で除去するための装置及び燃料ガス中の硫黄化合物を常温で除去する方法に関する。
【0002】
【従来の技術】
メタン、エタン、エチレン、プロパン、ブタン等の低級炭化水素、あるいはこれらを含む都市ガス、LPガス、天然ガス等のガスは、工業用や家庭用などの燃料として用いられるほか、燃料電池用燃料や雰囲気ガスなどとして利用される水素の製造用原料としても使用される。水素の工業的製造方法の一つである水蒸気改質法では、それらの低級炭化水素を、Ni系やRu系等の改質触媒の存在下、水蒸気により改質し、水素を主成分とする改質ガスが生成される。
【0003】
都市ガスやLPガス等の燃料ガスには漏洩保安を目的とする付臭剤として、サルファイド類やチオフェン類、あるいはメルカプタン類などの硫黄化合物が含まれている。一般に添加される付臭剤としてはジメチルサルファイド(DMS)、テトラヒドロチオフェン(THT)及びターシャリーブチルメルカプタン(TBM)が用いられ、その濃度はいずれも数ppmである。
【0004】
ところで、例えば、前述炭化水素の水蒸気改質法で用いられる改質触媒は、これらの硫黄化合物により被毒し、性能劣化を来たしてしまう。このため燃料ガス中のそれらの硫黄化合物は予め除去しておく必要がある。また、硫黄化合物を除去した燃料ガス中に、たとえ残留硫黄化合物が微量含まれていても、その残留硫黄化合物の量はできるだけ低濃度であることが望ましい。
【0005】
従来、燃料ガスに含まれる硫黄化合物の除去方法の一つとして吸着剤による方法がある。この方法は、活性炭、金属酸化物、あるいはゼオライト等の吸着剤に燃料ガスを通すことで硫黄化合物を吸着させて除去する方法である。吸着剤による方法では、加熱することにより吸着能力を増加させる方法もあるが、常温で吸着させる方がシステムがより簡易になるので望ましい。このことは、本吸着剤による方法を特に家庭用の固体高分子形燃料電池(PEFC)の燃料として用いる改質ガスの生成用に使用する燃料ガス中の硫黄化合物の除去用に適用する場合にも有利である。
【0006】
吸着剤による方法では、吸着剤は脱硫容器に充填して用いられるが、吸着剤がこれに吸着された硫黄化合物で飽和してしまうとガス中の硫黄化合物を除去することができなくなるので、再生や交換が必要である。従って、吸着剤の吸着能力の大小により吸着剤の必要量、交換頻度が大きく左右されることになるため、より高い吸着能力すなわち吸着容量の大きい吸着剤が望まれる。
【0007】
本発明者らは、常温における硫黄化合物の吸着能力(すなわち吸着容量)を大きく改善した吸着剤を先に開発している(特開2001−286753、特開2001−305123、特開2002−66313)。この常温吸着剤は、ゼオライトに対してAg、Cu、Zn、Fe、Co及びNiから選ばれた1種又は2種以上の遷移金属をイオン交換により担持させてなるもので、サルファイド類、チオフェン類、メルカプタン類などの硫黄化合物の種類を問わず、高い吸着能力を有している。
【0008】
上記のうち、特に、Y型ゼオライトにAgをイオン交換により担持させてなる吸着剤からなる常温吸着剤はそれら硫黄化合物の吸着容量が非常に大きい。なお、ゼオライトにAgをイオン交換により担持させてなる吸着剤を、本明細書中適宜、銀ゼオライト又は銀ゼオライト吸着剤という。
【0009】
ところで、一般的に吸着剤を用いた吸着除去の場合、吸着平衡等の条件如何により、ある程度のガスはリークしてしまうことが知られている。当該銀ゼオライトの硫黄化合物のリークレベルは7ppb以下であるが、その下限を精査したところ1.5ppb程度であることが分かった。しかし、例えば水蒸気改質法で用いる改質触媒は、その作動時に硫黄分が蓄積して劣化するので、改質触媒を数万時間、例えば3万時間というように長期にわたり劣化させないためには硫黄化合物を完全乃至より完全に除去することが好ましく、1ppb以下、あるいは0.1ppb以下まで脱硫することが望まれる。
【0010】
一方、活性炭吸着剤は、幅広い用途に多くの種類が利用されている。これらのうち、燃料ガス中の硫黄化合物を常温で除去する目的には、ニッケルを添加した活性炭(商品名粒状白鷺NCC:武田薬品工業社製)が市販されている。しかし、この活性炭の硫黄化合物吸着容量は上記銀ゼオライト吸着剤に比べて1/10以下と低いため、家庭用の固体高分子形燃料電池の燃料として用いる改質ガスの生成に用いる燃料ガス中の硫黄化合物の除去用などの用途には有用でない。
【0011】
ところで、一般的に、活性炭系吸着剤は、ゼオライト系吸着剤に比べて吸着性能が劣ると考えられている。上記活性炭吸着剤においても、吸着容量は銀ゼオライト吸着剤の1/10以下である。しかしながら、本発明者らが実験により追求し確認したところ、硫黄化合物のリークレベルは銀ゼオライト吸着剤と同様に7ppb以下であることが分かった。そこで、さらにその下限を追求し精査したところ、1ppb以下であることが分かった。しかし、当該活性炭吸着剤は吸着容量が小さく、そのままでは家庭用の固体高分子形燃料電池の燃料として用いる改質ガスの生成に用いる燃料ガス中の硫黄化合物の除去用などの用途には有用でない。
【0012】
【特許文献1】
特開2001−286753
【特許文献2】
特開2001−305123
【特許文献3】
特開2002−66313
【0013】
【発明が解決しようとする課題】
本発明は、以上ような事情、事実に鑑み、上記問題点を解決するたるになされたものであり、吸着能力が大きい銀ゼオライト吸着剤をそのまま利用し、これに硫黄化合物のリークレベルが1ppb以下の活性炭吸着剤を併用することにより、燃料ガス中の硫黄化合物を1ppb以下にまで長期間にわたり脱硫することができる燃料ガス中の硫黄化合物の常温除去装置及び燃料ガス中の硫黄化合物の常温除去方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は(1)燃料ガス中の硫黄化合物の常温除去装置であって、脱硫容器中に、その上流側に銀ゼオライト吸着剤を充填し、且つ、下流側に活性炭吸着剤を充填してなることを特徴とする燃料ガス中硫黄化合物の常温除去装置を提供する。
【0015】
本発明は(2)燃料ガス中硫黄化合物の常温除去装置であって、その上流側に銀ゼオライト吸着剤を充填した脱硫容器を配置し、且つ、下流側に活性炭吸着剤を充填した脱硫容器を配置してなることを特徴とする燃料ガス中硫黄化合物の常温除去装置を提供する。
【0016】
本発明は(3)燃料ガス中の硫黄化合物の常温除去方法であって、脱硫容器中に、その上流側に銀ゼオライト吸着剤を充填し、下流側に活性炭吸着剤を充填してなる常温除去装置に上流側から燃料ガスを通して硫黄化合物を1ppb以下まで脱硫することを特徴とする燃料ガス中硫黄化合物の常温除去方法を提供する。
【0017】
本発明は(4)燃料ガス中の硫黄化合物の常温除去方法であって、上流側に銀ゼオライト吸着剤を充填した脱硫容器を配置し、且つ、下流側に活性炭吸着剤を充填した脱硫容器を配置してなる常温除去装置に、その上流側から燃料ガスを通して硫黄化合物を1ppb以下まで脱硫することを特徴とする燃料ガス中硫黄化合物の常温除去方法を提供する。
【0018】
【発明の実施の形態】
本発明に係る燃料ガス中の硫黄化合物の常温除去装置は、都市ガス、LPガス、天然ガス等の被処理燃料ガスの流れ方向に、(1)脱硫容器中に、その上流側に銀ゼオライト吸着剤を充填し、下流側に活性炭吸着剤を充填するか、または(2)その上流側に銀ゼオライト吸着剤を充填した脱硫容器を配置し、下流側に活性炭吸着剤を充填した脱硫容器を配置して構成される。
【0019】
ここで、銀ゼオライト吸着剤を構成するゼオライトとしてはY型ゼオライト、X型ゼオライト及びβ型ゼオライトを用い得るが、特にY型ゼオライであるのが好ましい。また、活性炭吸着剤の好ましい例としては活性炭に鉄族金属、特にニッケルを添加した添着炭が挙げられる。そして、このように両吸着剤を用いた常温除去装置中に燃料ガスを、常温で、上流から順次通して両吸着剤に接触させることにより、燃料ガスに含まれる硫黄化合物を1ppb以下、さらには0.1ppb以下まで脱硫する。
【0020】
〈銀ゼオライト吸着剤及び活性炭吸着剤の吸着能力〉
表1は、各種銀ゼオライト吸着剤、各種活性炭吸着剤、金属酸化物吸着剤等の吸着能力について実測した結果を示したものである。表1中、サンプル名の欄には略号で示しているが、同欄中、例えば「Ag(Na)−Y」とはNa−Y型ゼオライトにAgをイオン交換法により担持させたものの意味である。
【0021】
【表1】

Figure 0003808416
【0022】
試験条件は以下のとおりである。円筒充填塔〔28.4mm(直径)×63.2mm(高さ)〕に各吸着剤40cm3を充填し、これに都市ガス(13A)に水約380ppm(露点−30℃)を添加した試験ガスを通した。試験ガス中の硫黄化合物濃度は4.4mg−SNm3(DMS=50wt%、TBM=50wt%、これはDMS=1.8ppm、TBM=1.2ppmに相当する)である。ガス流速=340L/h、LV(ガスの線速度)=15cm/sec、SV(空間速度)=8500h-1、温度=室温(20〜30℃)、圧力=常圧。本試験は各吸着剤共すべて同一装置、同一条件で実施した。
【0023】
各吸着剤による硫黄化合物の吸着量は以下のとおりにして求めた。上記試験条件で、試験ガスを充填塔入口から導入し、充填塔出口から排出されたガスを経時的にサンプリングし、GC−FPD(炎光光度検出器付きのガスクロマトグラフ)により硫黄化合物の濃度を求めた。硫黄化合物の吸着量は、充填塔出口における各硫黄化合物濃度が0.1ppmに達した時点までの全硫黄化合物吸着量を積算し、下記式(1)により硫黄吸着量(wt%)として算出したものである。
【0024】
【数1】
Figure 0003808416
【0025】
表1のとおり、活性炭(例5〜8)では、硫黄吸着量は良くても0.29wt%(例8:活性炭にNiを添加した添着炭)であるに過ぎない。つまり、活性炭吸着剤は、そのままでは燃料ガス中の硫黄化合物の吸着剤として有用でないことを示している。
【0026】
これに対して、銀ゼオライト吸着剤(例1〜4)の場合には、活性炭吸着剤に比べて、格段に優れた硫黄吸着量を示している。その硫黄吸着量は1.70wt%以上という非常に有効な吸着能力を示している。なかでも、Y型ゼオライト(Na−Y型ゼオライト)にAgをイオン交換により担持させた場合(例1)の硫黄吸着量は4.10wt%と非常に優れた吸着能力を示している。
【0027】
本試験ガスには、燃料成分である炭化水素(メタン、エタン、プロパン、ブタン)とともに、DMSが1.8ppm、TBMが1.2ppm含まれ、水が約380ppm含まれているが、このような水分の共存下においても、DMS及びTBM共に有効に吸着されている。
【0028】
〈銀ゼオライト吸着剤の脱硫下限性能〉
銀ゼオライト吸着剤については、吸着能力は大きいが、それ単独では燃料ガス中の硫黄化合物を1ppb以下まで下げることはできない。この事実を突き止めるに至るまで各種実験を繰り返したが、この事実を掴んだ実験例を以下に説明する。ここで、燃料ガスを吸着剤を通した後の1ppbのリーク硫黄化合物の直接測定は現状では不可能であることから、図1に示す装置を用いて以下のようにして試験した。
【0029】
図1に示す脱硫器(常温)に銀ゼオライト吸着剤を充填し、10ppmのDMSを含むメタンガスを銀ゼオライト吸着剤に通して脱硫した。銀ゼオライト吸着剤を通過したガスを用いて改質器でルテニウム触媒(アルミナにルテニウムを担持てなる改質触媒。Ru担持量2wt%)による水蒸気改質反応を行い(反応温度=610℃)、該触媒に付着した硫黄分を測定することにより平均リーク濃度を算出した。
【0030】
このような方法は、極めて硫黄吸着能力が高く、僅かな濃度の硫黄も直ちに吸着するルテニウム(Ru)の性質を利用した方法であり、特許第2761636号公報においても、炭化水素中のppbオーダーの硫黄含有量の測定方法として利用されている方法である。
【0031】
該ルテニウム触媒に付着した硫黄量から、銀ゼオライト吸着剤について、これをリークした硫黄を評価したところ、平均1.5ppb程度の硫黄がリークしていることが判明した。この点、TBMあるいはTHTを含むメタンガスについても同様と考えられる。
【0032】
〈活性炭吸着剤の脱硫下限性能〉
同じく10ppmのDMSを含むメタンガスを活性炭吸着剤を用いて脱硫した。活性炭吸着剤を通過したガスを用いて改質器でルテニウム触媒による水蒸気改質反応を行い、該触媒に付着した硫黄分を測定することにより平均リーク濃度を算出した。該ルテニウム触媒に付着した硫黄量から、活性炭吸着剤をリークした硫黄を評価したところ、硫黄のリークは実質的に認められなかった。この点、TBMあるいはTHTを含むメタンガスについても同様と考えられる。
【0033】
以上のように、銀ゼオライト吸着剤は吸着能力は大きいが、それ単独で燃料ガス中の硫黄化合物を1ppb以下まで下げることはできない。これに対して、活性炭は吸着能力は小さいが、それ単独で燃料ガス中の硫黄化合物を1ppb以下まで下げることができる。
【0034】
本発明においては、これら両吸着剤をただ併用するのではなく、これら両吸着剤の特性を巧みに利用して特定の順序で使用し、常温すなわち−10〜50℃以下という常温下、長期間にわたり燃料ガス中の硫黄化合物を1ppb以下、さらには0.1ppb以下まで下げることができるものである。
【0035】
図2〜3は本発明に係る常温除去装置の態様を説明する図である。図2のとおり、脱硫容器中に、被処理ガスである燃料ガスの流れ方向に、その上流側に銀ゼオライト吸着剤を充填し、下流側に活性炭吸着剤を充填して構成される。また、図3のとおり、被処理燃料ガスの流れ方向に、その上流側に銀ゼオライト吸着剤を充填した脱硫容器を配置し、下流側に活性炭吸着剤を充填した脱硫容器を配置して構成される。脱硫容器自体の構成材料はプラスチック製、ガラス製、金属製その他適宜選定して用いる。
【0036】
このように、上流側に吸着能力の大きい銀ゼオライト吸着剤を配置して燃料ガス中の硫黄化合物の大部分を吸着除去し、下流側に極低濃度まで脱硫可能な活性炭吸着剤を配置してリーク硫黄化合物を1ppb以下まで下げることができるものである。活性炭吸着剤は、吸着容量は小さいが、ここで吸着除去されるリーク硫黄化合物の量は少ないので(すなわち、硫黄化合物は上流側の銀ゼオライト吸着剤により1.5ppb程度まで除去されているので)、長期間にわたり性能低下を来たすことなく燃料ガス中の硫黄化合物を極微量まで下げることができる。
【0037】
図4は本発明の常温除去装置をPEFC用燃料水素の製造用に適用する態様例を示す図である。都市ガス、LPG、天然ガス等の燃料ガスは、順次銀ゼオライト及び活性炭が充填された硫黄化合物の常温除去装置に通された後、改質触媒が充填された改質器に導入される。ここで、燃料ガスは水蒸気により水素リッチな改質ガスに改質される。生成改質ガスをCO変成器、CO除去器を経てPEFCスタックの燃料極に導入し、空気極に導入される空気との電気化学反応により発電する。なお、LPGは気化して上記常温除去装置に通される。
【0038】
本発明によれば、都市ガス、LPガス、天然ガス等の燃料ガス中の硫黄化合物は常温除去装置により長期間にわたり1ppb以下、さらには0.1ppb以下にまで除去されるので、硫黄化合物に起因する改質器中の改質触媒の劣化が防止される。これにより、PEFCに必要な燃料水素を数万時間、例えば3万時間というような長期間にわたり常時所定必要量供給することができる。また、本発明の常温除去装置は、コンパクトであり、しかも硫黄化合物を長期間にわたり、完全乃至ほぼ完全に除去できるので、家庭向けのPEFC用燃料水素の製造用燃料ガスの脱硫用としても有用である。
【0039】
銀ゼオライト吸着剤は、好ましくはAgをゼオライトに対してイオン交換法により担持させることで製造される。具体的には、銀の化合物を水に溶解して水溶液とする。銀化合物は、ゼオライトの陽イオンとイオン交換させる必要があるため、水に溶解し、その水溶液中、銀が銀イオンとして存在し得る銀化合物が用いられる。この水溶液をゼオライトと接触させることにより、ゼオライト中の陽イオンを銀イオンと交換させる。次いで、水等で洗浄した後、乾燥し、必要に応じて焼成することにより得られる。
【0040】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれら実施例により制限されないことはもちろんである。
【0041】
銀ゼオライト吸着剤Aとして、表1中例番号1として示す吸着剤を用い、活性炭吸着剤Bとして、表1中例番号8として示す吸着剤(商品名粒状白鷺NCC:武田薬品工業社製)を用いた。44.9gの吸着剤Aと10.0gの吸着剤Bを図2のようにアクリル樹脂製円筒状脱硫容器に充填して脱硫器を構成した。これを改質器とともに図1のようにセットした。
【0042】
比較例として、アクリル樹脂製脱硫容器に表1中例番号1として示す銀ゼオライト吸着剤Aのみを47.3g充填した脱硫器を用い、これを改質器とともに図1のようにセットした。改質器には改質触媒としてRu/Al23(アルミナにRuを2wt%担持した触媒)を充填した。
【0043】
これら試験装置を使用し、燃料ガスとしてDMS10ppmを含むメタンガスを用い、水蒸気改質反応を長期間にわたり試験した。試験条件は以下のとおりとした。75ml(約6.9g)のRu/Al23(Ru:2wt%)を用い、反応温度は600℃とした。燃料ガスとしてDMSを11ppm含むメタンガスを用い、流量を1200ml/minとした。燃料ガスと共にスチームをS/C比(スチーム/カーボン比)=1.5の条件で加えた。触媒層で反応したガスは、水分を分離した後、ガスクロマトグラフ法によりガス中の残留メタン濃度の測定を行った。
【0044】
比較として、燃料ガスとしてメタンのみ、すなわちDMSを含まないメタンガスについても同様に試験した。なお、改質触媒中の硫黄量の分析には、炭素・硫黄分析計(堀場製作所製)を用い、「酸素気流中燃焼−赤外線吸収法」により測定した。本測定法を用いる場合、試料1gに対する検出下限は0.01mgである。図5はこれらの結果を示す図である。
【0045】
〈銀ゼオライト吸着剤Aのみ〉
図5のとおり、メタン転化率(=改質されたメタン量/導入メタン量×100)は、銀ゼオライト吸着剤Aのみを用いた場合には、試験開始時から逐次低下している。試験開始から1166時間経過後、改質触媒を取り出し、改質触媒に含まれる硫黄量を測定したところ、未使用の改質触媒と比較して0.18mgの硫黄の増加が確認された。この硫黄量はすべて脱硫器からリークしたものと考えられることから、平均リーク濃度は1.5ppbと計算される。
【0046】
ここで1166時間の試験において、脱硫器に導入されるメタンガス中の硫黄量は1.33gである。これに対し、本試験に用いた銀ゼオライト吸着剤Aの吸着容量は、380ppmもの水分存在下でも、1.94g(重量47.3g、吸着容量4.1wt%)であるため、本試験(水を含まない)条件ではそれ以上と考えられる。従って、1166時間では硫黄化合物の破過は起こっていないと考えられることから、脱硫剤を通過した硫黄化合物はすべてリーク硫黄である。
【0047】
〈銀ゼオライト吸着剤A+活性炭吸着剤B〉
これに対して、図5のとおり、本発明の脱硫器(吸着剤A+吸着剤B)を用いた場合、メタン転化率は、試験開始時以降極く僅かに低下するが、試験開始から810時間(34日)経過時においても、試験開始時と殆ど変わっていない。この点、比較として行った、燃料ガスとしてメタンのみ(硫黄化合物無添加)を用いた場合のメタン転化率とほぼ同じ転化率を示している(図5)。
【0048】
試験開始から810時間経過後、改質触媒を取り出し、改質触媒に含まれる硫黄量を測定することで平均リーク硫黄濃度を測定したところ、未使用改質触媒の硫黄濃度と同じであり、硫黄増加量は、試料1g当たり0.01mg以下であった。これを気相中のリーク硫黄濃度に換算すると0.1ppb以下に相当している。従って、脱硫器からリークした硫黄は、本測定方法においても、検出限界以下、すなわち1ppb以下であることが分かる。
【0049】
ここで、810時間の試験において脱硫剤に導入されるガス中の硫黄量は0.86gである。これに対し、本試験に用いた銀ゼオライト吸着剤Aの吸着容量は、380ppmもの水分存在下でも、1.84g(重量44.9g、吸着容量4.1wt%)であるため、比較例1の場合と同様に破過は起こっていないと考えられる。
【0050】
また、銀ゼオライト吸着剤Aを通過したリーク硫黄濃度を1.5ppbとすると、810時間の試験において、活性炭吸着剤Bに導入される硫黄量は0.13mgである。活性炭の吸着剤の吸着容量は、380ppmもの水分存在下でも、29mg(重量10.0g、吸着容量0.29wt%)であるため、銀ゼオライト吸着剤Aと同様に破過は起こっていない。
このように、本発明の脱硫器(吸着剤A+吸着剤B)によれば、長期間にわたり、燃料ガス中の硫黄化合物を完全ないしほぼ完全に除去することができる。
【0051】
【発明の効果】
本発明によれば、常温において、長期間にわたり、燃料ガス中の硫黄化合物を完全ないしほぼ完全に除去することができる。加えて、本発明の燃料ガス中硫黄化合物の常温除去装置は、コンパクトであり、しかも銀ゼオライト吸着剤と併用する活性炭吸着剤として市販の活性炭吸着剤を利用できるためコストの面でも有利である。このため本発明は、都市ガス等を利用する家庭向け実機固体高分子形燃料電池用燃料水素の製造用燃料ガスの脱硫用などとしても非常に有用である。
【図面の簡単な説明】
【図1】ppbレベルのリーク硫黄の測定に用いた装置を示す図
【図2】本発明の常温除去装置の態様を説明する図
【図3】本発明の常温除去装置の態様を説明する図
【図4】本発明の常温除去装置をPEFC用燃料水素の製造用に適用する態様例を示す図
【図5】実施例の結果を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and method for removing sulfur compounds in fuel gas at room temperature, and more specifically, an apparatus for removing sulfur compounds in fuel gas such as city gas, LP gas (LPG), or natural gas at room temperature. And a method for removing sulfur compounds in fuel gas at room temperature.
[0002]
[Prior art]
Lower hydrocarbons such as methane, ethane, ethylene, propane and butane, or city gas, LP gas, and natural gas containing these are used as fuel for industrial and household use, as well as fuel for fuel cells It is also used as a raw material for producing hydrogen used as an atmospheric gas. In the steam reforming method, which is one of the industrial production methods of hydrogen, these lower hydrocarbons are reformed with steam in the presence of a reforming catalyst such as Ni-based or Ru-based, and hydrogen is the main component. A reformed gas is generated.
[0003]
Fuel gases such as city gas and LP gas contain sulfur compounds such as sulfides, thiophenes, and mercaptans as odorants for the purpose of leakage protection. Commonly added odorants include dimethyl sulfide (DMS), tetrahydrothiophene (THT), and tertiary butyl mercaptan (TBM), all having a concentration of several ppm.
[0004]
By the way, for example, the reforming catalyst used in the above-mentioned hydrocarbon steam reforming method is poisoned by these sulfur compounds, resulting in performance deterioration. For this reason, it is necessary to remove those sulfur compounds in the fuel gas in advance. Moreover, even if a trace amount of residual sulfur compound is contained in the fuel gas from which the sulfur compound has been removed, the amount of the residual sulfur compound is preferably as low as possible.
[0005]
Conventionally, there is a method using an adsorbent as one method for removing sulfur compounds contained in fuel gas. This method is a method in which a sulfur compound is adsorbed and removed by passing a fuel gas through an adsorbent such as activated carbon, metal oxide, or zeolite. The method using an adsorbent includes a method of increasing the adsorption capacity by heating, but it is desirable to adsorb at room temperature because the system becomes simpler. This is particularly true when the adsorbent method is applied to the removal of sulfur compounds in fuel gas used for the production of reformed gas used as fuel for household polymer electrolyte fuel cells (PEFC). Is also advantageous.
[0006]
In the method using an adsorbent, the adsorbent is used by filling a desulfurization vessel. However, if the adsorbent is saturated with the sulfur compound adsorbed on it, the sulfur compound in the gas cannot be removed. Or replacement. Therefore, since the necessary amount of the adsorbent and the replacement frequency greatly depend on the adsorbing capacity of the adsorbent, an adsorbent having a higher adsorption capacity, that is, a large adsorption capacity is desired.
[0007]
The present inventors have previously developed an adsorbent that greatly improves the adsorption capacity (that is, the adsorption capacity) of sulfur compounds at room temperature (Japanese Patent Laid-Open No. 2001-286773, Japanese Patent Laid-Open No. 2001-305123, Japanese Patent Laid-Open No. 2002-66313). . This room temperature adsorbent is obtained by supporting one or more transition metals selected from Ag, Cu, Zn, Fe, Co and Ni on zeolite by ion exchange, sulfides, thiophenes Regardless of the type of sulfur compounds such as mercaptans, it has a high adsorption capacity.
[0008]
Among the above, particularly, a room temperature adsorbent made of an adsorbent obtained by supporting Ag on a Y-type zeolite by ion exchange has a very large adsorption capacity of these sulfur compounds. An adsorbent obtained by supporting Ag on a zeolite by ion exchange is referred to as silver zeolite or silver zeolite adsorbent as appropriate in this specification.
[0009]
Incidentally, it is generally known that in the case of adsorption removal using an adsorbent, a certain amount of gas leaks depending on conditions such as adsorption equilibrium. The leak level of the sulfur compound of the silver zeolite is 7 ppb or less, but when the lower limit was examined carefully, it was found to be about 1.5 ppb. However, the reforming catalyst used in, for example, the steam reforming method deteriorates due to accumulation of sulfur during its operation. Therefore, in order to prevent the reforming catalyst from deteriorating over a long period of time such as tens of thousands of hours, for example, 30,000 hours, It is preferable to completely or more completely remove the compound, and it is desirable to desulfurize to 1 ppb or less, or 0.1 ppb or less.
[0010]
On the other hand, many types of activated carbon adsorbents are used for a wide range of applications. Among these, for the purpose of removing sulfur compounds in fuel gas at room temperature, activated carbon (trade name granular white birch NCC: manufactured by Takeda Pharmaceutical Company Limited) to which nickel is added is commercially available. However, since the sulfur compound adsorption capacity of this activated carbon is as low as 1/10 or less compared with the above-mentioned silver zeolite adsorbent, the activated carbon in the fuel gas used for the production of the reformed gas used as the fuel for the solid polymer fuel cell for home use It is not useful for applications such as removal of sulfur compounds.
[0011]
By the way, it is generally considered that the activated carbon-based adsorbent is inferior in adsorption performance to the zeolite-based adsorbent. Also in the activated carbon adsorbent, the adsorption capacity is 1/10 or less of the silver zeolite adsorbent. However, when the present inventors pursued and confirmed by experiment, it turned out that the leak level of a sulfur compound is 7 ppb or less similarly to a silver zeolite adsorbent. Then, further pursuing the lower limit, it was found that it was 1 ppb or less. However, the activated carbon adsorbent has a small adsorption capacity and as such is not useful for applications such as removal of sulfur compounds in fuel gas used to produce reformed gas used as fuel for household polymer electrolyte fuel cells. .
[0012]
[Patent Document 1]
JP 2001-286753 A
[Patent Document 2]
JP 2001-305123 A
[Patent Document 3]
JP 2002-66313 A
[0013]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above problems in view of the above circumstances and facts, and uses a silver zeolite adsorbent having a large adsorption capacity as it is, and the sulfur level of the sulfur compound is 1 ppb or less. By using the activated carbon adsorbent together, the sulfur compound in the fuel gas can be desulfurized over a long period of time up to 1 ppb or less, and the sulfur compound in the fuel gas at room temperature and the method for removing the sulfur compound in the fuel gas at room temperature The purpose is to provide.
[0014]
[Means for Solving the Problems]
The present invention is (1) a room temperature removal apparatus for sulfur compounds in fuel gas, in which a desulfurization vessel is filled with a silver zeolite adsorbent on the upstream side and an activated carbon adsorbent on the downstream side. An apparatus for removing sulfur compounds in fuel gas at room temperature is provided.
[0015]
The present invention is (2) a room temperature removal apparatus for sulfur compounds in fuel gas, in which a desulfurization vessel filled with a silver zeolite adsorbent is arranged upstream, and a desulfurization vessel filled with activated carbon adsorbent is arranged downstream. Provided is a room temperature removal apparatus for sulfur compounds in fuel gas, which is characterized by being arranged.
[0016]
The present invention is (3) a method for removing sulfur compounds in fuel gas at room temperature, wherein a desulfurization vessel is filled with a silver zeolite adsorbent on the upstream side and charged with an activated carbon adsorbent on the downstream side. Provided is a room temperature removal method for sulfur compounds in fuel gas, characterized in that the sulfur compounds are desulfurized to 1 ppb or less through the fuel gas from the upstream side to the apparatus.
[0017]
The present invention is (4) a method for removing sulfur compounds in fuel gas at room temperature, comprising a desulfurization vessel filled with a silver zeolite adsorbent on the upstream side and a desulfurization vessel filled with activated carbon adsorbent on the downstream side. The present invention provides a room temperature removal apparatus for room temperature removal of sulfur compounds in fuel gas, characterized in that the sulfur compounds are desulfurized to 1 ppb or less through the fuel gas from the upstream side.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The apparatus for removing sulfur compounds in fuel gas at room temperature according to the present invention is (1) in the desulfurization vessel, adsorbing silver zeolite in the upstream side in the flow direction of the fuel gas to be treated such as city gas, LP gas, natural gas, etc. Fill the agent with the activated carbon adsorbent on the downstream side, or (2) arrange the desulfurization vessel filled with the silver zeolite adsorbent on the upstream side, and arrange the desulfurization vessel filled with the activated carbon adsorbent on the downstream side Configured.
[0019]
Here, as the zeolite constituting the silver zeolite adsorbent, Y-type zeolite, X-type zeolite and β-type zeolite can be used, and Y-type zeolite is particularly preferable. A preferred example of the activated carbon adsorbent is an impregnated carbon obtained by adding an iron group metal, particularly nickel, to activated carbon. Then, the sulfur gas contained in the fuel gas is reduced to 1 ppb or less by bringing the fuel gas into the room temperature removal apparatus using both adsorbents in this way and bringing them into contact with both adsorbents sequentially from the upstream at room temperature. Desulfurize to 0.1 ppb or less.
[0020]
<Adsorption capacity of silver zeolite adsorbent and activated carbon adsorbent>
Table 1 shows the results of actual measurements on the adsorption capacities of various silver zeolite adsorbents, various activated carbon adsorbents, metal oxide adsorbents, and the like. In Table 1, the sample name column is indicated by an abbreviation. In this column, for example, “Ag (Na) -Y” means that Ag is supported on Na—Y zeolite by an ion exchange method. is there.
[0021]
[Table 1]
Figure 0003808416
[0022]
The test conditions are as follows. Cylindrical packed tower [28.4 mm (diameter) x 63.2 mm (height)] packed with 40 cm 3 of each adsorbent, and about 380 ppm of water (dew point -30 ° C) added to city gas (13A) Gas was passed. The sulfur compound concentration in the test gas is 4.4 mg-SNm 3 (DMS = 50 wt%, TBM = 50 wt%, which corresponds to DMS = 1.8 ppm, TBM = 1.2 ppm). Gas flow velocity = 340 L / h, LV (linear velocity of gas) = 15 cm / sec, SV (space velocity) = 8500 h −1 , temperature = room temperature (20-30 ° C.), pressure = normal pressure. This test was carried out using the same equipment and the same conditions for all adsorbents.
[0023]
The amount of sulfur compound adsorbed by each adsorbent was determined as follows. Under the above test conditions, the test gas is introduced from the packed tower inlet, the gas discharged from the packed tower outlet is sampled over time, and the concentration of the sulfur compound is determined by GC-FPD (gas chromatograph with flame photometric detector). Asked. The amount of sulfur compound adsorbed was calculated as the amount of sulfur adsorbed (wt%) by the following equation (1) by integrating the total sulfur compound adsorbed amount up to the time when each sulfur compound concentration at the packed tower outlet reached 0.1 ppm. Is.
[0024]
[Expression 1]
Figure 0003808416
[0025]
As shown in Table 1, in the activated carbon (Examples 5 to 8), the sulfur adsorption amount is only 0.29 wt% (Example 8: impregnated carbon obtained by adding Ni to activated carbon). That is, the activated carbon adsorbent is not useful as it is as an adsorbent for sulfur compounds in fuel gas.
[0026]
On the other hand, in the case of the silver zeolite adsorbent (Examples 1 to 4), the sulfur adsorption amount is markedly superior to that of the activated carbon adsorbent. The sulfur adsorption amount shows a very effective adsorption capacity of 1.70 wt% or more. In particular, when Y is supported on Y-type zeolite (Na—Y-type zeolite) by ion exchange (Example 1), the sulfur adsorption amount is 4.10 wt%, indicating a very excellent adsorption capacity.
[0027]
This test gas contains 1.8ppm of DMS, 1.2ppm of TBM, and about 380ppm of water along with hydrocarbons (methane, ethane, propane, butane) as fuel components. Even in the presence of moisture, both DMS and TBM are effectively adsorbed.
[0028]
<Desulfurization lower limit performance of silver zeolite adsorbent>
The silver zeolite adsorbent has a high adsorption capacity, but it cannot alone reduce the sulfur compound in the fuel gas to 1 ppb or less. Various experiments were repeated until this fact was ascertained. Examples of experiments that grasped this fact will be described below. Here, since direct measurement of 1 ppb leaked sulfur compound after passing the fuel gas through the adsorbent is impossible at present, the test was performed as follows using the apparatus shown in FIG.
[0029]
The desulfurizer (normal temperature) shown in FIG. 1 was filled with a silver zeolite adsorbent, and methane gas containing 10 ppm of DMS was passed through the silver zeolite adsorbent for desulfurization. Using the gas that passed through the silver zeolite adsorbent, a steam reforming reaction was performed with a reformer using a ruthenium catalyst (a reforming catalyst in which ruthenium is supported on alumina; Ru loading 2 wt%) (reaction temperature = 610 ° C.), The average leak concentration was calculated by measuring the sulfur content adhering to the catalyst.
[0030]
Such a method is a method utilizing the property of ruthenium (Ru) which has a very high sulfur adsorption capacity and also immediately adsorbs a small concentration of sulfur. Japanese Patent No. 2761636 also discloses the order of ppb in hydrocarbons. This method is used as a method for measuring the sulfur content.
[0031]
From the amount of sulfur adhering to the ruthenium catalyst, the sulfur that leaked from the silver zeolite adsorbent was evaluated, and it was found that about 1.5 ppb of sulfur leaked on average. In this respect, the same applies to methane gas containing TBM or THT.
[0032]
<Desulfurization lower limit performance of activated carbon adsorbent>
Similarly, methane gas containing 10 ppm of DMS was desulfurized using an activated carbon adsorbent. A steam reforming reaction with a ruthenium catalyst was performed in a reformer using the gas that passed through the activated carbon adsorbent, and an average leak concentration was calculated by measuring the sulfur content adhering to the catalyst. When sulfur leaking the activated carbon adsorbent was evaluated from the amount of sulfur adhering to the ruthenium catalyst, sulfur leak was not substantially recognized. In this respect, the same applies to methane gas containing TBM or THT.
[0033]
As described above, although the silver zeolite adsorbent has a large adsorption capacity, it cannot alone reduce the sulfur compound in the fuel gas to 1 ppb or less. On the other hand, activated carbon has a small adsorption capacity, but it can alone reduce the sulfur compound in the fuel gas to 1 ppb or less.
[0034]
In the present invention, these adsorbents are not used in combination, but are used in a specific order by skillfully utilizing the characteristics of both adsorbents, at room temperature, that is, −10 to 50 ° C. or less at room temperature for a long time. The sulfur compound in the fuel gas can be lowered to 1 ppb or less, and further to 0.1 ppb or less.
[0035]
2 to 3 are views for explaining an embodiment of the room temperature removal apparatus according to the present invention. As shown in FIG. 2, the desulfurization vessel is configured by filling the upstream side with a silver zeolite adsorbent and filling the downstream side with an activated carbon adsorbent in the flow direction of the fuel gas that is the gas to be treated. In addition, as shown in FIG. 3, a desulfurization vessel filled with a silver zeolite adsorbent is arranged on the upstream side in the flow direction of the fuel gas to be treated, and a desulfurization vessel filled with activated carbon adsorbent is arranged on the downstream side. The The constituent material of the desulfurization vessel itself is appropriately selected from plastic, glass, metal and the like.
[0036]
In this way, a silver zeolite adsorbent with a large adsorption capacity is arranged on the upstream side to adsorb and remove most of the sulfur compounds in the fuel gas, and an activated carbon adsorbent that can be desulfurized to an extremely low concentration is arranged on the downstream side. The leaked sulfur compound can be lowered to 1 ppb or less. The activated carbon adsorbent has a small adsorption capacity, but the amount of leaked sulfur compound adsorbed and removed here is small (that is, the sulfur compound is removed to about 1.5 ppb by the upstream silver zeolite adsorbent). In addition, the sulfur compound in the fuel gas can be reduced to a very small amount without causing performance deterioration over a long period of time.
[0037]
FIG. 4 is a diagram showing an example of an embodiment in which the room temperature removal apparatus of the present invention is applied to the production of PEFC fuel hydrogen. A fuel gas such as city gas, LPG, natural gas, etc. is sequentially passed through a room temperature removal device for sulfur compounds filled with silver zeolite and activated carbon, and then introduced into a reformer filled with a reforming catalyst. Here, the fuel gas is reformed to a hydrogen-rich reformed gas by steam. The generated reformed gas is introduced into the fuel electrode of the PEFC stack through a CO converter and CO remover, and power is generated by an electrochemical reaction with air introduced into the air electrode. The LPG is vaporized and passed through the room temperature removal apparatus.
[0038]
According to the present invention, sulfur compounds in fuel gas such as city gas, LP gas and natural gas are removed to 1 ppb or less, and further to 0.1 ppb or less over a long period of time by a room temperature removal device. Degradation of the reforming catalyst in the reformer is prevented. As a result, a predetermined amount of fuel hydrogen required for PEFC can be supplied constantly over a long period of time such as tens of thousands of hours, for example, 30,000 hours. Further, the room temperature removal apparatus of the present invention is compact and can completely or almost completely remove sulfur compounds over a long period of time, so it is useful for desulfurization of fuel gas for the production of fuel hydrogen for PEFC for home use. is there.
[0039]
The silver zeolite adsorbent is preferably produced by supporting Ag on the zeolite by an ion exchange method. Specifically, a silver compound is dissolved in water to obtain an aqueous solution. Since the silver compound needs to be ion-exchanged with the cation of the zeolite, a silver compound that can be dissolved in water and in which silver can exist as a silver ion in the aqueous solution is used. By bringing this aqueous solution into contact with zeolite, the cation in the zeolite is exchanged with silver ion. Then, after washing with water or the like, it is obtained by drying and firing as necessary.
[0040]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, of course, this invention is not restrict | limited by these Examples.
[0041]
As the silver zeolite adsorbent A, the adsorbent shown as Example No. 1 in Table 1 is used, and as the activated carbon adsorbent B, the adsorbent shown as Example No. 8 in Table 1 (trade name granular white birch NCC: manufactured by Takeda Pharmaceutical Company Limited) is used. Using. As shown in FIG. 2, 44.9 g of adsorbent A and 10.0 g of adsorbent B were filled into an acrylic resin cylindrical desulfurization vessel to constitute a desulfurizer. This was set together with the reformer as shown in FIG.
[0042]
As a comparative example, a desulfurizer in which only 47.3 g of a silver zeolite adsorbent A shown as Example No. 1 in Table 1 was filled in an acrylic resin desulfurization vessel was used and set together with a reformer as shown in FIG. The reformer was filled with Ru / Al 2 O 3 (a catalyst having 2 wt% of Ru supported on alumina) as a reforming catalyst.
[0043]
Using these test apparatuses, the steam reforming reaction was tested over a long period of time using methane gas containing 10 ppm of DMS as fuel gas. The test conditions were as follows. 75 ml (about 6.9 g) of Ru / Al 2 O 3 (Ru: 2 wt%) was used, and the reaction temperature was 600 ° C. Methane gas containing 11 ppm of DMS was used as the fuel gas, and the flow rate was 1200 ml / min. Steam was added together with fuel gas under the condition of S / C ratio (steam / carbon ratio) = 1.5. The gas reacted in the catalyst layer was separated from moisture, and the residual methane concentration in the gas was measured by gas chromatography.
[0044]
As a comparison, only methane as a fuel gas, that is, methane gas not containing DMS was also tested in the same manner. For the analysis of the amount of sulfur in the reforming catalyst, a carbon / sulfur analyzer (manufactured by HORIBA, Ltd.) was used, and measurement was performed by “combustion in oxygen stream-infrared absorption method”. When this measurement method is used, the lower limit of detection for 1 g of the sample is 0.01 mg. FIG. 5 is a diagram showing these results.
[0045]
<Silver zeolite adsorbent A only>
As shown in FIG. 5, when only the silver zeolite adsorbent A is used, the methane conversion rate (= reformed methane amount / introduced methane amount × 100) is successively decreased from the start of the test. After 1166 hours from the start of the test, the reforming catalyst was taken out and the amount of sulfur contained in the reforming catalyst was measured. As a result, an increase of 0.18 mg of sulfur was confirmed compared to the unused reforming catalyst. Since all of this sulfur amount is considered to have leaked from the desulfurizer, the average leak concentration is calculated to be 1.5 ppb.
[0046]
Here, in the test for 1166 hours, the amount of sulfur in the methane gas introduced into the desulfurizer is 1.33 g. On the other hand, the adsorption capacity of the silver zeolite adsorbent A used in this test is 1.94 g (weight 47.3 g, adsorption capacity 4.1 wt%) even in the presence of 380 ppm of water. It is considered that it is more under the conditions. Therefore, since it is considered that no breakthrough of sulfur compounds occurs in 1166 hours, all sulfur compounds that have passed through the desulfurization agent are leaked sulfur.
[0047]
<Silver zeolite adsorbent A + activated carbon adsorbent B>
On the other hand, as shown in FIG. 5, when the desulfurizer of the present invention (adsorbent A + adsorbent B) is used, the methane conversion rate decreases slightly after the start of the test, but 810 hours from the start of the test. Even after (34 days), there is almost no change from the start of the test. In this respect, the conversion rate is almost the same as the methane conversion rate when only methane (no sulfur compound added) is used as the fuel gas (FIG. 5).
[0048]
After 810 hours from the start of the test, the reforming catalyst was taken out, and when the average leaked sulfur concentration was measured by measuring the amount of sulfur contained in the reforming catalyst, it was the same as the sulfur concentration of the unused reforming catalyst. The increase amount was 0.01 mg or less per 1 g of the sample. When this is converted into the leaked sulfur concentration in the gas phase, it corresponds to 0.1 ppb or less. Therefore, it can be seen that sulfur leaked from the desulfurizer is below the detection limit, that is, below 1 ppb in this measurement method.
[0049]
Here, the amount of sulfur in the gas introduced into the desulfurizing agent in the 810 hour test is 0.86 g. In contrast, the adsorption capacity of the silver zeolite adsorbent A used in this test is 1.84 g (weight 44.9 g, adsorption capacity 4.1 wt%) even in the presence of 380 ppm of water. As with the case, breakthrough is not expected.
[0050]
If the leaked sulfur concentration that passed through the silver zeolite adsorbent A is 1.5 ppb, the amount of sulfur introduced into the activated carbon adsorbent B is 0.13 mg in the 810 hour test. Since the adsorption capacity of the activated carbon adsorbent is 29 mg (weight 10.0 g, adsorption capacity 0.29 wt%) even in the presence of 380 ppm of water, breakthrough does not occur as in the case of the silver zeolite adsorbent A.
Thus, according to the desulfurizer (adsorbent A + adsorbent B) of the present invention, the sulfur compound in the fuel gas can be completely or almost completely removed over a long period of time.
[0051]
【The invention's effect】
According to the present invention, sulfur compounds in fuel gas can be completely or almost completely removed at room temperature over a long period of time. In addition, the apparatus for removing ambient temperature sulfur compounds in fuel gas of the present invention is compact, and since a commercially available activated carbon adsorbent can be used as an activated carbon adsorbent used in combination with a silver zeolite adsorbent, it is advantageous in terms of cost. For this reason, the present invention is very useful for desulfurization of fuel gas for producing fuel hydrogen for an actual solid polymer fuel cell for home using city gas or the like.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an apparatus used for measuring ppb level leaked sulfur. FIG. 2 is a diagram illustrating an embodiment of the room temperature removal apparatus of the present invention. FIG. 3 is a diagram illustrating an embodiment of the room temperature removal apparatus of the present invention. FIG. 4 is a diagram showing an example of applying the room temperature removal apparatus of the present invention to the production of fuel hydrogen for PEFC. FIG. 5 is a diagram showing the results of the examples.

Claims (12)

燃料ガス中の硫黄化合物の常温除去装置であって、脱硫容器中に、その上流側に銀ゼオライト吸着剤を充填し、且つ、下流側に活性炭吸着剤を充填してなることを特徴とする燃料ガス中硫黄化合物の常温除去装置。A device for removing a sulfur compound in a fuel gas at room temperature, wherein the desulfurization vessel is filled with a silver zeolite adsorbent on the upstream side and an activated carbon adsorbent on the downstream side. A room temperature removal system for sulfur compounds in gases. 燃料ガス中硫黄化合物の常温除去装置であって、その上流側に銀ゼオライト吸着剤を充填した脱硫容器を配置し、且つ、下流側に活性炭吸着剤を充填した脱硫容器を配置してなることを特徴とする燃料ガス中硫黄化合物の常温除去装置。An apparatus for removing sulfur compounds in fuel gas at room temperature, comprising a desulfurization vessel filled with a silver zeolite adsorbent on the upstream side and a desulfurization vessel filled with an activated carbon adsorbent on the downstream side. A room temperature removal device for sulfur compounds in fuel gas. 前記銀ゼオライト吸着剤のゼオライトがY型ゼオライトであり、前記活性炭吸着剤がニッケルを添加した添着炭であることを特徴とする請求項1又は2に記載の燃料ガス中硫黄化合物の常温除去装置。The apparatus for removing sulfur compounds in fuel gas at room temperature according to claim 1 or 2, wherein the zeolite of the silver zeolite adsorbent is Y-type zeolite, and the activated carbon adsorbent is impregnated carbon to which nickel is added. 前記燃料ガスが、メルカプタン類及びサルファイド類のうちの少なくとも一種を含む燃料ガスであることを特徴とする請求項1乃至3のいずれか1項に記載の燃料ガス中硫黄化合物の常温除去装置。The said fuel gas is fuel gas containing at least 1 type of mercaptans and sulfides, The normal temperature removal apparatus of the sulfur compound in fuel gas of any one of Claim 1 thru | or 3 characterized by the above-mentioned. 前記燃料ガスが都市ガス、LPガス又は天然ガスである請求項1乃至4のいずれか1項に記載の燃料ガス中硫黄化合物の常温除去装置。The apparatus for removing a sulfur compound in a fuel gas at room temperature according to any one of claims 1 to 4, wherein the fuel gas is city gas, LP gas, or natural gas. 前記燃料ガス中硫黄化合物の常温除去装置が、固体高分子形燃料電池の燃料として用いる改質ガスの生成用に使用する燃料ガス中硫黄化合物の常温除去装置であることを特徴とする請求項1乃至5のいずれか1項に記載の燃料ガス中硫黄化合物の常温除去装置。The apparatus for removing sulfur compounds in fuel gas at room temperature is an apparatus for removing sulfur compounds in fuel gas at room temperature used for producing reformed gas used as a fuel for a polymer electrolyte fuel cell. The normal temperature removal apparatus of the sulfur compound in fuel gas of any one of thru | or 5. 燃料ガス中の硫黄化合物の常温除去方法であって、脱硫容器中に、その上流側に銀ゼオライト吸着剤を充填し、下流側に活性炭吸着剤を充填してなる常温除去装置に上流側から燃料ガスを通して硫黄化合物を1ppb以下まで脱硫することを特徴とする燃料ガス中硫黄化合物の常温除去方法。A method for removing sulfur compounds in a fuel gas at room temperature, wherein the desulfurization vessel is filled with a silver zeolite adsorbent on the upstream side and charged with an activated carbon adsorbent on the downstream side, and the fuel from the upstream side. A method for removing sulfur compounds in fuel gas at room temperature by desulfurizing sulfur compounds to 1 ppb or less through gas. 燃料ガス中の硫黄化合物の常温除去方法であって、上流側に銀ゼオライト吸着剤を充填した脱硫容器を配置し、且つ、下流側に活性炭吸着剤を充填した脱硫容器を配置してなる常温除去装置に、その上流側から燃料ガスを通して硫黄化合物を1ppb以下まで脱硫することを特徴とする燃料ガス中硫黄化合物の常温除去方法。A method for room temperature removal of sulfur compounds in fuel gas, comprising a desulfurization vessel filled with a silver zeolite adsorbent on the upstream side and a desulfurization vessel filled with activated carbon adsorbent on the downstream side A method for removing sulfur compounds in fuel gas at room temperature by desulfurizing sulfur compounds to 1 ppb or less through fuel gas from the upstream side of the apparatus. 前記銀ゼオライト吸着剤のゼオライトがY型ゼオライトであり、前記活性炭吸着剤がニッケルを添加した添着炭であることを特徴とする請求項7又は8に記載の燃料ガス中硫黄化合物の常温除去方法。The method for removing sulfur compounds in fuel gas at room temperature according to claim 7 or 8, wherein the zeolite of the silver zeolite adsorbent is Y-type zeolite, and the activated carbon adsorbent is an impregnated coal to which nickel is added. 前記燃料ガスが、メルカプタン類及びサルファイド類のうちの少なくとも一種を含む燃料ガスであることを特徴とする請求項7乃至9のいずれか1項に記載の燃料ガス中硫黄化合物の常温除去方法。The method for removing a sulfur compound in a fuel gas at room temperature according to any one of claims 7 to 9, wherein the fuel gas is a fuel gas containing at least one of mercaptans and sulfides. 前記燃料ガスが、都市ガス、LPガス又は天然ガスである請求項7乃至10のいずれか1項に記載の燃料ガス中硫黄化合物の常温除去方法。The method for removing a sulfur compound in a fuel gas at room temperature according to any one of claims 7 to 10, wherein the fuel gas is city gas, LP gas, or natural gas. 前記燃料ガス中硫黄化合物の常温除去方法が、固体高分子形燃料電池の燃料として用いる改質ガスの生成用に使用する燃料ガス中硫黄化合物の常温除去方法であることを特徴とする請求項7乃至11のいずれか1項に記載の燃料ガス中硫黄化合物の常温除去方法。8. The method for removing a sulfur compound in a fuel gas at room temperature is a method for removing a sulfur compound in a fuel gas used for producing a reformed gas used as a fuel for a polymer electrolyte fuel cell at room temperature. The method for removing a sulfur compound in a fuel gas according to any one of items 1 to 11 at room temperature.
JP2002266887A 2002-09-12 2002-09-12 Apparatus and method for removing sulfur compounds in fuel gas at room temperature Expired - Lifetime JP3808416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266887A JP3808416B2 (en) 2002-09-12 2002-09-12 Apparatus and method for removing sulfur compounds in fuel gas at room temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266887A JP3808416B2 (en) 2002-09-12 2002-09-12 Apparatus and method for removing sulfur compounds in fuel gas at room temperature

Publications (2)

Publication Number Publication Date
JP2004099826A JP2004099826A (en) 2004-04-02
JP3808416B2 true JP3808416B2 (en) 2006-08-09

Family

ID=32265571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266887A Expired - Lifetime JP3808416B2 (en) 2002-09-12 2002-09-12 Apparatus and method for removing sulfur compounds in fuel gas at room temperature

Country Status (1)

Country Link
JP (1) JP3808416B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264330B1 (en) * 2006-02-18 2013-05-14 삼성에스디아이 주식회사 Desulfurization device for fuel gas of fuel cell and desulfurizing method using the same
KR101332047B1 (en) 2006-07-11 2013-11-22 에스케이이노베이션 주식회사 Sulphur-detecting indicators for determining life time of adsorbents, sulfur-removal canister and system composed of the same
JP2012140525A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Desulfurization system, hydrogen production system, fuel cell system, fuel-desulfurization method, and method for producing hydrogen
JP2012140524A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Desulfurization system, hydrogen production system, fuel cell system, fuel-desulfurization method, and method for producing hydrogen
JP2012214336A (en) * 2011-03-31 2012-11-08 Osaka Gas Co Ltd Reforming system
US9166119B2 (en) * 2011-04-05 2015-10-20 Mitsui Mining & Smelting Co., Ltd. Light-emitting device
BR112015023574A2 (en) * 2013-03-15 2017-07-18 3M Innovative Properties Co end-of-life indication systems of layered filter cartridges
JP7048375B2 (en) * 2018-03-23 2022-04-05 東京瓦斯株式会社 Fuel gas desulfurizer, fuel gas desulfurization system and fuel gas desulfurization method
JP7166152B2 (en) * 2018-11-29 2022-11-07 株式会社コベルコ科研 Adsorption tower and removal equipment for volatile organic compounds in gas

Also Published As

Publication number Publication date
JP2004099826A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP3895134B2 (en) Fuel gas desulfurization apparatus and desulfurization method
EP1121977B1 (en) Method for removing sulfur compound from fuel gases
KR101264330B1 (en) Desulfurization device for fuel gas of fuel cell and desulfurizing method using the same
JP4950116B2 (en) Fuel cell desulfurization apparatus and fuel cell system
JP3875193B2 (en) Polymer electrolyte fuel cell system and operation method thereof
KR20040111590A (en) Method for desulphurisation of natural gas
KR20070019428A (en) Desulfurizing agent for removing organic sulfides, method of preparing thereof and method for removing organic sulfur compounds using the same
JP3808416B2 (en) Apparatus and method for removing sulfur compounds in fuel gas at room temperature
JPH10237473A (en) Process for desulfurizing hydrocarbon gas
JP3742284B2 (en) Adsorbent for sulfur compounds in fuel gas and method for removing the same
JP2008511725A (en) Desulfurization system and fuel stream desulfurization method
JP4026700B2 (en) Adsorbent for removing sulfur compounds in fuel gas
JP5295689B2 (en) Odorant removal device in raw fuel for fuel cells
JP5143663B2 (en) Raw fuel pretreatment system for fuel cell hydrogen production
JP2010037480A (en) Device for removing odorant in fuel gas
KR100855772B1 (en) Adsorbent to adsorb the sulfurour gas contained in fuel gas, and desulfurization equipement in fuel cell system using such adsorbent
US10625198B2 (en) Desulfurization apparatus and desulfurization method
JP2004305869A (en) Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell
JP2004277747A (en) Method of removing sulfur compound in fuel gas
JP5588181B2 (en) Adsorbent for removing odorant in fuel gas under high dew point condition and method for removing odorant
JP5766744B2 (en) Odorant removal device in raw fuel for fuel cells
JP5681410B2 (en) Desulfurization agent, desulfurization apparatus using the same, and desulfurization method
JP2003024776A (en) Method for removing gas odorant and adsorbent used for this method
US20070119751A1 (en) Combination of zeolite and alumina impregnated with a noble metal(s) for COS and THT removal at low temperatures (&lt;40 degree C) in fuel cell processor applications
JP2011201975A (en) Adsorbent for removing odorant and method for removing odorant in fuel gas having high dew point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3808416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term