JP3742284B2 - Adsorbent for sulfur compounds in fuel gas and method for removing the same - Google Patents

Adsorbent for sulfur compounds in fuel gas and method for removing the same Download PDF

Info

Publication number
JP3742284B2
JP3742284B2 JP2000232780A JP2000232780A JP3742284B2 JP 3742284 B2 JP3742284 B2 JP 3742284B2 JP 2000232780 A JP2000232780 A JP 2000232780A JP 2000232780 A JP2000232780 A JP 2000232780A JP 3742284 B2 JP3742284 B2 JP 3742284B2
Authority
JP
Japan
Prior art keywords
adsorbent
fuel gas
sulfur compound
gas
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000232780A
Other languages
Japanese (ja)
Other versions
JP2001286753A (en
Inventor
裕司 小林
重夫 里川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000232780A priority Critical patent/JP3742284B2/en
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to EP01102061A priority patent/EP1121977B1/en
Priority to AT01102061T priority patent/ATE360478T1/en
Priority to DE60128016T priority patent/DE60128016T2/en
Priority to DK01102061T priority patent/DK1121977T3/en
Priority to CA002332818A priority patent/CA2332818C/en
Priority to US09/774,966 priority patent/US20010014304A1/en
Priority to AU16772/01A priority patent/AU759217B2/en
Publication of JP2001286753A publication Critical patent/JP2001286753A/en
Priority to US10/429,913 priority patent/US6875410B2/en
Application granted granted Critical
Publication of JP3742284B2 publication Critical patent/JP3742284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、都市ガスやLPガスなどの燃料ガス中の硫黄化合物の吸着除去に用いる硫黄化合物除去用吸着剤、及び、該硫黄化合物除去用吸着剤による硫黄化合物含有燃料ガス中の硫黄化合物の除去方法に関する。
【0002】
【従来の技術】
メタン、エタン、エチレン、プロパン、ブタン等の低級炭化水素ガス、あるいはこれらを含む天然ガス、都市ガス、LPガス等のガスは、工業用や家庭用などの燃料として用いられるほか、燃料電池用燃料や雰囲気ガスなどとして利用される水素の製造用原料としても使用される。水素の工業的製造方法の一つである水蒸気改質法では、それらの低級炭化水素ガスを、Ni系、Ru系等の触媒の存在下、水蒸気を加えて改質し、水素を主成分とする改質ガスが生成される。
【0003】
都市ガスやLPガス等の燃料ガスには漏洩保安を目的とする付臭剤として、サルファイド類やチオフェン類、あるいはメルカプタン類などの硫黄化合物が含まれている。具体的には、サルファイド類としてジメチルサルファイド(本明細書中DMSと略称する)やエチルメチルサルファイドやジエチルサルファイド、チオフェン類としてテトラヒドロチオフェン(同じくTHTと略称する)、メルカプタン類としてターシャリーブチルメルカプタン(同じくTBMと略称する)やイソプロピルメルカプタンやノルマルプロピルメルカプタンやターシャリーアミルメルカプタンやターシャリーヘプチルメルカプタンやメチルメルカプタンやエチルメルカプタンなどである。
【0004】
一般に添加される付臭剤としてはDMS、THT及びTBMが多く用いられ、その濃度はいずれも数ppmである。とりわけ、都市ガスにおいてはDMS及びTBMの両方を用いるケースがほとんどである。上記のように水蒸気改質法で用いられる触媒は、これらの硫黄化合物により被毒し、性能劣化を来たしてしまう。このため燃料ガス中のそれらの硫黄化合物は、燃料ガスから予め除去しておく必要がある。また、硫黄化合物を除去した燃料ガス中に、たとえ残留硫黄化合物が少量含まれていても、その残留硫黄化合物の量はできるだけ低濃度であることが望ましい。
【0005】
従来、燃料ガスに含まれる硫黄化合物の除去方法としては、水添脱硫法や吸着剤による方法が知られている。水添脱硫法は、燃料ガスに水素を添加し、CoーMo系触媒等の触媒の存在下、硫黄化合物を硫化水素に分解させ、分解生成物である硫化水素を酸化亜鉛、酸化鉄等の脱硫剤に吸着させて脱硫する方法であり、この場合水素の添加や加熱が必要である。一方、吸着剤による方法は、活性炭、金属酸化物、あるいはゼオライト等を主成分とする吸着剤に燃料ガスを通過させることにより、硫黄化合物を吸着させて除去する方法である。この吸着剤による方法では、加熱することで、吸着能力を増加させる方法もあるが、常温で吸着させる方がシステムがより簡易になるので望ましい。
【0006】
吸着剤を用いて常温で硫黄化合物を除去する方法は、水添脱硫法や加熱吸着法のように熱や水素等を必要としないため簡易な脱硫方法である。しかし、吸着剤がこれに吸着された硫黄化合物で飽和してしまうとガス中の硫黄化合物を除去することができなくなるので、再生や交換が必要である。したがって、吸着剤の吸着能力の大小により吸着剤の必要量、交換頻度が大きく左右されることになるため、より高い吸着能力を有する吸着剤が望まれる。吸着剤の場合、その性能は、特に硫黄化合物の性質に左右される。付臭剤として使用されるケースが多いDMS、TBMでは、特にDMSがより吸着され難いため破過が早い。このためDMSの吸着量を増加させることが重要となってくる。
【0007】
これまでガス中の硫黄化合物の吸着剤としては各種吸着剤が提案されている。例えば特開平6ー306377号では、都市ガス、LPガス等の燃料ガスの付臭成分であるメルカプタン類を無酸素雰囲気下、選択的に、水素及び/又はアルカリ土類金属以外の多価金属イオン交換ゼオライトにより除去するというもので、ここでの多価金属イオンとしてはMn、Fe、Co、Ni、Cu、Sn、Znが好ましいとされている。この技術での吸着対象硫黄化合物は吸着の容易なメルカプタン類だけであり、その吸着能の確認は、その実施例に記載のとおり、上記ゼオライトを入れたサンプリングバッグに350ppmのTBM(都市ガスバランス)を導入することで行われている。
【0008】
本発明者等は、ゼオライト、活性炭、金属化合物、活性アルミナ、シリカゲル、活性白土、粘土系鉱物等の各種多孔質物質、各種金属酸化物など、市販の数多くの吸着剤を用いて、燃料ガス中の硫黄化合物を除去する実験を実施した。このうち、一部は表2に示している。その結果、それらのうち特定の活性炭、特定の金属酸化物(特公平5ー58768号)、特定のゼオライト(特開平10ー237473号)だけが燃料ガス中の硫黄化合物の吸着に有効であることを確認することができた。
【0009】
ところで、燃料ガス中には、その製造過程あるいは供給過程において、微量の水分が含まれているケースがある。特に、ゼオライトにより水分を含有した燃料ガスを処理した場合、水分を選択的に吸着してしまい、水分が含まれていないか、あるいはそれが極微量である場合に比べ、硫黄化合物の吸着性能が大幅に低下してしまう。この理由は、吸湿剤としても利用されているゼオライトはそれ自身が親水性であり、極性分子である水分を優先的に吸着するためであると推認される。このことからしても、硫黄化合物除去用の吸着剤は、燃料ガス中の硫黄化合物のみを選択的に吸着する必要があり、燃料ガス中の水分の有無に関わらず硫黄化合物を吸着する選択性が必要であるが、従来技術の吸着剤においては、上記公報の吸着剤を含め、この点に関して何も配慮されていない。
【0010】
前述のとおり、硫黄化合物を除去した燃料ガス中に含まれる残留硫黄化合物濃度は、燃料ガスを水蒸気改質などに使用する場合、出来るだけ低濃度であることが望ましい。これは、水蒸気改質触媒が硫黄により被毒されるのを防ぐためである。これまで、ガス中の硫黄化合物を極低濃度まで除去する吸着剤として銅系吸着剤(特開平6ー256779号)が報告されている。しかしながら、この吸着剤は、その性能を満足させるためには、200〜250℃の加熱が必要である。これまで、常温付近においてガス中の硫黄化合物を極低濃度まで除去する吸着剤は報告されていない。
【0011】
そこで、本発明者等は、このような観点から、燃料ガス中に水分が含まれていてもなお有効に機能する吸着剤について追求し、ゼオライトのうちでも特に疎水性ゼオライトに着目して各種検討、実験を続けたところ、疎水性ゼオライトを用い、且つ、これに特定の遷移金属をイオン交換により担持させてなる吸着剤が、燃料ガス中に水分が含まれていても、有効な硫黄化合物の吸着性能を有することを見い出し、本発明に到達するに至ったものである。
【0012】
【発明が解決しようとする課題】
本発明は、疎水性ゼオライトに対して特定の遷移金属をイオン交換により担持させることにより、燃料ガス中の水分濃度に関わらず、硫黄化合物除去用として有効に機能する硫黄化合物除去用吸着剤を提供することを目的とし、また本発明は、該硫黄化合物除去用吸着剤による硫黄化合物含有燃料ガス中の硫黄化合物の除去方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、(1)燃料ガス中の硫黄化合物除去用吸着剤であって、疎水性ゼオライトにAg、Cu、Zn、Fe、Co及びNiから選ばれた1種又は2種以上の遷移金属をイオン交換により担持させてなることを特徴とする燃料ガス中の硫黄化合物吸着剤を提供し、また、本発明は(2)硫黄化合物含有燃料ガスを、疎水性ゼオライトにAg、Cu、Zn、Fe、Co及びNiから選ばれた1種又は2種以上の遷移金属をイオン交換により担持させてなる硫黄化合物除去用吸着剤に通すことを特徴とする硫黄化合物含有燃料ガス中の硫黄化合物の除去方法を提供する。
【0014】
【発明の実施の形態】
ゼオライトには各種数多くの種類があるが、本発明においては特に疎水性のゼオライトを使用することが重要である。本発明は、この点と合わせて、この疎水性ゼオライトに、Ag、Cu、Zn、Fe、Co及びNiから選ばれた1種又は2種以上の遷移金属をイオン交換により担持させてなることが重要である。こうしてなる本発明の吸着剤は、いずれも燃料ガス中の水分濃度に関わらず、該燃料ガス中に含まれている硫黄化合物を有効に除去することができる。それら遷移金属の中でもAg又はCuを担持させた吸着剤が特に有効である。
【0015】
本発明の吸着剤を製造するには、先ず、上記Ag、Cu、Zn、Fe、Co及びNiから選ばれた各遷移金属を疎水性ゼオライトに対してイオン交換法により担持させる。具体的には、それら金属の化合物を水に溶解して水溶液とする。各金属の化合物としては、疎水性ゼオライトの陽イオンとイオン交換させる必要があるため、水に溶解し、その水溶液中、金属が金属イオンとして存在し得る金属化合物が用いられる。この水溶液を疎水性ゼオライトと後述図2に示すような▲1▼一撹拌法、▲2▼含浸法、▲3▼流通法等により接触させることにより、疎水性ゼオライト中の陽イオンをこれら金属イオンと交換させる。次いで、水等で洗浄した後、乾燥、焼成することにより得られる。
【0016】
本発明に係る硫黄化合物除去用吸着剤は、各種燃料ガス中の前述サルファイド類、チオフェン類及びメルカプタン類のうちの1種又は2種以上の硫黄化合物を吸着除去するのに適用できるが、特に都市ガスやLPガス等の燃料ガスからそれら硫黄化合物を吸着除去するのに好適に適用することができる。
【0017】
また、本発明に係る硫黄化合物除去用吸着剤による硫黄化合物を含む燃料ガスの処理は、該吸着剤に硫黄化合物含有燃料ガスを接触させることにより行うが、従来の吸着剤によるガス処理と同様にして行うことができる。図1は本発明を実施する装置の一態様例を示す図である。図1中、1は硫黄化合物含有燃料ガス導入管、2は硫黄化合物吸着剤充填層(反応管)、3は処理済み燃料ガス導出管である。導入管1から導入される硫黄化合物含有燃料ガス中の硫黄化合物は、吸着剤充填層2で吸着除去され、処理済み燃料ガスとして導出管3から排出される。
【0018】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれら実施例により制限されないことは勿論である。
【0019】
〈供試吸着剤の調製〉
ゼオライトとして、市販のβ型ゼオライト(東ソー社製、商品名:HSZー930HOD1A)を用いた。このゼオライトの化学組成はNa2O=0.03wt%、SiO2/Al23=27.4(モル比)であり、バインダーとしてアルミナ20wt%を用いて円柱形のペレット(直径1.5mm、長さ=3〜4mm)に成形したものである。一方、塩化ナトリウム、硝酸銀、酢酸銅、硫酸亜鉛、硫酸鉄、酢酸コバルト、酢酸ニッケルの各金属塩を蒸留水に溶解して、これら各金属塩の水溶液を得た。
【0020】
これら各金属塩水溶液を用いて、図2に示す各種イオン交換方法により、上記ゼオライト中の水素イオンをこれら金属イオンと交換させた後、100ml蒸留水(図2中DIW)にて5回洗浄し、次いで乾燥、焼成した。表1にこれに用いた各条件等をまとめて示している(表1中、吸着剤名の欄には略号「元素記号(Cu等)ーβ」で示しているが、同欄中、例えば「Cuーβ」とはβ型ゼオライトにCuをイオン交換により担持させたものの意味であり、この点表2についても同じである)。なお、乾燥及び焼成条件は各吸着剤とも共通であり、乾燥は空気中において100℃で1日行い、また焼成は乾燥窒素中において400℃で2時間行った。こうして、上記ゼオライトに各金属Na、Ag、Cu、Zn、Fe、Co、Niをイオン交換により担持させた各供試吸着剤を得た。
【0021】
【表 1】

Figure 0003742284
【0022】
〈硫黄化合物の吸着試験1〉
図3に示す試験装置を用いて硫黄化合物の吸着試験を実施した。図3中、4が充填塔(円筒反応管)であり、これに上記で得た各供試吸着剤を充填し、それぞれについて硫黄化合物の吸着試験を実施した。各供試吸着剤による硫黄化合物の吸着量は充填塔の出口から経時的にサンプリングし、GCーFPD(炎光光度検出器付きのガスクロマトグラフ)により連続的に測定して濃度を求めた。この測定は、供試吸着剤による硫黄化合物除去性能を破過試験(breakーthroughーtest)によって調べた。
【0023】
試験条件は以下のとおりとした。充填塔:28.4mm(直径)×63.2mm(高さ)、試験ガス:都市ガス(13A)、試験ガス中の硫黄化合物濃度:4.4mgーSNm3(DMS=50wt%、TBM=50wt%、これはDMS=1.8ppm、TBM=1.2ppmに相当する)、ガス流量:340L/h、LV(ガスの線速度)=15cm/sec、SV(空間速度)=8500h-1、試験ガス中の水分濃度:露点−30℃(≒376ppm:水分量)、温度:室温、圧力:常圧。本吸着試験は比較例を含めてすべて同一装置、同一条件で実施した。
【0024】
表2は上記吸着試験の結果である。表2には、各供試吸着剤及び市販のβ型ゼオライト自体(H型、比較例1)のほか、比較例として、市販の各種吸着剤及び吸着作用を有すると思われる各種多孔質材料について、上記と同じく吸着試験を行った結果も示している。表2中の硫黄吸着容量(硫黄化合物吸着量)は、吸着塔出口における各硫黄化合物濃度が0.1ppmに達した時点までの吸着量を示し、式〔吸着量(wt%)=吸着した硫黄化合物中の硫黄量(g)/吸着剤の重量(g)×100〕により算出したものである。
【0025】
【表 2】
Figure 0003742284
【0026】
表2のとおり、β型ゼオライトは疎水性のゼオライトの一種であるが、イオン種がHである基本形(比較例2)では、硫黄化合物吸着量は0.054wt%であるに過ぎない。このようにゼオライトが疎水性であるだけでは、水分を含む燃料ガス中の硫黄化合物を除去できないことを示している。イオン種がアルカリ金属のNaである比較例1ではさらに劣っており、水分を含む燃料ガス中の硫黄化合物用の吸着剤としては有用でないことを示している。
【0027】
これに対して、β型ゼオライトに対してCuをイオン交換担持した場合(実施例1)の硫黄化合物吸着量は1.1wt%、同じくAgをイオン交換により担持させた場合(実施例2)の硫黄化合物吸着量は1.7wt%であり、格段に改善されていることが分かる。またβ型ゼオライトに対してZnをイオン交換担持した場合(実施例3)の硫黄化合物吸着量は0.24wt%、同じくFe、Ni、Coをイオン交換担持した場合(実施例4〜6)の硫黄化合物吸着量は0.14〜0.13wt%であり、Ag、Cuの場合に比べれば少ないが、硫黄化合物吸着能がそれぞれ有効改善されていることが分かる。
【0028】
表2中、比較例3〜10はβ型以外のゼオライト、比較例11〜18はゼオライト以外の吸着剤種を用いた例であるが、いずれにおいても0.1wt%以下の硫黄化合物吸着量に過ぎない。以上のとおり、本発明に係る吸着剤における優れた硫黄化合物の吸着効果は明らかである。
【0029】
〈硫黄化合物の吸着試験2:実施例7〉
硫黄化合物の吸着試験1は試験ガスに水分を含む条件での試験であるが、本吸着試験2では、β型ゼオライトに対してCuをイオン交換担持した吸着剤(実施例1)について、試験ガス中の水分濃度を異ならせて試験した。試験条件は、試験ガス中の水分濃度:露点−60℃(≒10ppm:水分量)とした以外は、吸着試験1と同じ条件で試験した。
表3はその結果である。対比のため実施例1を併記している。表3のとおり、硫黄化合物吸着量は1.6wt%であり、露点−60℃、すなわちドライ条件下での硫黄化合物吸着量はさらに優れていることが分かる。実施例1の硫黄化合物吸着量は1.1wt%であり、水分を含む条件でも格段に改善されているが、ドライ条件下での硫黄化合物吸着量は、水分を含む条件下である実施例1に比べて約4割の性能向上である。
【0030】
【表 3】
Figure 0003742284
【0031】
〈硫黄化合物の吸着試験3:実施例8〉
硫黄化合物の吸着試験1〜2は硫黄成分としてDMS(サルファイド類)とTBM(メルカプタン類)を含む試験ガスについての試験であるが、本吸着試験3では、β型ゼオライトに対してCuをイオン交換担持した吸着剤(実施例1)について、試験ガス中の硫黄成分を異ならせ、THT(チオフェン類)を含む試験ガスについて試験した。
試験条件は以下のとおりとした。充填塔:15mm(直径)×66mm(高さ)、試験ガス:都市ガス(13A)、試験ガス中の硫黄化合物濃度:10mgーSNm3(これはTHT=7.0ppmに相当する)、ガス流量:65L/h、LV(ガスの線速度)=10cm/sec、SV(空間速度)=5500h-1、試験ガス中の水分濃度:露点−60℃(≒10ppm:水分量)、温度:室温、圧力:常圧。
表4はその結果である。対比のため実施例7を併記している。表4のとおり、硫黄化合物(THT)吸着量は2.2wt%であり、本発明の吸着剤はTHT吸着能にも優れていることが分かる。これはDMS+TBM吸着量よりさらに優れた性能である。
【0032】
【表 4】
Figure 0003742284
【0033】
〈硫黄化合物の吸着試験4:実施例9〉
硫黄化合物の吸着試験1〜3は、吸着剤充填塔出口から経時的にサンプリングをし、GCーFPD(炎光光度検出器付きのガスクロマトグラフ)により分析してその吸着性能を評価したが、本吸着試験4では、β型ゼオライトに対してCuをイオン交換担持した吸着剤(実施例1:実施例7も同じ)について、より高感度で極低硫黄濃度分析が可能なGCーSCD(硫黄化学発光検出器付きのガスクロマトグラフ)により吸着剤充填塔出口ガスの分析を行った。試験条件は吸着試験2と同じ条件で試験した。表5はその結果である。対比のためGCーFPDを用いた実施例7における対応値を併記している。
【0034】
【表 5】
Figure 0003742284
【0035】
前記のとおり、硫黄化合物を除去した燃料ガス中に含まれている残留硫黄化合物濃度は、できるだけ低濃度であることが望ましいが、表5から明らかなとおり、本発明の吸着剤によれば、都市ガス中の硫黄成分は7ppb以下という極低濃度まで吸着除去されていることが分かる。
【0036】
【発明の効果】
本発明によれば、疎水性ゼオライトに特定の金属をイオン交換により担持させることにより、燃料ガス中の水分濃度に関わらず、燃料ガス中における硫黄化合物の吸着特性を格段に改善することができる。これにより、吸着剤の必要量を少なくできるだけでなく、再生頻度、交換頻度を少なくでき、DMS等の硫黄化合物を含む燃料ガスから硫黄化合物を有効に除去することができる。
【図面の簡単な説明】
【図1】本発明を実施する装置の一態様例を示す図。
【図2】実施例でイオン交換に使用した▲1▼撹拌法、▲2▼含浸法及び▲3▼流通法の三法の概略を示す図。
【図3】実施例で使用した試験装置の概略を示す図。
【符号の説明】
1 付臭剤含有ガス導入管
2 吸着剤充填層(反応管)
3 処理済みガス導出管
4 充填塔(円筒反応管)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorbent for removing sulfur compounds in a fuel gas such as city gas or LP gas, and an adsorbent for removing sulfur compounds from a sulfur compound-containing fuel gas by the adsorbent for removing sulfur compounds. Regarding the method.
[0002]
[Prior art]
Low hydrocarbon gases such as methane, ethane, ethylene, propane, butane, or natural gas, city gas, LP gas, etc. containing these are used as fuels for industrial and household use, as well as fuel for fuel cells. It is also used as a raw material for the production of hydrogen, which is used as an atmospheric gas. In the steam reforming method, which is one of the industrial production methods of hydrogen, these lower hydrocarbon gases are reformed by adding steam in the presence of a catalyst such as Ni-based or Ru-based, and hydrogen as a main component. A reformed gas is generated.
[0003]
Fuel gases such as city gas and LP gas contain sulfur compounds such as sulfides, thiophenes, and mercaptans as odorants for the purpose of leakage protection. Specifically, dimethyl sulfide (abbreviated as DMS in the present specification), ethyl methyl sulfide and diethyl sulfide as sulfides, tetrahydrothiophene (also abbreviated as THT) as thiophenes, and tertiary butyl mercaptan (also as mercaptans) Abbreviated as TBM), isopropyl mercaptan, normal propyl mercaptan, tertiary amyl mercaptan, tertiary heptyl mercaptan, methyl mercaptan, ethyl mercaptan and the like.
[0004]
In general, DMS, THT and TBM are often used as odorants to be added, and their concentrations are several ppm. In particular, city gas uses both DMS and TBM in most cases. As described above, the catalyst used in the steam reforming method is poisoned by these sulfur compounds, resulting in performance degradation. For this reason, those sulfur compounds in the fuel gas need to be removed from the fuel gas in advance. Further, even if a small amount of residual sulfur compound is contained in the fuel gas from which the sulfur compound has been removed, it is desirable that the amount of the residual sulfur compound be as low as possible.
[0005]
Conventionally, as a method for removing a sulfur compound contained in a fuel gas, a hydrodesulfurization method or a method using an adsorbent is known. In the hydrodesulfurization method, hydrogen is added to the fuel gas, the sulfur compound is decomposed into hydrogen sulfide in the presence of a catalyst such as a Co-Mo catalyst, and the hydrogen sulfide as a decomposition product is converted into zinc oxide, iron oxide, etc. In this method, desulfurization is performed by adsorbing to a desulfurization agent. In this case, addition of hydrogen and heating are necessary. On the other hand, the method using an adsorbent is a method in which a sulfur compound is adsorbed and removed by passing a fuel gas through an adsorbent mainly composed of activated carbon, metal oxide, or zeolite. In this method using an adsorbent, there is a method of increasing the adsorption capacity by heating, but it is desirable to adsorb at normal temperature because the system becomes simpler.
[0006]
The method of removing sulfur compounds at room temperature using an adsorbent is a simple desulfurization method because it does not require heat, hydrogen, or the like, unlike the hydrodesulfurization method or the heat adsorption method. However, if the adsorbent is saturated with the sulfur compound adsorbed on the adsorbent, the sulfur compound in the gas cannot be removed, so that regeneration or replacement is necessary. Therefore, since the necessary amount of the adsorbent and the replacement frequency greatly depend on the adsorbent adsorption capacity, an adsorbent having a higher adsorption capacity is desired. In the case of an adsorbent, its performance depends in particular on the nature of the sulfur compound. In DMS and TBM, which are often used as odorants, breakthrough is quick because DMS is particularly difficult to be adsorbed. For this reason, it is important to increase the amount of adsorption of DMS.
[0007]
Various adsorbents have been proposed as adsorbents for sulfur compounds in gases. For example, in Japanese Patent Application Laid-Open No. 6-306377, mercaptans, which are odorous components of fuel gas such as city gas and LP gas, are selectively added in a non-oxygen atmosphere to polyvalent metal ions other than hydrogen and / or alkaline earth metal. The polyvalent metal ions here are preferably Mn, Fe, Co, Ni, Cu, Sn, and Zn. The sulfur compounds to be adsorbed by this technology are only mercaptans that can be easily adsorbed, and the adsorbability is confirmed as described in the examples by 350 ppm of TBM (city gas balance) in the sampling bag containing the zeolite. It is done by introducing.
[0008]
The present inventors have used many commercially available adsorbents such as zeolite, activated carbon, metal compound, activated alumina, silica gel, activated clay, clay-based minerals and other porous materials, and various metal oxides in the fuel gas. An experiment was conducted to remove the sulfur compounds. Some of these are shown in Table 2. As a result, only specific activated carbon, specific metal oxide (Japanese Patent Publication No. 5-58768) and specific zeolite (Japanese Patent Laid-Open No. 10-237473) are effective for adsorption of sulfur compounds in the fuel gas. I was able to confirm.
[0009]
By the way, there is a case where a minute amount of water is contained in the fuel gas in the production process or the supply process. In particular, when a fuel gas containing water is treated with zeolite, the water is selectively adsorbed, and the sulfur compound adsorbing performance is higher than when no water is contained or the amount is extremely small. It will drop significantly. The reason for this is presumed to be that zeolite, which is also used as a hygroscopic agent, is itself hydrophilic and preferentially adsorbs water, which is a polar molecule. Even from this, the adsorbent for removing sulfur compounds needs to selectively adsorb only the sulfur compounds in the fuel gas, and the selectivity to adsorb the sulfur compounds regardless of the presence or absence of moisture in the fuel gas. However, in the adsorbent of the prior art, nothing is considered in this respect including the adsorbent disclosed in the above publication.
[0010]
As described above, the concentration of the residual sulfur compound contained in the fuel gas from which the sulfur compound has been removed is desirably as low as possible when the fuel gas is used for steam reforming or the like. This is to prevent the steam reforming catalyst from being poisoned by sulfur. So far, a copper-based adsorbent (Japanese Patent Laid-Open No. 6-256679) has been reported as an adsorbent for removing sulfur compounds in a gas to an extremely low concentration. However, this adsorbent requires heating at 200 to 250 ° C. in order to satisfy its performance. So far, no adsorbent has been reported that removes sulfur compounds in gas to a very low concentration near normal temperature.
[0011]
In view of this, the present inventors have pursued an adsorbent that still functions effectively even when moisture is contained in the fuel gas, and various studies focusing on hydrophobic zeolite among zeolites. As a result of the experiment, an adsorbent made of hydrophobic zeolite and having a specific transition metal supported thereon by ion exchange is an effective sulfur compound even if moisture is contained in the fuel gas. It has been found that it has adsorption performance and has reached the present invention.
[0012]
[Problems to be solved by the invention]
The present invention provides an adsorbent for removing sulfur compounds that functions effectively for removing sulfur compounds regardless of the moisture concentration in the fuel gas by supporting a specific transition metal on the hydrophobic zeolite by ion exchange. It is another object of the present invention to provide a method for removing sulfur compounds in a sulfur compound-containing fuel gas by the adsorbent for removing sulfur compounds.
[0013]
[Means for Solving the Problems]
The present invention is (1) an adsorbent for removing sulfur compounds in fuel gas, and includes one or more transition metals selected from Ag, Cu, Zn, Fe, Co and Ni in a hydrophobic zeolite. Provided is a sulfur compound adsorbent in a fuel gas, which is supported by ion exchange, and the present invention provides (2) a sulfur compound-containing fuel gas in Ag, Cu, Zn, Fe in a hydrophobic zeolite. A method for removing a sulfur compound from a sulfur compound-containing fuel gas, characterized by passing it through an adsorbent for removing a sulfur compound obtained by supporting one or more transition metals selected from Co, Ni and the like by ion exchange I will provide a.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
There are many different types of zeolite, but in the present invention, it is particularly important to use a hydrophobic zeolite. According to the present invention, in combination with this point, one or more transition metals selected from Ag, Cu, Zn, Fe, Co and Ni may be supported on the hydrophobic zeolite by ion exchange. is important. The adsorbent of the present invention thus formed can effectively remove sulfur compounds contained in the fuel gas regardless of the moisture concentration in the fuel gas. Among these transition metals, an adsorbent carrying Ag or Cu is particularly effective.
[0015]
In order to produce the adsorbent of the present invention, first, each transition metal selected from Ag, Cu, Zn, Fe, Co and Ni is supported on a hydrophobic zeolite by an ion exchange method. Specifically, these metal compounds are dissolved in water to form an aqueous solution. As each metal compound, since it is necessary to exchange ions with the cation of the hydrophobic zeolite, a metal compound which can be dissolved in water and the metal can exist as a metal ion in the aqueous solution is used. This aqueous solution is brought into contact with the hydrophobic zeolite by (1) one stirring method, (2) impregnation method, (3) flow method, etc. as shown in FIG. Replace with. Then, after washing with water or the like, it is obtained by drying and firing.
[0016]
The adsorbent for removing sulfur compounds according to the present invention can be applied to adsorb and remove one or more sulfur compounds among the aforementioned sulfides, thiophenes, and mercaptans in various fuel gases. It can be suitably applied to adsorb and remove these sulfur compounds from fuel gas such as gas and LP gas.
[0017]
In addition, the treatment of the fuel gas containing the sulfur compound with the adsorbent for removing sulfur compounds according to the present invention is performed by bringing the adsorbent into contact with the sulfur compound-containing fuel gas, but in the same manner as the gas treatment with the conventional adsorbent. Can be done. FIG. 1 is a diagram showing an example of an apparatus for carrying out the present invention. In FIG. 1, 1 is a sulfur compound-containing fuel gas introduction pipe, 2 is a sulfur compound adsorbent packed bed (reaction pipe), and 3 is a treated fuel gas outlet pipe. Sulfur compounds in the sulfur compound-containing fuel gas introduced from the introduction pipe 1 are adsorbed and removed by the adsorbent packed bed 2 and discharged from the outlet pipe 3 as a processed fuel gas.
[0018]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, of course, this invention is not restrict | limited by these Examples.
[0019]
<Preparation of test adsorbent>
Commercially available β-type zeolite (manufactured by Tosoh Corporation, trade name: HSZ-930HOD1A) was used as the zeolite. The zeolite has a chemical composition of Na 2 O = 0.03 wt%, SiO 2 / Al 2 O 3 = 27.4 (molar ratio), and cylindrical pellets (diameter 1.5 mm using 20 wt% alumina as a binder). , Length = 3 to 4 mm). On the other hand, each metal salt of sodium chloride, silver nitrate, copper acetate, zinc sulfate, iron sulfate, cobalt acetate, and nickel acetate was dissolved in distilled water to obtain an aqueous solution of each of these metal salts.
[0020]
Using each of these metal salt aqueous solutions, hydrogen ions in the zeolite are exchanged with these metal ions by various ion exchange methods shown in FIG. 2, and then washed 5 times with 100 ml distilled water (DIW in FIG. 2). Then, it was dried and fired. Table 1 summarizes the conditions used for this (in Table 1, the abbreviation “element symbol (Cu etc.)-Β” is shown in the column of the adsorbent name. “Cu-β” means that the Cu is supported on the β-type zeolite by ion exchange, and the same applies to Table 2). The drying and firing conditions were the same for each adsorbent. Drying was performed in air at 100 ° C. for 1 day, and firing was performed in dry nitrogen at 400 ° C. for 2 hours. Thus, each test adsorbent in which each metal Na, Ag, Cu, Zn, Fe, Co, Ni was supported on the zeolite by ion exchange was obtained.
[0021]
[Table 1]
Figure 0003742284
[0022]
<Sulfur compound adsorption test 1>
The sulfur compound adsorption test was carried out using the test apparatus shown in FIG. In FIG. 3, 4 is a packed tower (cylindrical reaction tube), which was filled with each of the test adsorbents obtained above, and a sulfur compound adsorption test was performed on each of them. The amount of sulfur compound adsorbed by each test adsorbent was sampled with time from the outlet of the packed tower and continuously measured by GC-FPD (gas chromatograph with flame photometric detector) to determine the concentration. In this measurement, the sulfur compound removal performance by the test adsorbent was examined by a breakthrough test.
[0023]
The test conditions were as follows. Packing tower: 28.4 mm (diameter) × 63.2 mm (height), test gas: city gas (13A), sulfur compound concentration in test gas: 4.4 mg-SNm 3 (DMS = 50 wt%, TBM = 50 wt) %, Which corresponds to DMS = 1.8 ppm and TBM = 1.2 ppm), gas flow rate: 340 L / h, LV (linear velocity of gas) = 15 cm / sec, SV (space velocity) = 8500 h −1 , test Moisture concentration in gas: dew point −30 ° C. (≈376 ppm: water content), temperature: room temperature, pressure: normal pressure. All the adsorption tests including the comparative example were performed with the same apparatus and under the same conditions.
[0024]
Table 2 shows the results of the adsorption test. In Table 2, in addition to each test adsorbent and commercially available β-type zeolite itself (H type, Comparative Example 1), as a comparative example, various commercially available adsorbents and various porous materials that are considered to have an adsorbing action are listed. The results of the adsorption test as described above are also shown. The sulfur adsorption capacity (sulfur compound adsorption amount) in Table 2 indicates the adsorption amount up to the point when the concentration of each sulfur compound at the adsorption tower outlet reaches 0.1 ppm, and the formula [adsorption amount (wt%) = adsorbed sulfur The amount of sulfur in the compound (g) / weight of adsorbent (g) × 100].
[0025]
[Table 2]
Figure 0003742284
[0026]
As shown in Table 2, β-type zeolite is a kind of hydrophobic zeolite, but in the basic form in which the ionic species is H (Comparative Example 2), the sulfur compound adsorption amount is only 0.054 wt%. Thus, it is shown that the sulfur compound in the fuel gas containing moisture cannot be removed if the zeolite is only hydrophobic. Comparative Example 1 in which the ionic species is alkali metal Na is further inferior, indicating that it is not useful as an adsorbent for sulfur compounds in fuel gas containing moisture.
[0027]
On the other hand, the amount of sulfur compound adsorbed when Cu was ion exchange-supported on β-type zeolite (Example 1) was 1.1 wt%, and that when Ag was similarly supported by ion exchange (Example 2). It can be seen that the sulfur compound adsorption amount is 1.7 wt%, which is markedly improved. Further, the adsorption amount of the sulfur compound when Zn is ion-exchange supported on the β-type zeolite (Example 3) is 0.24 wt%, and similarly when Fe, Ni and Co are ion-exchange supported (Examples 4 to 6). The sulfur compound adsorption amount is 0.14 to 0.13 wt%, which is less than that of Ag and Cu, but it can be seen that the sulfur compound adsorption capacity is effectively improved.
[0028]
In Table 2, Comparative Examples 3 to 10 are examples using zeolite other than β-type, and Comparative Examples 11 to 18 are examples using adsorbent species other than zeolite, and in any case, the sulfur compound adsorption amount is 0.1 wt% or less. Not too much. As described above, the excellent sulfur compound adsorption effect in the adsorbent according to the present invention is clear.
[0029]
<Sulfur Compound Adsorption Test 2: Example 7>
The sulfur compound adsorption test 1 is a test under the condition that moisture is contained in the test gas. In the present adsorption test 2, the test gas is used for the adsorbent (Example 1) in which Cu is ion-supported on the β-type zeolite. The water concentration in the test was varied. The test conditions were the same as those in the adsorption test 1 except that the moisture concentration in the test gas was dew point-60 ° C. (≈10 ppm: moisture content).
Table 3 shows the results. Example 1 is also shown for comparison. As shown in Table 3, the sulfur compound adsorption amount is 1.6 wt%, and it can be seen that the sulfur compound adsorption amount under a dew point of −60 ° C., that is, under dry conditions is further excellent. The sulfur compound adsorption amount of Example 1 is 1.1 wt%, which is remarkably improved even under conditions including moisture, but the sulfur compound adsorption amount under dry conditions is that under conditions including moisture. This is about 40% improvement in performance.
[0030]
[Table 3]
Figure 0003742284
[0031]
<Sulfur Compound Adsorption Test 3: Example 8>
Sulfur compound adsorption tests 1 and 2 are tests on test gases containing DMS (sulfides) and TBM (mercaptans) as sulfur components. In this adsorption test 3, Cu is ion-exchanged for β-type zeolite. The supported adsorbent (Example 1) was tested for a test gas containing THT (thiophenes) with different sulfur components in the test gas.
The test conditions were as follows. Packing tower: 15 mm (diameter) x 66 mm (height), test gas: city gas (13A), sulfur compound concentration in test gas: 10 mg-SNm 3 (this corresponds to THT = 7.0 ppm), gas flow rate : 65 L / h, LV (linear velocity of gas) = 10 cm / sec, SV (space velocity) = 5500 h −1 , moisture concentration in test gas: dew point −60 ° C. (≈10 ppm: moisture content), temperature: room temperature, Pressure: normal pressure.
Table 4 shows the results. Example 7 is also shown for comparison. As shown in Table 4, the sulfur compound (THT) adsorption amount is 2.2 wt%, and it can be seen that the adsorbent of the present invention is also excellent in THT adsorption ability. This is a performance superior to the amount of DMS + TBM adsorption.
[0032]
[Table 4]
Figure 0003742284
[0033]
<Sulfur Compound Adsorption Test 4: Example 9>
In the adsorption tests 1 to 3 of the sulfur compounds, sampling was performed from the outlet of the adsorbent packed tower over time and analyzed by GC-FPD (gas chromatograph with flame photometric detector) to evaluate the adsorption performance. In the adsorption test 4, GC-SCD (sulfur chemistry) capable of analyzing a very low sulfur concentration with higher sensitivity for an adsorbent in which Cu is ion-exchange-supported on β-type zeolite (Example 1 also applies to Example 7). The adsorbent packed tower outlet gas was analyzed by a gas chromatograph equipped with a luminescence detector. The test conditions were the same as those in the adsorption test 2. Table 5 shows the results. For comparison, the corresponding values in Example 7 using GC-FPD are also shown.
[0034]
[Table 5]
Figure 0003742284
[0035]
As described above, the concentration of the residual sulfur compound contained in the fuel gas from which the sulfur compound has been removed is preferably as low as possible, but as is apparent from Table 5, according to the adsorbent of the present invention, It can be seen that the sulfur component in the gas is adsorbed and removed to an extremely low concentration of 7 ppb or less.
[0036]
【The invention's effect】
According to the present invention, by adsorbing a specific metal to a hydrophobic zeolite by ion exchange, the adsorption characteristics of sulfur compounds in the fuel gas can be remarkably improved regardless of the water concentration in the fuel gas. Thereby, not only the required amount of adsorbent can be reduced, but also the regeneration frequency and exchange frequency can be reduced, and sulfur compounds can be effectively removed from fuel gas containing sulfur compounds such as DMS.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an apparatus for carrying out the present invention.
FIG. 2 is a diagram showing an outline of three methods of (1) stirring method, (2) impregnation method and (3) flow method used for ion exchange in Examples.
FIG. 3 is a diagram showing an outline of a test apparatus used in Examples.
[Explanation of symbols]
1 Odorant-containing gas introduction tube 2 Adsorbent packed bed (reaction tube)
3 Processed gas outlet tube 4 Packed tower (cylindrical reaction tube)

Claims (8)

燃料ガス中の硫黄化合物除去用吸着剤であって、疎水性ゼオライトであるβ型ゼオライトにAg及びCuのいずれか1種又は2種の金属をイオン交換により担持させてなることを特徴とする燃料ガス中の硫黄化合物除去用吸着剤。An adsorbent for removing sulfur compounds in fuel gas, characterized in that any one or two metals of Ag and Cu are supported by ion exchange on β-type zeolite which is a hydrophobic zeolite. Adsorbent for removing sulfur compounds in gas. 上記燃料ガスが都市ガス又はLPガスである請求項1に記載の燃料ガス中の硫黄化合物除去用吸着剤。The adsorbent for removing sulfur compounds in fuel gas according to claim 1, wherein the fuel gas is city gas or LP gas. 上記燃料ガス中の硫黄化合物がサルファイド類、チオフェン類及びメルカプタン類のうちの1種又は2種以上の硫黄化合物である請求項1又は2に記載の燃料ガス中の硫黄化合物除去用吸着剤。The adsorbent for removing a sulfur compound in a fuel gas according to claim 1 or 2 , wherein the sulfur compound in the fuel gas is one or more sulfur compounds of sulfides, thiophenes and mercaptans. 上記燃料ガス中の硫黄化合物を除去したガス中の残留硫黄化合物濃度がppb以下であることを特徴とする請求項1〜3のいずれか1項に記載の燃料ガス中の硫黄化合物除去用吸着剤。The adsorption for removing sulfur compounds in the fuel gas according to any one of claims 1 to 3 , wherein a concentration of residual sulfur compounds in the gas from which sulfur compounds in the fuel gas are removed is 7 ppb or less. Agent. 硫黄化合物含有燃料ガスを、疎水性ゼオライトであるβ型ゼオライトにAg及びCuのいずれか1種又は2種の金属をイオン交換により担持させてなる硫黄化合物除去用吸着剤に通すことを特徴とする硫黄化合物含有燃料ガス中の硫黄化合物の除去方法。The sulfur compound-containing fuel gas is passed through an adsorbent for sulfur compound removal in which either one or two metals of Ag and Cu are supported by ion exchange on β-type zeolite which is a hydrophobic zeolite. A method for removing a sulfur compound from a sulfur compound-containing fuel gas. 上記燃料ガスが都市ガス又はLPガスである請求項5に記載の硫黄化合物含有燃料ガス中の硫黄化合物の除去方法。The method for removing a sulfur compound in a sulfur compound-containing fuel gas according to claim 5, wherein the fuel gas is city gas or LP gas. 上記燃料ガス中の硫黄化合物がサルファイド類、チオフェン類及びメルカプタン類のうちの1種又は2種以上の硫黄化合物である請求項5又は6に記載の硫黄化合物含有燃料ガス中の硫黄化合物の除去方法。The method for removing a sulfur compound in a sulfur compound-containing fuel gas according to claim 5 or 6 , wherein the sulfur compound in the fuel gas is one or more sulfur compounds of sulfides, thiophenes and mercaptans. . 上記燃料ガス中の硫黄化合物を除去したガス中の残留硫黄化合物濃度がppb以下であることを特徴とする請求項5〜7のいずれか1項に記載の硫黄化合物含有燃料ガス中の硫黄化合物の除去方法。The sulfur compound in the sulfur compound-containing fuel gas according to any one of claims 5 to 7 , wherein a residual sulfur compound concentration in the gas from which the sulfur compound in the fuel gas is removed is 7 ppb or less. Removal method.
JP2000232780A 2000-02-01 2000-08-01 Adsorbent for sulfur compounds in fuel gas and method for removing the same Expired - Lifetime JP3742284B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000232780A JP3742284B2 (en) 2000-02-01 2000-08-01 Adsorbent for sulfur compounds in fuel gas and method for removing the same
AT01102061T ATE360478T1 (en) 2000-02-01 2001-01-30 METHOD FOR REMOVAL OF SULFUR COMPOUNDS FROM FUEL GASES
DE60128016T DE60128016T2 (en) 2000-02-01 2001-01-30 Process for the removal of sulfur compounds from fuel gases
DK01102061T DK1121977T3 (en) 2000-02-01 2001-01-30 Procedure for Removing Sulfur Compounds from Combustible Gases
EP01102061A EP1121977B1 (en) 2000-02-01 2001-01-30 Method for removing sulfur compound from fuel gases
CA002332818A CA2332818C (en) 2000-02-01 2001-01-31 Adsorbent for removing sulfur compounds from fuel gases and removal method
US09/774,966 US20010014304A1 (en) 2000-02-01 2001-01-31 Adsorbent for removing sulfur compouns from fuel gases and removal method
AU16772/01A AU759217B2 (en) 2000-02-01 2001-02-01 Adsorbent for removing sulfur compounds from fuel gases and removal method
US10/429,913 US6875410B2 (en) 2000-02-01 2003-05-05 Adsorbent for removing sulfur compounds from fuel gases and removal method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-23955 2000-02-01
JP2000023955 2000-02-01
JP2000232780A JP3742284B2 (en) 2000-02-01 2000-08-01 Adsorbent for sulfur compounds in fuel gas and method for removing the same

Publications (2)

Publication Number Publication Date
JP2001286753A JP2001286753A (en) 2001-10-16
JP3742284B2 true JP3742284B2 (en) 2006-02-01

Family

ID=26584637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000232780A Expired - Lifetime JP3742284B2 (en) 2000-02-01 2000-08-01 Adsorbent for sulfur compounds in fuel gas and method for removing the same

Country Status (1)

Country Link
JP (1) JP3742284B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3483827B2 (en) * 2000-04-25 2004-01-06 東京瓦斯株式会社 Lifetime determination method for sulfur compound adsorbent in fuel gas
JP4676690B2 (en) * 2002-11-05 2011-04-27 出光興産株式会社 METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
US7160360B2 (en) * 2003-12-08 2007-01-09 Air Products And Chemicals, Inc. Purification of hydride gases
JP2005294089A (en) * 2004-04-01 2005-10-20 Idemitsu Kosan Co Ltd Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell and fuel cell system using it
JP2006036616A (en) * 2004-07-30 2006-02-09 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP4961102B2 (en) * 2004-08-02 2012-06-27 出光興産株式会社 Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite
JP2006176721A (en) * 2004-12-24 2006-07-06 Idemitsu Kosan Co Ltd Desulfurizing agent for fuel oil containing organic sulfur compound and manufacturing method of hydrogen for fuel cell
JP4969090B2 (en) * 2005-11-29 2012-07-04 Jx日鉱日石エネルギー株式会社 Desulfurization method for hydrocarbon fuel
JP4907391B2 (en) 2007-03-07 2012-03-28 Jx日鉱日石エネルギー株式会社 Desulfurization method for hydrocarbon fuel
US20100180771A1 (en) * 2009-01-22 2010-07-22 General Electric Company fluidized bed system for removing multiple pollutants from a fuel gas stream
JP5547423B2 (en) * 2009-04-10 2014-07-16 出光興産株式会社 Low sulfur gasoline base material manufacturing apparatus and low sulfur gasoline base material manufacturing method
JP5588181B2 (en) * 2010-01-15 2014-09-10 東京瓦斯株式会社 Adsorbent for removing odorant in fuel gas under high dew point condition and method for removing odorant
JP2011201975A (en) * 2010-03-24 2011-10-13 Tokyo Gas Co Ltd Adsorbent for removing odorant and method for removing odorant in fuel gas having high dew point
JP6153196B2 (en) * 2013-06-14 2017-06-28 ユニゼオ株式会社 Mn + substituted beta zeolite, gas adsorbent containing the same, method for producing the same, and method for removing nitric oxide
JP2017025116A (en) * 2013-11-27 2017-02-02 Jxエネルギー株式会社 Desulfurization method of fuel gas, desulfuring agent and desulfurizer
US10814312B2 (en) 2017-05-25 2020-10-27 Osaka Gas Co., Ltd. Desulfurizing agent for gases and gas desulfurization method
WO2020153225A1 (en) 2019-01-23 2020-07-30 大阪瓦斯株式会社 Desulfurizing agent for gas and desulfurization method for gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2969634B2 (en) * 1988-12-08 1999-11-02 東ソー株式会社 Deodorant
JPH06306377A (en) * 1993-04-23 1994-11-01 Nippon Steel Corp Removal of odorant from odorized gas
JPH119673A (en) * 1997-06-25 1999-01-19 Matsushita Electric Ind Co Ltd Sulfur compound adsorbent and sulfur compound removing method
JP4454054B2 (en) * 1998-04-28 2010-04-21 パナソニック株式会社 Sulfur compound adsorbent and sulfur compound removal method

Also Published As

Publication number Publication date
JP2001286753A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
JP3895134B2 (en) Fuel gas desulfurization apparatus and desulfurization method
JP3742284B2 (en) Adsorbent for sulfur compounds in fuel gas and method for removing the same
EP1121977B1 (en) Method for removing sulfur compound from fuel gases
US7901486B2 (en) Removal of heavy metals from hydrocarbon gases
EP0056197B1 (en) Process for removal of sulfur from moisture-bearing, sulfur-containing hydrocarbon process streams
US20020009404A1 (en) Molecular sieve adsorbent-catalyst for sulfur compound contaminated gas and liquid streams and process for its use
US20080197051A1 (en) Desulfurizing Agent for Removing Organic Sulfur Compounds, Preparation Method thereof and Method for Removing Organic Sulfur Compounds Using the Same
US6875410B2 (en) Adsorbent for removing sulfur compounds from fuel gases and removal method
WO2008072788A1 (en) Mercury adsorbent, process for production thereof and method of adsorptive removal of mercury
JP4026700B2 (en) Adsorbent for removing sulfur compounds in fuel gas
US6579347B1 (en) Method for removing sulfur compound present in city gas
JP3483827B2 (en) Lifetime determination method for sulfur compound adsorbent in fuel gas
JP5032992B2 (en) Hydrocarbon oil desulfurization agent and desulfurization method
JP2008511725A (en) Desulfurization system and fuel stream desulfurization method
JP3926170B2 (en) Method for removing sulfur compounds
JP2004277747A (en) Method of removing sulfur compound in fuel gas
JP2011201975A (en) Adsorbent for removing odorant and method for removing odorant in fuel gas having high dew point
JP5588181B2 (en) Adsorbent for removing odorant in fuel gas under high dew point condition and method for removing odorant
JP4454054B2 (en) Sulfur compound adsorbent and sulfur compound removal method
JPH04214794A (en) Removal of mercury in liquid hydrocarbon
JP2010209223A (en) Method for decomposing tertiary butyl mercaptan
JP2003024776A (en) Method for removing gas odorant and adsorbent used for this method
JPH07118668A (en) Method for removing sulfur compound in sulfur-containing gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051110

R150 Certificate of patent or registration of utility model

Ref document number: 3742284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term