JP3806678B2 - Power supply device and motor control device using the same - Google Patents

Power supply device and motor control device using the same Download PDF

Info

Publication number
JP3806678B2
JP3806678B2 JP2002220591A JP2002220591A JP3806678B2 JP 3806678 B2 JP3806678 B2 JP 3806678B2 JP 2002220591 A JP2002220591 A JP 2002220591A JP 2002220591 A JP2002220591 A JP 2002220591A JP 3806678 B2 JP3806678 B2 JP 3806678B2
Authority
JP
Japan
Prior art keywords
circuit
power supply
signal
overcurrent
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002220591A
Other languages
Japanese (ja)
Other versions
JP2004064904A (en
Inventor
保夫 能登原
尚礼 鈴木
常博 遠藤
純一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002220591A priority Critical patent/JP3806678B2/en
Publication of JP2004064904A publication Critical patent/JP2004064904A/en
Application granted granted Critical
Publication of JP3806678B2 publication Critical patent/JP3806678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Protection Of Static Devices (AREA)
  • Rectifiers (AREA)
  • Stopping Of Electric Motors (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は交流電力を直流電力に変換する電源装置に係り、特に交流電源半周期に一回もしくは複数回の短絡動作で電源電流波形を正弦波状に制御して力率改善を行う電源装置に関する。
【0002】
【従来の技術】
交流電源の電源半周期に一回の短絡動作を行って入力電流波形を正弦波状に制御し力率改善を行う電源装置が、特開2002−101550号公報に開示されている。特開2002−101550号公報には力率改善方法と、全波整流回路と倍電圧整流回路を切り替える回路構成の電源装置が記載されていて、前記電源装置の過電圧や過電流時の保護動作が記載されている。
【0003】
前記従来技術では、整流回路出力側の直流電流や短絡回路の電流の値が所定値を超えたら短絡動作を停止し、短絡回路を過電流から保護し、同時に整流回路構成を全波整流回路に切り替え、空調機用モータ制御装置などのシステムを初期状態に戻す処理を記載している。
【0004】
【発明が解決しようとする課題】
前記特開2002−101550号公報に記載の従来技術では、交流電源の異常時のように電源周期が検出できない場合の保護方法や、交流電源の異常検出方法については記載がない。言い換えると、前記従来技術のように交流電源の電源周期(零クロス信号)に同期して短絡回路の短絡動作を行う力率改善方法では、交流電源の電源周期(零クロス信号)が正しく得られていることを前提にしているために、誤った電源周期(零クロス信号)を基に短絡動作を行うと過電流や短絡回路の破壊等の不都合を招く。
【0005】
一般的に過電流時の保護は速い動作が要求されるため、過電流検出回路も瞬時に動作する設定となっている。このため、外来ノイズ等の影響を受けやすく誤検出する可能性が大きい。しかし、前記従来技術では、過電流検出回路の誤検出時の誤動作防止については考慮されていない。
【0006】
さらに、前記従来技術では過電流保護動作を行うと同時に空調機用モータ制御装置などのシステムを初期状態に戻しているが、過電流保護動作が動作するたびに初期状態に戻っていてはシステムの動作を継続できない。空調機用モータ制御装置を例に説明すると、いったん過電流保護動作が動作すると、モータ制御装置はモータを停止(初期状態に設定)させ再度起動を行うが、空調機の圧縮機駆動用モータ制御装置では圧縮機の負荷(圧力)をバランスさせるため3分間停止する。このため、空調機は3分間仕事をしないことになり、使用者に不快感を与える。
【0007】
本発明の目的は交流電源の異常を検出し短絡動作を停止する電源装置を提供することである。
【0008】
【課題を解決するための手段】
本発明の電源装置は、交流電源の異常を正しく検出する。交流電源の異常には瞬停,停電,周波数変動,電圧変動がある。さらに、日本の場合、商用交流電源の周波数は50Hzと60Hzとがあるので、電源周波数の検出と自動認識(設定)も必要である。
【0009】
本発明の電源装置は、交流電源の零クロス点を検出する零クロス検出回路からの零クロス信号の入力周期を測定し入力周期が所定値、例えば60Hz電源の場合8.333ms 、50Hz電源の場合10ms、もしくは所定の範囲、例えば60Hz電源の場合8.3ms から8.36ms 、50Hz電源の場合9.96msから10.04ms以外の場合に短絡回路の短絡動作を停止する。
【0010】
本発明の電源装置は、零クロス信号の入力信号の入力周期が変化したときに短絡回路の短絡動作を停止する。
【0011】
本発明の電源装置は、零クロス信号の入力信号が所定の時間入力されないときに短絡回路の短絡動作を停止する。
【0012】
本発明の電源装置は、零クロス信号の入力時点から第1の所定時間以降第2の所定時間までの範囲に零クロス信号の入力がない時に短絡回路の短絡動作を停止する。
【0013】
本発明の電源装置は、零クロス信号の入力時点から所定の時間だけ次の零クロス信号の入力を受け付けない。
【0014】
本発明の電源装置は、零クロス信号の入力時点から第1の所定時間以降第2の所定時間までの範囲に前記零クロス信号の入力が無いと、零クロス信号が異常であると判断し零クロス信号を受け付けない。
【0015】
本発明の電源装置は、検出した零クロス信号の入力周期から所定値もしくは所定の範囲を決定することにより自動的に電源の周期(周波数)を設定できる。
【0016】
本発明の電源装置は、電源に異常があるときには短絡回路の短絡動作を速やかに停止し、交流電源の異常による誤動作を防止できる。
【0017】
本発明の電源装置は、短絡回路が短絡している期間にのみ過電流検出信号を受け付け、システム停止を含む過電流保護動作を行う。
【0018】
本発明の電源装置は、前記保護動作の動作時間を積算もしくは動作回数をカウントし、その値が所定値に達したところでシステムを停止もしくはシステムに異常信号を出力する。また、本発明の電源装置は、前記カウントを保護動作が連続的に続いた期間もしくは回数として、システムの停止頻度を最小限に抑える。
【0019】
【発明の実施の形態】
以下、本発明の電源装置について、図面を用いて詳しく説明する。各図面の同じ符号は同じ構成要素を示す。
【0020】
本実施例の電源装置は、交流電源の電源半周期に1回もしくは複数回リアクトルを介して交流電源を短絡し、電源の力率を改善する。図1に本実施例の電源装置13を示す。図1は、電源装置13のインバータ回路7に空調機圧縮機駆動用のモータ8を接続した空調機の圧縮機駆動用モータの制御装置の場合の回路構成を示す。
【0021】
図1に示す本実施例の電源装置13は交流電源1の一方の端子に接続されたリアクトル2と、リアクトル2を介して交流電源1を短絡するように接続した短絡回路3と、リアクトル2を介して接続している、交流を直流に変換する整流回路4と、整流回路4を全波整流回路構成と倍電圧整流回路構成とに切替える切替スイッチ5と、平滑回路6とを備えており、短絡回路3と切替スイッチ5は、制御回路9が出力する短絡信号3Sと切替信号5Sとによって動作する。
【0022】
図1に示すように、制御回路9には、交流電源1の電圧がゼロになる零クロス点を検出する零クロス検出回路10が出力する零クロス信号10Sと、電源装置13に流入する電流を検出する入力電流検出回路11が出力する入力電流値11Sとが入力される。前記各信号は短絡回路3と、切替スイッチ5とを制御するために使用する。
【0023】
短絡回路3は双方向に電流が流せる双方向スイッチであり、本実施例ではダイオードブリッジ回路と、IGBTやパワーMOSFETなどの電力半導体スイッチング素子とを備えている。切替スイッチ5も短絡回路3と同様に双方向スイッチであり、本実施例ではパワーリレーである。平滑回路6は図1に示すように平滑コンデンサを直列接続しており、中間点が切替スイッチ5に接続していて、切替スイッチ5で全波整流回路構成と倍電圧整流回路構成とに切り替える。
【0024】
モータ8の回転数制御は制御回路9内のソフトウエア処理で行い、PWM信号7Sでインバータ回路7を駆動する。本実施例ではモータ制御の方法についての詳細な説明は省略するが、インバータ回路7に流入する直流電流を抵抗12Aと直流電流検出回路12とで検出し、その出力である直流電流値12Sを制御回路9に入力してモータ8に流れるモータ電流を再現し、そのモータ電流情報を基にベクトル制御を行って、モータの回転数とトルクとを制御する。
【0025】
次に図2と、図3とを用いて本実施例の電源回路の力率改善動作と短絡信号の発生方法を説明する。図2は交流電源1の電源電圧と入力電流と、零クロス信号10Sと、短絡信号3Sとの時間変化を示した波形図である。以下、本実施例では電源周波数の半周期に一回短絡動作を行う場合を説明するが、電源周波数の半周期に複数回短絡動作をする場合も同様である。
【0026】
図2に示すように零クロス信号10Sは、電源電圧の零点で「H」と「L」とが反転する矩形波信号であり、信号が反転するエッジ部分が零クロス点である。短絡信号3Sは、零クロス信号10Sのエッジ部分を基準にディレイ時間Td,パルス幅Tpとなるパルスである。ここで、ディレイ時間Tdとは零クロス点(基準点)から短絡動作を開始するまでの時間、パルス幅Tpとは短絡している時間を示す。短絡信号3Sで短絡回路3を動作させると、図2に示すように電源装置13の入力電流の通流幅が増加するので力率が向上する。
【0027】
本実施例の制御回路9は市販のシングルチップマイクロコンピュータ(以下マイコンと呼ぶ)を用い、全ての処理をソフトウエアで処理した。図3に、零クロス信号10Sと、前記マイコン内のフリーランタイマの値と、このフリーランタイマ値と逐次比較を行い一致した時に割込を発生するアウトプットコンペアマッチレジスタ(以下OPレジスタと呼ぶ)の値と、短絡信号3Sとを時系列に示す。
【0028】
時刻T0で零クロス信号10Sが反転すると、第1の割込処理によりOPレジスタにディレイ時間TdのデータD0が書き込まれる。時刻T1でフリーランタイマの値とOPレジスタの値とが一致して第2の割込処理が起動され、短絡信号3Sを「H」出力すると同時に前記OPレジスタにパルス幅TpのデータD1が書き込まれる。
【0029】
時刻T2では再度フリーランタイマの値とOPレジスタの値とが一致して第3の割込処理が起動され短絡信号3Sを「L」出力にする。この後は、再度零クロス信号10Sの反転が発生するまで短絡信号3Sは「L」出力を維持する。ここで、短絡信号3Sは「H」が短絡、「L」が開放を意味する。前記動作を零クロス信号10Sが入力(反転)する度に繰り返して電源周波数の半周期毎に所定の短絡動作を続ける。
【0030】
本実施例の電源装置13が交流電源1の異常を検出し、短絡動作を停止する保護方法を説明する。図4は、交流電源1の電源電圧波形と電源電圧から作成される零クロス信号10Sと、零クロス信号10Sの入力に応じて動作する割込処理の動作を禁止する割込マスク信号とを示し、瞬停や重畳ノイズなどで電圧歪みが生じて零クロス信号10Sにチャタリングが発生した場合を示す。図4に示すように零クロス信号10Sがチャタリングを起こすと、割込処理が続けて起動され所定のタイミングの短絡動作ができなくなり過電流等を発生するおそれがある。
【0031】
そこで、図4に示すように、零クロス信号10Sの入力(反転)後の一定時間、零クロス信号に伴う割込処理を実行しない、言い換えると、割込マスク時間Tmの間、零クロス信号10Sを受け付けない割込マスク信号を発生する。割込マスク信号処理により、電源環境が悪くても零クロス信号の誤検出による短絡動作の誤動作を無くし、過電流発生やシステム停止を予防し、正規の動作を維持できる。なお、零クロス検出回路10の出力特性が悪く零クロス信号10Sがチャタリングを起こす回路構成である場合にも前記割込マスク信号処理が有効である。
【0032】
図5を用いて、零クロス信号10Sが所定の周期で正しく制御回路9に入力されているかどうかを監視する方法を説明する。日本国内では、商用交流電源の電源周波数は50Hzと60Hzであるが、この周波数が極端に変動することは皆無である。本実施例では、瞬停や雷サージ等により零クロス信号10Sが所定の周期以外で発生した場合の誤動作を主に防止する。
【0033】
商用交流電源の電源周波数は安定しているので、いったん電源周波数が検出できれば、その後は決まった周期で零クロス信号10Sが入力されるはずである。そこで、零クロス信号10Sが入力された図5のA点から次に零クロス信号10Sが入力されるC点までの周期(時間)を測り、その周期が電源周波数の周期もしくはその付近の周期になっているかを確認し、そうでない場合は短絡信号3Sを停止(「L」出力)にする。あるいは、零クロス信号10Sが入力されたA点の時刻から次に零クロス信号10Sが入力される予定のC点の時刻もしくはその付近の時刻(B点からD点)のみ前記零クロス信号10Sの入力を受け付けてもよい。これらの方法によって、所定の周期もしくは時刻以外に入る誤った零クロス信号10Sやノイズなどを排除できる。
【0034】
図6に示すフローチャートを用いて零クロス信号10Sの前記異常判定方法を説明する。図6(あ)のステップで図5のAに示す零クロス信号10Sの入力時刻A点から、図5のCに示す次回入力時刻C点までの時間間隔を測定し、ステップ(い)でその時間間隔(周期)が8.333ms(1/60Hz/2(s))、あるいは10ms(1/50Hz/2(s))に一致、あるいは、実際には電源周波数は50Hz,60Hzの何れの場合にも±0.2Hz 程度の変動があるのでその変動を含んだ8.30ms〜8.36msの範囲、あるいは9.96ms〜10.04ms の範囲になっているかどうかを判断する。Yesであれば正常動作と判定してステップ(う),ステップ(え)へ進み、Noであれば異常動作と判定してステップ(お)に進み短絡動作を停止させる。ここで、ステップ(う)で測定した周期を用いて電源が50Hzか60Hzかを判断すれば自動的に電源周波数の検出ができる。
【0035】
また、設置場所が固定されれば商用交流電源の電源周波数は固定されるので、動作中に電源周波数が変化することはないので、電源周期が変化すること自体が電源異常である。従って、動作中に前記測定周波数が変わった場合にも短絡動作を停止する。これにより、偶然比較値(周期)と同じようなタイミングで入力した誤信号による異常動作も予防できる。図7にこの場合のフローチャートを示す。
【0036】
図8を用いて、零クロス信号10Sが所定の周期で正しく入力されているかどうかを監視する方法を説明する。零クロス信号10Sの入力時刻A点から時刻B点までの期間と、時刻D点以降の期間には、零クロス信号10S入力を受け付けないようにする。言い換えると、時刻B点から時刻D点の範囲のみ零クロス信号10Sの入力を許可しそれ以外は許可しない。もしくは、零クロス信号10Sの入力が許可された時間範囲に零クロス信号10Sの入力がない場合は短絡動作を停止する。図8では電源周波数が50Hzの場合を例に、ある程度の周波数変動に対応できるように、時刻A点から時刻B点までの時間幅T55を電源周波数55Hzの半周期相当に設定、時刻A点から時刻D点までの時間幅T45を電源周波数45Hzの半周期相当に設定したものである。電源周波数がf(Hz)の場合には、前記のようにf±0.1f の範囲に図8の時刻A点からの時間幅を決めればよい。
【0037】
図9は零クロス信号10Sと、短絡信号3Sと、零クロス信号10Sの入力状態から短絡動作を許可/停止する短絡動作許可信号と、電源異常状態が連続的に続いたときに上位システムに異常を知らせる電源異常信号との関係をタイミングチャートに示す。図9は電源周波数50Hzで動作中に、時刻T2で停電が発生し時刻T2以降零クロス信号10Sの入力がない状態を示す。
【0038】
この場合、時刻T2までは正しく零クロス信号10Sが入力されているので短絡信号3Sは出力されるが、時刻T3では零クロス信号10Sが入力されないので短絡動作を停止する。その後時刻T5になっても零クロス信号10Sが入力されない場合、引き続き短絡動作を停止すると同時に電源異常信号を上位システムに知らせる。本実施例では圧縮機を駆動するモータの運転を停止する。ここで、時刻T5とは最後の零クロス信号10S入力時刻T2から予め設定されている時間Tw経過した時刻である。本実施例では電源周期の3倍に設定した場合を示す。これにより零クロス信号10Sの入力が所定時間以上無いときに短絡動作を停止し、同時に上位システムに異常を知らせてシステムを停止できる。また、零クロス検出回路10が故障した場合にも同様に動作するので、零クロス検出回路の異常判定に使用できる。
【0039】
図10を用いて過電流検出回路の誤検出に伴う過電流保護動作の誤動作防止方法を説明する。図10は零クロス信号10Sと、短絡信号3Sと、図1の入力電流検出回路11内で検出する過電流検出信号と、マイコン内部で使用している過電流フラグと、過電流カウンタ(過電流保護動作回数をカウント)と、上位システムに知らせる過電流エラー信号との関係を示すタイミングチャートである。図10は過電流信号に外来ノイズが重畳している状態を示し、「F」と示す信号が誤検出信号、「T」と示す信号が正規の過電流信号である。
【0040】
図10に示すように誤った過電流信号に反応して過電流保護動作を行うとシステムとして安定した制御ができない。そこで、短絡信号3Sが「H」、つまり短絡回路3が短絡中に入力される過電流信号のみに反応するように設定する。このように設定すると、図10に示す過電流信号「F」入力時には過電流保護が動作せず、本当に過電流状態のときのみ保護動作がするので安定した制御ができる。ここで、過電流保護動作が実行されたときに図10に示すようにマイコン内部の過電流フラグが「H」状態に変化する。
【0041】
図10では過電流保護動作を実行すると過電流フラグを「H」にする。その後、次の零クロス信号10Sのエッジ入力時に過電流フラグが「H」であれば過電流カウンタを一つダウンカウントすると同時に前記過電流フラグをクリアする。過電流フラグが「L」の場合は、前記過電流カウンタを初期値に戻す。この動作を繰り返すことにより保護動作が連続的に実行される回数(もしくは時間)を計測する。過電流カウンタが0になったときに上位システムに過電流エラー信号を出力して異常を知らせる。本実施例では圧縮機を駆動するモータの運転を停止する。
【0042】
以上により保護動作発生時の頻繁なシステムの停止を防止でき安定したシステムの動作ができる。また、本当にシステムを停止しなければならない異常時には確実にシステムを停止できる。なお、本保護動作は電源異常保護動作時にも適用できることは言うまでもない。
【0043】
また、本実施例では前記で説明したすべての保護動作を常時行っており、安全性と安定性を確保している。本実施例の電源装置は、空調機や冷蔵庫の圧縮機のモータの駆動に好適である。
【0044】
【発明の効果】
以上説明したように本発明の電源装置を用いれば、交流電源異常時の保護が容易にできる。また、外来ノイズ等の大きな環境でも保護動作の誤動作を防げ、システムの安定性に貢献できる。さらに、保護動作発生時の頻繁なシステムの停止を防止でき安定したシステムの動作ができる。
【図面の簡単な説明】
【図1】実施例のモータ制御装置の回路構成の説明図。
【図2】実施例の電源装置の力率改善と、短絡信号の発生方法の説明図。
【図3】実施例の電源装置の短絡信号作成方法の説明図。
【図4】実施例の電源装置の割込マスク信号の説明図。
【図5】実施例の電源装置の電源周期異常保護の説明図。
【図6】実施例の電源装置の零クロス信号異常判定フローチャート。
【図7】実施例の電源装置の零クロス信号異常判定の別の方法のフローチャート。
【図8】実施例の電源装置の電源周期保護の説明図。
【図9】実施例の電源装置の停電時保護の説明図。
【図10】実施例の電源装置の過電流保護の説明図。
【符号の説明】
1…交流電源、2…リアクトル、3…短絡回路、4…整流回路、5…切替スイッチ、6…平滑回路、7…インバータ回路、8…モータ、9…制御回路、10…零クロス検出回路、11…入力電流検出回路、12…直流電流検出回路、3S…短絡信号、5S…切替信号、6S…直流電圧値、7S…インバータPWM信号、10S…零クロス信号、11S…入力電流値、12S…直流電流値。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device that converts alternating current power into direct current power, and more particularly to a power supply device that improves power factor by controlling a power supply current waveform in a sine wave shape by a short circuit operation once or a plurality of times in a half cycle of an alternating current power supply.
[0002]
[Prior art]
Japanese Laid-Open Patent Publication No. 2002-101550 discloses a power supply device that performs a short circuit operation once in a half cycle of an AC power supply to control an input current waveform in a sine wave shape to improve a power factor. Japanese Patent Application Laid-Open No. 2002-101550 describes a power factor correction method and a power supply device having a circuit configuration for switching between a full-wave rectifier circuit and a voltage doubler rectifier circuit. Are listed.
[0003]
In the prior art, when the DC current on the rectifier circuit output side or the current value of the short circuit exceeds a predetermined value, the short circuit operation is stopped, the short circuit is protected from overcurrent, and the rectifier circuit configuration is changed to a full-wave rectifier circuit at the same time. The process of switching and returning the system such as the air conditioner motor control device to the initial state is described.
[0004]
[Problems to be solved by the invention]
In the prior art described in Japanese Patent Application Laid-Open No. 2002-101550, there is no description about a protection method in the case where the power cycle cannot be detected as in the case of an abnormality in the AC power supply, or an AC power supply abnormality detection method. In other words, in the power factor correction method in which the short circuit operation of the short circuit is performed in synchronization with the power supply cycle (zero cross signal) of the AC power supply as in the prior art, the power cycle (zero cross signal) of the AC power supply is obtained correctly. Therefore, if a short circuit operation is performed based on an incorrect power supply cycle (zero cross signal), inconveniences such as overcurrent and destruction of a short circuit are caused.
[0005]
In general, since protection at the time of overcurrent requires fast operation, the overcurrent detection circuit is also set to operate instantaneously. For this reason, it is likely to be erroneously detected due to the influence of external noise and the like. However, the prior art does not take into consideration the prevention of malfunction at the time of erroneous detection of the overcurrent detection circuit.
[0006]
Furthermore, in the prior art, the overcurrent protection operation is performed and at the same time the system such as the motor controller for the air conditioner is returned to the initial state, but every time the overcurrent protection operation is activated, the system returns to the initial state. Cannot continue operation. For example, the motor controller for an air conditioner will be described. Once the overcurrent protection operation is activated, the motor controller stops the motor (sets it to the initial state) and starts it again. The apparatus is stopped for 3 minutes to balance the compressor load (pressure). For this reason, an air conditioner will not work for 3 minutes and will give a user discomfort.
[0007]
The objective of this invention is providing the power supply device which detects abnormality of AC power supply and stops short circuit operation.
[0008]
[Means for Solving the Problems]
The power supply apparatus of the present invention correctly detects an abnormality in the AC power supply. AC power supply abnormalities include power outages, power outages, frequency fluctuations, and voltage fluctuations. Further, in Japan, the frequency of commercial AC power supply is 50 Hz and 60 Hz, so that detection and automatic recognition (setting) of the power supply frequency are also necessary.
[0009]
The power supply apparatus of the present invention measures the input cycle of the zero cross signal from the zero cross detection circuit for detecting the zero cross point of the AC power source, and the input cycle is a predetermined value, for example, 8.333 ms when the power source is 60 Hz, and when the power source is 50 Hz. The short-circuit operation of the short-circuit is stopped at 10 ms or in a predetermined range, for example, from 8.3 ms to 8.36 ms for a 60 Hz power source and from 9.96 ms to 10.04 ms for a 50 Hz power source.
[0010]
The power supply device of the present invention stops the short-circuit operation of the short-circuit when the input cycle of the input signal of the zero cross signal changes.
[0011]
The power supply device of the present invention stops the short-circuit operation of the short-circuit when the zero-cross signal input signal is not input for a predetermined time.
[0012]
The power supply device according to the present invention stops the short-circuit operation of the short-circuit when there is no input of the zero-cross signal in the range from the input time point of the zero-cross signal to the second predetermined time after the first predetermined time.
[0013]
The power supply apparatus of the present invention does not accept the input of the next zero cross signal for a predetermined time from the input point of the zero cross signal.
[0014]
The power supply apparatus according to the present invention determines that the zero cross signal is abnormal when there is no input of the zero cross signal in the range from the input point of the zero cross signal to the second predetermined time after the first predetermined time. Does not accept cross signals.
[0015]
The power supply apparatus of the present invention can automatically set a power supply cycle (frequency) by determining a predetermined value or a predetermined range from the input cycle of the detected zero cross signal.
[0016]
The power supply device of the present invention can quickly stop the short-circuit operation of the short-circuit when there is an abnormality in the power supply, and prevent malfunction due to an abnormality in the AC power supply.
[0017]
The power supply device of the present invention receives an overcurrent detection signal only during a period when the short circuit is short-circuited, and performs an overcurrent protection operation including a system stop.
[0018]
The power supply device of the present invention integrates the operation time of the protection operation or counts the number of operations, and stops the system or outputs an abnormal signal to the system when the value reaches a predetermined value. Also, the power supply apparatus of the present invention minimizes the frequency of system shutdown by setting the count as a period or number of times that the protective operation has continued continuously.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a power supply device of the present invention will be described in detail with reference to the drawings. Like reference symbols in the various drawings indicate like elements.
[0020]
The power supply apparatus according to the present embodiment improves the power factor of the power supply by short-circuiting the AC power supply through the reactor once or a plurality of times in the power supply half cycle of the AC power supply. FIG. 1 shows a power supply device 13 of this embodiment. FIG. 1 shows a circuit configuration in the case of a control device for a compressor driving motor of an air conditioner in which an air conditioner compressor driving motor 8 is connected to the inverter circuit 7 of the power supply device 13.
[0021]
1 includes a reactor 2 connected to one terminal of an AC power source 1, a short circuit 3 connected so as to short-circuit the AC power source 1 via the reactor 2, and a reactor 2. A rectifier circuit 4 for converting alternating current to direct current, a changeover switch 5 for switching the rectifier circuit 4 between a full-wave rectifier circuit configuration and a double voltage rectifier circuit configuration, and a smoothing circuit 6. The short circuit 3 and the changeover switch 5 are operated by a short circuit signal 3S and a change signal 5S output from the control circuit 9.
[0022]
As shown in FIG. 1, the control circuit 9 receives the zero cross signal 10S output from the zero cross detection circuit 10 that detects the zero cross point at which the voltage of the AC power supply 1 becomes zero, and the current flowing into the power supply device 13. The input current value 11S output from the input current detection circuit 11 to be detected is input. Each signal is used to control the short circuit 3 and the changeover switch 5.
[0023]
The short circuit 3 is a bidirectional switch that allows a current to flow in both directions. In this embodiment, the short circuit 3 includes a diode bridge circuit and a power semiconductor switching element such as an IGBT or a power MOSFET. The changeover switch 5 is also a bidirectional switch like the short circuit 3, and is a power relay in this embodiment. As shown in FIG. 1, the smoothing circuit 6 has smoothing capacitors connected in series, and an intermediate point is connected to the change-over switch 5. The change-over switch 5 switches between a full-wave rectifier circuit configuration and a voltage doubler rectifier circuit configuration.
[0024]
The number of revolutions of the motor 8 is controlled by software processing in the control circuit 9, and the inverter circuit 7 is driven by the PWM signal 7S. Although a detailed description of the motor control method is omitted in this embodiment, the DC current flowing into the inverter circuit 7 is detected by the resistor 12A and the DC current detection circuit 12, and the DC current value 12S that is the output is controlled. The motor current that is input to the circuit 9 and flows through the motor 8 is reproduced, and vector control is performed based on the motor current information to control the rotational speed and torque of the motor.
[0025]
Next, the power factor improving operation of the power supply circuit of this embodiment and the method for generating a short circuit signal will be described with reference to FIGS. FIG. 2 is a waveform diagram showing temporal changes of the power supply voltage and input current of the AC power supply 1, the zero cross signal 10S, and the short circuit signal 3S. Hereinafter, in the present embodiment, a case where the short-circuit operation is performed once in a half cycle of the power supply frequency will be described.
[0026]
As shown in FIG. 2, the zero cross signal 10S is a rectangular wave signal in which “H” and “L” are inverted at the zero point of the power supply voltage, and the edge portion where the signal is inverted is the zero cross point. The short circuit signal 3S is a pulse having a delay time Td and a pulse width Tp with reference to the edge portion of the zero cross signal 10S. Here, the delay time Td indicates the time from the zero cross point (reference point) to the start of the short-circuit operation, and the pulse width Tp indicates the short-circuit time. When the short circuit 3 is operated with the short circuit signal 3S, as shown in FIG. 2, the current width of the input current of the power supply device 13 is increased, so that the power factor is improved.
[0027]
As the control circuit 9 of this embodiment, a commercially available single chip microcomputer (hereinafter referred to as a microcomputer) was used, and all processes were processed by software. FIG. 3 shows an output compare match register (hereinafter referred to as an OP register) that generates an interrupt when the zero cross signal 10S, the value of the free-run timer in the microcomputer, and the free-run timer value are sequentially compared and matched. And the short circuit signal 3S are shown in time series.
[0028]
When the zero cross signal 10S is inverted at time T0, the data D0 of the delay time Td is written to the OP register by the first interrupt process. At time T1, the value of the free-run timer coincides with the value of the OP register and the second interrupt processing is started, and the short-circuit signal 3S is output “H”, and at the same time, the data D1 having the pulse width Tp is written to the OP register. It is.
[0029]
At time T2, the value of the free-run timer again matches the value of the OP register, the third interrupt process is started, and the short circuit signal 3S is set to “L” output. After this, the short circuit signal 3S maintains the “L” output until the inversion of the zero cross signal 10S occurs again. Here, in the short circuit signal 3S, “H” means short circuit and “L” means open. The above operation is repeated every time the zero cross signal 10S is input (inverted), and a predetermined short-circuit operation is continued every half cycle of the power supply frequency.
[0030]
A protection method in which the power supply device 13 of this embodiment detects an abnormality of the AC power supply 1 and stops the short-circuit operation will be described. FIG. 4 shows a power supply voltage waveform of the AC power supply 1 and a zero cross signal 10S created from the power supply voltage, and an interrupt mask signal for prohibiting an interrupt processing operation that operates in response to the input of the zero cross signal 10S. A case where voltage distortion occurs due to instantaneous power failure or superimposed noise and chattering occurs in the zero cross signal 10S will be described. As shown in FIG. 4, when the zero-cross signal 10S causes chattering, the interrupt process is continuously started and a short-circuit operation at a predetermined timing cannot be performed, and an overcurrent or the like may occur.
[0031]
Therefore, as shown in FIG. 4, the interrupt processing associated with the zero cross signal is not executed for a certain time after the input (inversion) of the zero cross signal 10S. In other words, during the interrupt mask time Tm, the zero cross signal 10S is not executed. An interrupt mask signal that does not accept is generated. With interrupt mask signal processing, even if the power supply environment is bad, it is possible to eliminate malfunction of short circuit operation due to false detection of zero cross signal, prevent overcurrent and system stop, and maintain normal operation. The interrupt mask signal processing is effective even when the output characteristics of the zero cross detection circuit 10 are poor and the zero cross signal 10S has a circuit configuration that causes chattering.
[0032]
A method of monitoring whether the zero cross signal 10S is correctly input to the control circuit 9 at a predetermined cycle will be described with reference to FIG. In Japan, the power supply frequency of commercial AC power supply is 50 Hz and 60 Hz, but this frequency never varies extremely. In this embodiment, a malfunction is mainly prevented when the zero cross signal 10S is generated at a period other than a predetermined period due to a momentary power failure, a lightning surge, or the like.
[0033]
Since the power supply frequency of the commercial AC power supply is stable, once the power supply frequency can be detected, the zero cross signal 10S should be input at a fixed period thereafter. Therefore, the period (time) from the point A in FIG. 5 where the zero cross signal 10S is input to the point C where the zero cross signal 10S is input next is measured, and the period becomes the period of the power supply frequency or a period in the vicinity thereof. If not, the short circuit signal 3S is stopped ("L" output). Alternatively, the zero cross signal 10S is only received at the time C point where the zero cross signal 10S is scheduled to be input next or the time in the vicinity thereof (point B to D) from the time point A when the zero cross signal 10S is input. Input may be accepted. By these methods, it is possible to eliminate an erroneous zero cross signal 10S or noise that enters other than a predetermined period or time.
[0034]
The abnormality determination method for the zero cross signal 10S will be described with reference to the flowchart shown in FIG. The time interval from the input time point A of the zero cross signal 10S shown in FIG. 5A to the next input time point C shown in FIG. 5C is measured in the step of FIG. When the time interval (cycle) matches 8.333 ms (1/60 Hz / 2 (s)) or 10 ms (1/50 Hz / 2 (s)), or the actual power supply frequency is 50 Hz or 60 Hz Since there is a fluctuation of about ± 0.2 Hz, it is determined whether or not it is in the range of 8.30 ms to 8.36 ms including the fluctuation, or in the range of 9.96 ms to 10.04 ms. If Yes, it is determined that the operation is normal, and the process proceeds to Step (U) and Step (E). If No, the operation is determined to be abnormal and the process proceeds to Step (O) to stop the short-circuit operation. Here, if it is determined whether the power source is 50 Hz or 60 Hz using the period measured in step (u), the power source frequency can be automatically detected.
[0035]
Further, since the power supply frequency of the commercial AC power supply is fixed if the installation location is fixed, the power supply frequency does not change during operation, so that the power supply cycle itself is a power supply abnormality. Therefore, the short-circuit operation is also stopped when the measurement frequency changes during operation. Thereby, abnormal operation due to an erroneous signal input at the same timing as the accidental comparison value (cycle) can be prevented. FIG. 7 shows a flowchart in this case.
[0036]
A method of monitoring whether the zero cross signal 10S is correctly input at a predetermined cycle will be described with reference to FIG. The zero cross signal 10S input is not accepted during the period from the input time point A to the time point B of the zero cross signal 10S and the period after the time point D. In other words, the input of the zero cross signal 10S is permitted only in the range from the time point B to the time point D, and the others are not permitted. Alternatively, when there is no input of the zero cross signal 10S in the time range in which the input of the zero cross signal 10S is permitted, the short circuit operation is stopped. In FIG. 8, taking as an example the case where the power supply frequency is 50 Hz, the time width T55 from the time point A to the time point B is set to correspond to a half cycle of the power supply frequency 55 Hz so as to be able to cope with a certain degree of frequency fluctuation. A time width T45 up to the time point D is set to correspond to a half cycle of a power supply frequency of 45 Hz. When the power supply frequency is f (Hz), the time width from the time point A in FIG. 8 may be determined in the range of f ± 0.1 f as described above.
[0037]
FIG. 9 shows a zero cross signal 10S, a short circuit signal 3S, a short circuit operation permission signal for permitting / stopping the short circuit operation from the input state of the zero cross signal 10S, and an error in the host system when the power supply abnormal state continues continuously. The timing chart shows the relationship with the power supply abnormality signal that informs the user. FIG. 9 shows a state where a power failure occurs at time T2 and no zero cross signal 10S is input after time T2 during operation at a power supply frequency of 50 Hz.
[0038]
In this case, since the zero cross signal 10S is correctly input until time T2, the short circuit signal 3S is output. However, since the zero cross signal 10S is not input at time T3, the short circuit operation is stopped. If the zero cross signal 10S is not input after time T5, the short circuit operation is stopped and a power supply abnormality signal is notified to the host system. In this embodiment, the operation of the motor that drives the compressor is stopped. Here, the time T5 is a time when a preset time Tw has elapsed from the last zero cross signal 10S input time T2. In this embodiment, a case where the power cycle is set to three times is shown. Thus, the short-circuit operation is stopped when the zero cross signal 10S is not input for a predetermined time or more, and at the same time, the system can be stopped by notifying the host system of the abnormality. Further, since the same operation is performed when the zero-cross detection circuit 10 fails, it can be used for determining the abnormality of the zero-cross detection circuit.
[0039]
The malfunction prevention method of the overcurrent protection operation accompanying the erroneous detection of the overcurrent detection circuit will be described with reference to FIG. 10 shows a zero cross signal 10S, a short circuit signal 3S, an overcurrent detection signal detected in the input current detection circuit 11 of FIG. 1, an overcurrent flag used in the microcomputer, and an overcurrent counter (overcurrent counter). It is a timing chart showing the relationship between the count of the number of protection operations) and an overcurrent error signal that informs the host system. FIG. 10 shows a state in which external noise is superimposed on an overcurrent signal. A signal indicated by “F” is a false detection signal, and a signal indicated by “T” is a normal overcurrent signal.
[0040]
As shown in FIG. 10, when an overcurrent protection operation is performed in response to an erroneous overcurrent signal, stable control cannot be performed as a system. Therefore, the short-circuit signal 3S is set to “H”, that is, the short-circuit circuit 3 is set to react only to the overcurrent signal input during the short-circuit. With this setting, the overcurrent protection is not activated when the overcurrent signal “F” shown in FIG. 10 is input, and the protection operation is performed only when the overcurrent state is really achieved, so that stable control can be performed. Here, when the overcurrent protection operation is executed, the overcurrent flag in the microcomputer changes to the “H” state as shown in FIG.
[0041]
In FIG. 10, when the overcurrent protection operation is executed, the overcurrent flag is set to “H”. Thereafter, if the overcurrent flag is “H” when the next zero cross signal 10S is input, the overcurrent counter is decremented by one and simultaneously the overcurrent flag is cleared. When the overcurrent flag is “L”, the overcurrent counter is returned to the initial value. By repeating this operation, the number of times (or time) at which the protection operation is continuously executed is measured. When the overcurrent counter reaches 0, an overcurrent error signal is output to the host system to notify the abnormality. In this embodiment, the operation of the motor that drives the compressor is stopped.
[0042]
As described above, frequent system stoppage when the protection operation occurs can be prevented, and stable system operation can be performed. In addition, the system can be surely stopped in the event of an abnormality that must be stopped. Needless to say, this protection operation can also be applied during a power failure protection operation.
[0043]
In this embodiment, all the protective operations described above are always performed, and safety and stability are ensured. The power supply device of the present embodiment is suitable for driving a motor of an air conditioner or a compressor of a refrigerator.
[0044]
【The invention's effect】
As described above, when the power supply device of the present invention is used, protection when an AC power supply is abnormal can be easily performed. Further, even in a large environment such as external noise, the protection operation can be prevented from malfunctioning, which can contribute to the stability of the system. In addition, frequent system stoppage when a protective operation occurs can be prevented and stable system operation can be achieved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a circuit configuration of a motor control device according to an embodiment.
FIG. 2 is an explanatory diagram of a power factor improvement and a generation method of a short circuit signal of the power supply device according to the embodiment.
FIG. 3 is an explanatory diagram of a method for creating a short circuit signal of the power supply device according to the embodiment.
FIG. 4 is an explanatory diagram of an interrupt mask signal of the power supply device according to the embodiment.
FIG. 5 is an explanatory diagram of power cycle abnormality protection of the power supply device according to the embodiment.
FIG. 6 is a flowchart of determining a zero cross signal abnormality of the power supply device according to the embodiment.
FIG. 7 is a flowchart of another method of determining a zero cross signal abnormality of the power supply device according to the embodiment.
FIG. 8 is an explanatory diagram of power cycle protection of the power supply device according to the embodiment.
FIG. 9 is an explanatory diagram of protection during a power failure of the power supply device according to the embodiment.
FIG. 10 is an explanatory diagram of overcurrent protection of the power supply device according to the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Reactor, 3 ... Short circuit, 4 ... Rectifier circuit, 5 ... Changeover switch, 6 ... Smoothing circuit, 7 ... Inverter circuit, 8 ... Motor, 9 ... Control circuit, 10 ... Zero cross detection circuit, DESCRIPTION OF SYMBOLS 11 ... Input current detection circuit, 12 ... DC current detection circuit, 3S ... Short circuit signal, 5S ... Switching signal, 6S ... DC voltage value, 7S ... Inverter PWM signal, 10S ... Zero cross signal, 11S ... Input current value, 12S ... DC current value.

Claims (1)

交流電源を直流に変換する整流回路と、前記交流電源の零クロス点を検出し零クロス信号を出力する零クロス検出回路と、前記零クロス信号に基づいて前記交流電源をリアクトルを介して短絡する短絡回路と、前記整流回路の出力端に接続された平滑回路と、前記平滑回路に接続したモータを駆動するインバータ回路と、前記インバータ回路に制御信号を出力する制御回路とを備えた電源装置において、
前記制御回路が、入力電流検出信号から過電流を検出する過電流検出回路と、該過電流検出回路が出力する過電流検出信号に基づいて、前記短絡回路の短絡動作を停止し、かつ上位システムに過電流状態を通知する過電流停止回路とを備え、前記零クロス信号異常あるいは前記過電流防止回路の動作が、所定の期間に連続して発生して所定の回数発生した場合に前記モータの運転を停止することを特徴とする電源装置。
A rectifier circuit that converts AC power into DC, a zero-cross detection circuit that detects a zero-cross point of the AC power and outputs a zero-cross signal, and short-circuits the AC power via a reactor based on the zero-cross signal In a power supply device comprising: a short circuit; a smoothing circuit connected to an output terminal of the rectifying circuit; an inverter circuit that drives a motor connected to the smoothing circuit; and a control circuit that outputs a control signal to the inverter circuit ,
The control circuit detects an overcurrent from the input current detection signal, and based on the overcurrent detection signal output from the overcurrent detection circuit, stops the short-circuit operation of the short-circuit, and the host system An overcurrent stop circuit for notifying an overcurrent state, and when the zero cross signal abnormality or the operation of the overcurrent prevention circuit occurs continuously for a predetermined period and occurs a predetermined number of times. A power supply device characterized by stopping operation.
JP2002220591A 2002-07-30 2002-07-30 Power supply device and motor control device using the same Expired - Fee Related JP3806678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220591A JP3806678B2 (en) 2002-07-30 2002-07-30 Power supply device and motor control device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220591A JP3806678B2 (en) 2002-07-30 2002-07-30 Power supply device and motor control device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006096362A Division JP4160983B2 (en) 2006-03-31 2006-03-31 Power supply

Publications (2)

Publication Number Publication Date
JP2004064904A JP2004064904A (en) 2004-02-26
JP3806678B2 true JP3806678B2 (en) 2006-08-09

Family

ID=31941138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220591A Expired - Fee Related JP3806678B2 (en) 2002-07-30 2002-07-30 Power supply device and motor control device using the same

Country Status (1)

Country Link
JP (1) JP3806678B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254878B2 (en) * 2007-03-30 2009-04-15 ダイキン工業株式会社 Power supply circuit
JP4254876B2 (en) * 2007-03-30 2009-04-15 ダイキン工業株式会社 Power supply circuit and PAM control method thereof
JP5753971B2 (en) * 2010-11-19 2015-07-22 パナソニックIpマネジメント株式会社 Power supply
JP6012453B2 (en) * 2012-12-20 2016-10-25 株式会社日立製作所 PWM converter device and elevator device
JP5825319B2 (en) 2013-10-16 2015-12-02 ダイキン工業株式会社 Power converter and air conditioner

Also Published As

Publication number Publication date
JP2004064904A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP2617256B2 (en) Current control device and control method for air conditioner
JP2752125B2 (en) Control device for air conditioner
JP4160983B2 (en) Power supply
JP2009247064A (en) Power conversion device
US9787244B2 (en) Air conditioner
US10812009B2 (en) Motor driving device and abnormal heat generation detecting method for motor driving device
JP3806678B2 (en) Power supply device and motor control device using the same
JP2007074796A (en) Inverter apparatus
JP4720334B2 (en) Offset converter for PWM converter
WO2009116235A1 (en) Power conversion device
JPH06205599A (en) Motor drive control circuit
JP2000297764A (en) Inverter device for air conditioner motor and its control method
JPH08223930A (en) Control apparatus of air conditioner
JPH10185278A (en) Controlling device of air conditioner
JP3961868B2 (en) Power converter
JP5277028B2 (en) Power supply
JP2000023485A (en) Motor drive
WO2021245985A1 (en) Motor control device and motor control method
JP2618227B2 (en) Control device for air conditioner
JPH08182306A (en) Air conditioner
JPH0630597A (en) Motor driver
JP2005224031A (en) Motor-driving device
JP2001145367A (en) Short circuit protecting device for air conditioner
JP2002262589A (en) Motor control device
JPH01281353A (en) Protection circuit for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees