WO2021245985A1 - Motor control device and motor control method - Google Patents

Motor control device and motor control method Download PDF

Info

Publication number
WO2021245985A1
WO2021245985A1 PCT/JP2021/004257 JP2021004257W WO2021245985A1 WO 2021245985 A1 WO2021245985 A1 WO 2021245985A1 JP 2021004257 W JP2021004257 W JP 2021004257W WO 2021245985 A1 WO2021245985 A1 WO 2021245985A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
phase
output
hall sensor
motor control
Prior art date
Application number
PCT/JP2021/004257
Other languages
French (fr)
Japanese (ja)
Inventor
大和 松井
利貞 三井
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2021245985A1 publication Critical patent/WO2021245985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a motor control device and a motor control method.
  • the motor is equipped with a stator, a rotor that is rotatably supported, and a plurality of Hall sensors that detect the rotational position of the rotor.
  • the motor control device that drives the motor detects the rotation position of the rotor by the pulse signal output from the Hall sensor, and drives the inverter based on the detected rotation position. Then, by driving the inverter, the current flowing through the armature coil of the stator is controlled to rotate the rotor.
  • Patent Document 1 counts the number of changes in each level of a sensor signal in response to an abnormality in the combination of logic levels of the sensor signals, and counts the number of changes in the level of any one of the sensor signals. It is described that when a predetermined threshold value is reached, the supply of the drive current to the motor is stopped.
  • Patent Document 2 describes that an abnormality of the Hall sensor is detected based on the order of the output signals of the Hall sensor and based on the correction amount for the rising edge obtained for each coil of each phase.
  • Patent Document 3 describes that an abnormality is detected when a position signal pattern that cannot be detected during normal operation is detected, and when only a specific pattern is continuous during the position signal abnormality determination time. There is.
  • the motor control device is a motor control device for driving a multi-phase motor having a rotor and a plurality of Hall sensors for detecting the rotation position of the rotor, and is based on a combination of output values of the plurality of Hall sensors.
  • a storage unit that previously stores an abnormal pattern indicating an abnormality in the output value of the represented Hall sensor, a pre-pattern immediately before the abnormal pattern appears, and a post-pattern immediately after the abnormal pattern appears, and a plurality of the halls.
  • the detection unit includes a detection unit for detecting whether the output value of the plurality of Hall sensors output from the sensor is the abnormality pattern stored in the storage unit, and the detection unit is an output value of the plurality of Hall sensors.
  • the motor control method is a motor control method in a motor control device for driving a multi-phase motor having a rotor and a plurality of Hall sensors for detecting the rotation position of the rotor, and is an output of the plurality of Hall sensors.
  • An abnormality pattern indicating an abnormality in the output value of the Hall sensor represented by a combination of values, a pre-pattern immediately before the appearance of the abnormality pattern, and a post-pattern immediately after the appearance of the abnormality pattern are stored in advance, and a plurality of the above-mentioned It is detected whether the output values of the plurality of Hall sensors output from the Hall sensors are the stored abnormal patterns, and it is detected that the output values of the plurality of Hall sensors are the stored abnormal patterns. If so, the output value of the Hall sensor immediately before the appearance of the abnormal pattern is the stored pre-pattern, and the output value of the Hall sensor immediately after the appearance of the abnormal pattern is stored. It is collated whether it is the post-mortem pattern, and the motor is driven based on the result of the collation.
  • (A) to (i) It is a time chart which shows the output pattern of the hall sensor in a normal state, and the operation when high noise is injected into the hall sensor of C phase.
  • the pattern of the output value of the hall sensor in the normal state is shown.
  • An example of the output value pattern of the Hall sensor at the time of abnormality is shown.
  • FIG. 1 is a circuit configuration diagram of the motor control device 100.
  • the motor control device 100 includes an inverter 1, a driver IC 2, and a control unit 3.
  • the inverter 1 is configured by arranging a MOS transistor, which is a switching element, in series as an upper arm and a lower arm in each of the three phases.
  • the driver IC 2 controls each MOS transistor of the inverter 1 on / off according to the PWM signal output from the control unit 3.
  • the control unit 3 is an electronic circuit composed of a microcomputer or the like.
  • the control unit 3 includes a speed control torque calculation unit 301, a drive current control unit 302, a speed / phase calculation unit 303, a sensor signal generation circuit 304, a detection unit 305, a storage unit 306, and an estimation processing unit 307.
  • the motor 200 is a three-phase motor including a rotor 4 and a delta-connected stator 6.
  • three Hall sensors 5 are arranged every 120 degrees (electrical angle) within 360 degrees (electrical angle) per rotation.
  • the A-phase, B-phase, and C-phase sensor signals 501 to 503 are input to the sensor signal generation circuit 304.
  • the output value of the Hall sensor 5 is input from the sensor signal generation circuit 304 to the speed / phase calculation unit 303 and the detection unit 305.
  • the speed / phase calculation unit 303 takes in the logic level at that time every time the combination of the logic levels of the output values of the A phase, the B phase, and the C phase changes, and calculates the angular velocity ⁇ and the electric angular phase ⁇ of the motor 200. And output.
  • the diagnostic matrix is stored in the storage unit 306.
  • the diagnostic matrix is a correspondence table associating which abnormal phase p is in which abnormal state e by the combination of the abnormal pattern b, the pre-pattern a, and the post-pattern c when the abnormal pattern b is detected.
  • the abnormality pattern b is a pattern showing an abnormality in the output value of the Hall sensor 5 represented by a combination of the output values of the Hall sensor 5 in each phase.
  • the pre-pattern a is a pattern immediately before the abnormal pattern b appears.
  • the posterior pattern c is a pattern immediately after the abnormal pattern b appears. The details of the diagnostic matrix will be described later.
  • the detection unit 305 detects whether the output value output from the Hall sensor 5 of each phase via the sensor signal generation circuit 304 is the abnormality pattern b stored in the storage unit 306.
  • the detection unit 305 performs diagnosis due to other factors other than the detection of the abnormality pattern b according to the present embodiment, and in the case of an abnormality due to other factors, the gate-off request signal 311 for stopping the driving of the motor 200. Is transmitted to the driver IC2.
  • the driver IC 2 receives the gate-off request signal 311, it short-circuits the switching elements of the upper arm or the lower arm in three phases, or opens all the switching elements of the upper arm and the lower arm.
  • the estimation processing unit 307 determines the rotation speed of the motor 200 from the pattern of the output value of the hall sensor 5 of each phase including the specified hall sensor 5. Estimate the angular velocity ⁇ ') and the electrical angle phase ⁇ '.
  • the speed control torque calculation unit 301 has the angular velocity ⁇ output from the speed / phase calculation unit 303 or the estimated angular velocity so that the speed of the motor 200 becomes equal to the speed command value 308 specified from the outside of the control unit 3. Calculate the required torque command value Tr based on ⁇ '.
  • the drive current control unit 302 sets the electric angle phase ⁇ or the estimated electric angle phase ⁇ ′ so that the motor drive current 309 detected by the current sensor 7 becomes equal to the current command value indicated by the torque command value Tr. Based on this, the PWM duty 310 to be output to the driver IC 2 is set.
  • FIG. 2 and 3 are diagrams showing a diagnostic matrix for diagnosing the pattern of the output value of the Hall sensor 5 at the time of normal rotation of the motor.
  • FIG. 2 shows that when the abnormality pattern b of the output value of the three phases of the Hall sensor 5 is (H, H, H),
  • FIG. 3 shows that the abnormality pattern b of the output value of the three phases of the Hall sensor 5 is (L). , L, L).
  • These diagnostic matrices are stored in the storage unit 306 in advance.
  • H indicates that the output value of the Hall sensor 5 is at a high level
  • L indicates that the output value of the Hall sensor 5 is at a low level.
  • all three phases are high level (H, H, H), or all three phases are low level (L, L, L). Is.
  • the abnormality pattern b is not limited to the failure of the Hall sensor 5 itself, but also includes the failure of the wiring or the like connected to the Hall sensor 5.
  • the pattern of the output value of the Hall sensor 5, which is not normally possible, is defined as the abnormality pattern b.
  • the pattern when any phase changes in pulse level is defined as the pre-pattern a.
  • the pattern when any phase changes at the pulse level at the beginning after the occurrence of the abnormal pattern b is defined as the posterior pattern c.
  • High fixation in the abnormal state e indicates heavenly fault fixation
  • noise High indicates high level noise
  • Low fixation indicates ground fault fixation
  • noise Low indicates low level noise. Since combinations of patterns not listed in the diagnostic matrix cannot occur, they are excluded from the diagnostic matrix. By referring to this diagnostic matrix, the details will be described later, but for the output value of the Hall sensor 5, it is possible to identify which phase of the output value is abnormal and whether it is a ceiling fault, a ground fault, or noise. It will be possible to do.
  • FIG. 4 is a flowchart showing the operation of the motor control device 100.
  • the motor control device 100 detects an abnormality in the output value of the Hall sensor 5 with reference to the diagnostic matrix shown in FIGS. 2 and 3.
  • step ST11 the detection unit 305 of the motor control device 100 interrupts processing as an edge interrupt when a pulse level change occurs in any of the output values of the Hall sensor 5 input from the sensor signal generation circuit 304.
  • the pattern of the output values of all the phases of the Hall sensor 5 is stored in the internal memory of the detection unit 305 as the data A acquired this time. Then, the process proceeds to step ST12.
  • step ST12 the detection unit 305 determines whether or not the data A acquired this time has an abnormal pattern b that cannot normally occur. If the data A is the abnormal pattern b, the process proceeds to step ST13.
  • the normally impossible abnormal pattern b is (H, H, H) or (L, L, L) in this embodiment.
  • step ST13 the detection unit 305 collates the pattern recorded in the detection unit 305 when the interrupt of the pulse level change occurs last time with the prior pattern a in the diagnostic matrix stored in the storage unit 306. Specifically, when the abnormal pattern b is (H, H, H), it is collated with the prior pattern a in the diagnostic matrix shown in FIG. On the other hand, when the abnormal pattern b is (L, L, L), it is collated with the prior pattern a in the diagnostic matrix shown in FIG. Then, if it matches the pre-pattern a, the process proceeds to step ST14.
  • step ST14 the detection unit 305 sets "1" to the abnormality occurrence sign flag. If it does not match the prior pattern a in step ST13, the process proceeds to step ST15, and the abnormality occurrence sign flag is set to “0”.
  • step ST16 the detection unit 305 stores the data A acquired this time as the data B in order to use it as the pattern at the time of the previous pulse level change, and proceeds to step ST17.
  • step ST17 it is determined whether the abnormality confirmation flag described later is "1". Since the abnormality confirmation flag is "0" at the beginning when no abnormality has occurred, the processing after step ST11 is executed again by the edge interrupt of the output value of the Hall sensor 5 input from the sensor signal generation circuit 304. ..
  • step ST18 the detection unit 305 confirms whether the abnormality occurrence sign flag is set to “1”. If the abnormality occurrence sign flag is "1”, the process proceeds to step ST19. If the abnormality occurrence sign flag is not "1”, the process proceeds to step ST21.
  • step ST19 the detection unit 305 collates the data A acquired this time with the post-pattern c in the diagnostic matrix stored in the storage unit 306. Specifically, it collates with the posterior pattern c in the diagnostic matrix shown in FIGS. 2 and 3. Then, if the data A matches the post-pattern c, the process proceeds to step ST20. If the data A does not match the posterior pattern c, the process proceeds to step ST21.
  • step ST20 the detection unit 305 determines in the diagnostic matrix collated in step ST19 that the abnormal state e corresponding to the pre-pattern a, the abnormal pattern b, and the post-pattern c is not noise high or noise low. If the abnormal state e is not noise high or noise low, the process proceeds to step ST22. If the abnormal state e is noise high or noise low, the process proceeds to step ST21.
  • the reason for proceeding to step ST21 in the case of noise high or noise low is that when the hall sensor 5 of the phase that has become the noise output is specified, the output of the hall sensor 5 of the specified phase is ignored and the motor 200 is driven. This is to continue.
  • step ST22 the detection unit 305 sets “1” for the abnormality occurrence confirmation flag. That is, in the diagnostic matrix collated in step ST19, it is determined that the abnormal state e corresponding to the pre-pattern a, the abnormal pattern b, and the post-pattern c is high-fixed or low-fixed. Next, the process proceeds to step ST16. Further, in step ST21, the abnormality occurrence sign flag is set to "0", and the process proceeds to step 17 via the above-mentioned step ST16.
  • step ST17 If it is determined in step ST17 that the abnormality confirmation flag is set to "1", the detection unit 305 proceeds to step ST23, and thereafter, the motor control device 100 shifts to the failure mode processing. ..
  • step ST23 the detection unit 305 collates the diagnostic matrices shown in FIGS. 2 and 3 to identify which phase the abnormal phase p is.
  • the specified abnormal phase p may be notified to a higher-level control device (not shown). In this case, maintainability can be improved by specifying the abnormal phase p. Then, the process proceeds to step ST24.
  • step ST24 the estimation processing unit 307 is based on the abnormal phase p specified by the detection unit 305, and the rotation speed of the motor 200 is based on the pattern of the output value of the Hall sensor 5 of each phase including the specified abnormal phase p.
  • the estimation process for estimating (angular velocity ⁇ ') and the electric angle phase ⁇ ' is executed. The details of the estimation processing of the estimation processing unit 307 will be described later.
  • the speed control torque calculation unit 301 has a required torque command value based on the rotation speed (angular velocity ⁇ ') output from the estimation processing unit 307. Calculate Tr. Further, in the state where the abnormality occurrence confirmation flag is set to "1", the motor drive current 309 detected by the current sensor 7 in the drive current control unit 302 becomes equivalent to the current command value indicated by the torque command value Tr. Therefore, the PWM duty 310 to be output to the driver IC 2 is set based on the electric angle phase ⁇ 'output from the estimation processing unit 307. As a result, even if an abnormality occurs in the output value of the Hall sensor 5, the motor 200 can be continuously driven to cope with the limp home.
  • 5 (a) to 5 (i) are time charts showing the output pattern of the hall sensor 5 in the normal state and the operation when the C-phase hall sensor 5 has a ceiling fault.
  • 5 (a) is a signal of the A phase in the normal state
  • FIG. 5 (b) is the signal of the B phase in the normal state
  • FIG. 5 (c) is the signal of the C phase Hall sensor 5 in the normal state.
  • 5 (d) to 5 (i) show, for example, a case where the C phase has a ceiling fault.
  • 5 (d) is an A phase signal
  • FIG. 5 (e) is a B phase signal
  • FIG. 5 (f) is a C phase Hall sensor 5 signal.
  • 5 (g) shows the timing signal of the edge interrupt
  • FIG. 5 (h) shows the waveform of the abnormality occurrence sign flag
  • FIG. 5 (i) shows the waveform of the abnormality confirmation flag.
  • the signals of the A-phase to C-phase Hall sensors 5 are regularly output at every 120 ° electric angle under normal conditions.
  • the C-phase Hall sensor 5 has a ceiling fault
  • the C-phase signal level changes from low to high at the point PC 51.
  • the A-phase, B-phase, and C-phase patterns (H, L, H) at this point in time are stored in the detection unit 305 by interrupt processing. It should be noted that this data becomes a later pre-pattern a.
  • the signal level of the B phase changes from low to high at the point PC 52, so that the A phase, B phase, and C phase patterns (H, H, H) at this point in time are used.
  • This pattern is a pattern that cannot normally occur, and this is referred to as an abnormal pattern b. Since the abnormality pattern b has occurred, the abnormality occurrence sign flag is set to “1” as shown in FIG. 5 (h).
  • the signal level of the A phase changes from high to low at the point PC53, so that the A phase, B phase, and C phase patterns (L, H, H) at this point in time are used.
  • the abnormality occurrence sign flag set to "1"
  • Fig. 5 As shown in (i), the abnormality confirmation flag is set to "1".
  • the Hall sensor 5 has a ceiling fault and the abnormal phase p is the C phase in the abnormal state e.
  • 6 (a) to 6 (i) are time charts showing the output pattern of the hall sensor 5 in the normal state and the operation when high noise is injected into the hall sensor 5 of the C phase.
  • 6 (a) is a signal of the A phase in the normal state
  • FIG. 6 (b) is the signal of the B phase in the normal state
  • FIG. 6 (c) is the signal of the C phase Hall sensor 5 in the normal state.
  • 6 (d) to 6 (i) show a case where high noise is injected into the C-phase Hall sensor 5 as an example.
  • 6 (d) is an A phase signal
  • FIG. 6 (e) is a B phase signal
  • FIG. 6 (f) is a C phase Hall sensor 5 signal.
  • 6 (g) shows the timing signal of the edge interrupt
  • FIG. 6 (h) shows the waveform of the abnormality occurrence sign flag
  • FIG. 6 (i) shows the waveform of the abnormality confirmation flag.
  • the signal level of the C phase changes from low to high at the point PC62, so that the A phase, B phase, and C phase patterns (H, H, H) at this point in time are used.
  • This pattern is a pattern that cannot normally occur, and this is an abnormal pattern b. Since the abnormality pattern b has occurred, the abnormality occurrence sign flag is set to “1” as shown in FIG. 6 (h).
  • the signal level of the C phase changes from high to low at the point PC63, so that the A phase, B phase, and C phase patterns (H, H, L) at this time point.
  • this data is the level change that occurred next to the abnormality pattern b that occurred at the point PC62, it becomes the post-pattern c.
  • the combination of the pre-pattern a (H, H, L), the abnormality pattern b (H, H, H), and the post-pattern c (H, H, L) corresponds to the diagnostic matrix. do.
  • the abnormal state e is noise high, the abnormality occurrence sign flag (h) is cleared as shown in FIG. 6 (h).
  • FIG. 7 shows an example of the pattern of the output value of the Hall sensor 5 in the normal state.
  • FIG. 8 shows an example of the pattern of the output value of the Hall sensor 5 at the time of abnormality.
  • the patterns taken into the motor control device 100 are (H, L, H) (H, L, L) (H, H, L) (L, H, L) (L, as shown in FIG. 7). H, H) and (L, L, H) in that order.
  • H, H and (L, L, H) in that order.
  • step ST23 when the abnormal phase p is specified and, for example, the phase A has a sky fault, (H, L, H) (H, L, L) (H, H) as shown in FIG. , L) and (H, H, H). The operation of the limp home in such an abnormally confirmed state will be described below.
  • FIG. 9 is a diagram showing the six patterns in the normal state in the present embodiment, the range of the electric angle phase in each pattern, and the estimated median phase value.
  • the range of the electric angle phase is 0 ° to 60 °
  • the estimated median phase value is 30 °. Is.
  • the range of the electric angle phase is 60 ° to 120 °
  • the estimated median phase is 90 °.
  • the range of the electric angle phase is 120 ° to 180 °
  • the estimated median phase is 150 °.
  • the range of the electric angle phase is 180 ° to 240 °, and the estimated median phase is 210 °.
  • the range of the electric angle phase is 240 ° to 300 °, and the estimated median phase is 270 °.
  • the range of the electric angle phase is 300 ° to 0 °, and the estimated median phase is 330 °.
  • FIG. 10 is a diagram showing four patterns in the case where the A phase in the present embodiment has a ceiling fault, the range of the electric angular phase in each pattern, and the estimated median phase value.
  • the range of the electric angle phase is 300 ° to 60 °
  • the estimated median phase value is 0 °. Is.
  • the range of the electric angle phase is 60 ° to 120 °
  • the estimated median phase is 90 °.
  • the range of the electric angle phase is 120 ° to 240 °, and the estimated median phase is 180 °.
  • the range of the electric angle phase is 240 ° to 300 °, and the estimated median phase is 270 °.
  • the range of the electrical angle phase is 240 ° to 300 °. It can be seen that the range of this electrical angle phase is the same as only the pattern (L, H, H) in the normal state shown in FIG. In this case, the estimated median phase is 270 °.
  • the range of the electrical angle phase includes 30 ° ⁇ 30 ° and 330 ° ⁇ 30 °, it can be determined that it is 0 ° ⁇ 60 °.
  • the estimated median phase is 0 °.
  • the reference phase edge of the electric angle phase region
  • the electric angle phase can be obtained from the pattern as described above, the estimation calculation of the electric angle phase within the range of the electric angle phase using this will be described next.
  • a free running timer of the control unit 3 which is a microcomputer for time measurement, capture the timer when an edge occurs, and obtain the relative time between each edge.
  • f [Hz] 1 / Time required between pulse edges [sec] ... (1)
  • phase change amount ⁇ for each calculation cycle per calculation cycle Ts of the microcomputer can be obtained from the electric angular frequency by the following equation (2).
  • ⁇ [° / Ts] 360 ° ⁇ (calculation cycle ⁇ f) ⁇ ⁇ ⁇ (2)
  • the value of the reference phase at the time of pulse change shall be updated according to the pattern each time any pulse edge is input.
  • the estimation processing unit 307 can estimate the rotation speed (angular velocity ⁇ ') and the electric angle phase ⁇ 'of the motor 200, and can continue to drive the motor 200 using these.
  • the estimated median phase value is determined by determining the range of the electric angular phase according to the pattern shown in FIG.
  • the estimated phase is classified into the range of the electric angle phase according to the state of each Hall sensor 5 value acquired by the control unit 3, and the median value thereof is used as the estimated phase. It is desirable to start the motor 200 using this estimated phase when starting the motor 200, and switch to the above-mentioned estimation calculation when the rotation speed is obtained.
  • the above embodiment describes the case where the rotation speed of the motor 200 is normal rotation, it is possible to make a diagnosis based on the same idea even at the time of reverse rotation. Further, although the diagnostic matrix is presented with the abnormal patterns as (H, H, H) and (L, L, L), it is possible to create the diagnostic matrix with the same idea for other abnormal patterns.
  • the abnormal phase is specified regardless of the rotation speed of the motor 200, and the motor 200 is driven. It is possible to provide a motor control device 100 that enables the continuation of the above.
  • the control unit 3 includes a speed control torque calculation unit 301, a drive current control unit 302, a speed / phase calculation unit 303, a sensor signal generation circuit 304, a detection unit 305, a storage unit 306, and an estimation processing unit 307.
  • these may be configured by a computer and a program equipped with a CPU such as a microcomputer and a memory. Then, the program shown in the flowchart of FIG. 4 can be executed by a computer. Then, all or a part of the processing may be realized by a hard logic circuit. Further, the program may be supplied as a computer-readable computer program product in various forms such as a storage medium or a data signal (carrier wave).
  • the motor control device 100 drives a multi-phase motor 200 having a rotor 4 and a plurality of Hall sensors 5 for detecting the rotation position of the rotor 4. Then, the motor control device 100 includes an abnormality pattern b indicating an abnormality in the output value of the Hall sensor 5 represented by a combination of output values of the plurality of Hall sensors 5, a pre-pattern a immediately before the appearance of the abnormality pattern b, and an abnormality.
  • the storage unit 306 that stores the post-pattern c immediately after the appearance of the pattern b in advance, and the abnormal pattern b in which the output values of the plurality of Hall sensors 5 output from the plurality of Hall sensors 5 are stored in the storage unit 306.
  • the detection unit 305 detects that the output value of the plurality of Hall sensors 5 is the abnormality pattern b stored in the storage unit 306, the abnormality pattern b appears.
  • the output value of the Hall sensor 5 immediately before is the pre-pattern a stored in the storage unit 306, and the output value of the Hall sensor 5 immediately after the appearance of the abnormal pattern b is the post-pattern c stored in the storage unit 306.
  • the presence or absence is collated, and the motor 200 is driven based on the collation result by the detection unit 305. This makes it possible to accurately detect an abnormality in the output of the Hall sensor 5.
  • the motor control method in the motor control device 100 drives a multi-phase motor 200 having a rotor 4 and a plurality of Hall sensors 5 for detecting the rotation position of the rotor 4.
  • the motor control method includes an abnormality pattern b indicating an abnormality in the output value of the Hall sensor 5 represented by a combination of output values of a plurality of Hall sensors 5, a pre-pattern a immediately before the appearance of the abnormality pattern b, and an abnormality pattern b.
  • the post-pattern c immediately after the appearance is stored in advance, and it is detected whether the output values of the plurality of Hall sensors 5 output from the plurality of Hall sensors 5 are the stored abnormality pattern b, and the plurality of Hall sensors 5 are stored.
  • the output value of the Hall sensor 5 immediately before the abnormality pattern b appears is the stored pre-pattern a, and immediately after the abnormality pattern b appears. It is collated whether the output value of the Hall sensor 5 is the stored post-pattern c, and the motor 200 is driven based on the collation result. This makes it possible to accurately detect an abnormality in the output of the Hall sensor 5.
  • the present invention can be implemented by modifying the above-described embodiment as follows.
  • (1) Although the above-described embodiment has been described with the example of a three-phase motor, the present invention can be applied not only to a three-phase motor but also to a multi-phase motor.
  • the abnormal pattern, the pre-pattern, and the post-pattern are stored in advance based on the pattern represented by the combination of the output values of the plurality of Hall sensors, and the above-described embodiment is applied. Can be done.
  • the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and the modified example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

This motor control device comprises: a storage unit which stores, in advance, an abnormal pattern indicating an abnormality of output values of Hall sensors expressed by a combination of output values of a plurality of Hall sensors, a pre-pattern immediately prior to the appearance of the abnormal pattern, and a post pattern immediately after the appearance of the abnormal pattern; and a detection unit which detects whether the output values of the plurality of Hall sensors output by the plurality of Hall sensors are the abnormal pattern stored in the storage unit. If the detection unit detects that the output values of the plurality of Hall sensors are the abnormal pattern stored in the storage unit, the detection unit checks whether the output values of the Hall sensors immediately prior to the appearance of the abnormal pattern are the pre-pattern stored in the storage unit, and whether the output values of the Hall sensors immediately after the appearance of the abnormal pattern are the post-pattern stored in the storage unit. The motor control device drives the motor on the basis of the result of the checking performed by the detection unit.

Description

モータ制御装置およびモータ制御方法Motor control device and motor control method
 本発明は、モータ制御装置およびモータ制御方法に関する。 The present invention relates to a motor control device and a motor control method.
 モータは、ステータと、回転可能に支持されたロータと、ロータの回転位置を検出する複数のホールセンサとを備えている。モータを駆動するモータ制御装置は、ホールセンサより出力されるパルス信号によりロータの回転位置を検出し、検出された回転位置に基づいてインバータを駆動している。そして、インバータを駆動することより、ステータの電機子コイルに流れる電流を制御して、ロータを回転させている。 The motor is equipped with a stator, a rotor that is rotatably supported, and a plurality of Hall sensors that detect the rotational position of the rotor. The motor control device that drives the motor detects the rotation position of the rotor by the pulse signal output from the Hall sensor, and drives the inverter based on the detected rotation position. Then, by driving the inverter, the current flowing through the armature coil of the stator is controlled to rotate the rotor.
 特許文献1には、センサ信号の論理レベルの組み合わせが異常になったことに応じてセンサ信号の各々のレベル変化の回数をカウントし、センサ信号のうちのいずれかのセンサ信号のレベル変化の回数が予め定められた閾値に到達した場合にはモータへの駆動電流の供給を停止することが記載されている。 Patent Document 1 counts the number of changes in each level of a sensor signal in response to an abnormality in the combination of logic levels of the sensor signals, and counts the number of changes in the level of any one of the sensor signals. It is described that when a predetermined threshold value is reached, the supply of the drive current to the motor is stopped.
 特許文献2には、ホールセンサの出力信号の順序に基づいて、また、各相のコイル毎に求めた立ち上がりエッジに対する補正量に基づいてホールセンサの異常を検出することが記載されている。 Patent Document 2 describes that an abnormality of the Hall sensor is detected based on the order of the output signals of the Hall sensor and based on the correction amount for the rising edge obtained for each coil of each phase.
 特許文献3には、通常運転時にあり得ない位置信号パターンが検出された場合に、また、位置信号異常判定時間の間、特定のパターンのみが連続した場合に異常と検出することが記載されている。 Patent Document 3 describes that an abnormality is detected when a position signal pattern that cannot be detected during normal operation is detected, and when only a specific pattern is continuous during the position signal abnormality determination time. There is.
特開2017-143597号公報Japanese Unexamined Patent Publication No. 2017-143597 特開2013-183469号公報Japanese Unexamined Patent Publication No. 2013-183469 特開2001-268972号公報Japanese Unexamined Patent Publication No. 2001-268972
 モータは低速回転から高速回転まで変化するため、ホールセンサの出力に異常が生じても、ホールセンサの出力信号の発生時間に差異が生じて、ホールセンサの出力の異常を精度よく検出できない。 Since the motor changes from low speed rotation to high speed rotation, even if an abnormality occurs in the output of the hall sensor, the generation time of the output signal of the hall sensor will differ, and the abnormality in the output of the hall sensor cannot be detected accurately.
 本発明によるモータ制御装置は、ロータと前記ロータの回転位置を検出する複数のホールセンサとを有する複数相のモータを駆動するモータ制御装置であって、複数の前記ホールセンサの出力値の組み合わせにより表したホールセンサの出力値の異常を示す異常パターンと、前記異常パターンが出現する直前の事前パターンと、前記異常パターンが出現した直後の事後パターンとを予め記憶する記憶部と、複数の前記ホールセンサより出力された複数の前記ホールセンサの出力値が前記記憶部に記憶された前記異常パターンであるかを検出する検出部と、を備え、前記検出部は、複数の前記ホールセンサの出力値が前記記憶部に記憶された前記異常パターンであることを検出した場合、前記異常パターンが出現する直前の前記ホールセンサの出力値が前記記憶部に記憶された前記事前パターンであり、且つ、前記異常パターンが出現した直後の前記ホールセンサの出力値が前記記憶部に記憶された前記事後パターンであるかを照合し、前記検出部による前記照合の結果に基づいて前記モータを駆動する。
 本発明によるモータ制御方法は、ロータと前記ロータの回転位置を検出する複数のホールセンサとを有する複数相のモータを駆動するモータ制御装置におけるモータ制御方法であって、複数の前記ホールセンサの出力値の組み合わせにより表したホールセンサの出力値の異常を示す異常パターンと、前記異常パターンが出現する直前の事前パターンと、前記異常パターンが出現した直後の事後パターンとを予め記憶し、複数の前記ホールセンサより出力された複数の前記ホールセンサの出力値が前記記憶された前記異常パターンであるかを検出し、複数の前記ホールセンサの出力値が前記記憶された前記異常パターンであることを検出した場合、前記異常パターンが出現する直前の前記ホールセンサの出力値が前記記憶された前記事前パターンであり、且つ、前記異常パターンが出現した直後の前記ホールセンサの出力値が前記記憶された前記事後パターンであるかを照合し、前記照合の結果に基づいて前記モータを駆動する。
The motor control device according to the present invention is a motor control device for driving a multi-phase motor having a rotor and a plurality of Hall sensors for detecting the rotation position of the rotor, and is based on a combination of output values of the plurality of Hall sensors. A storage unit that previously stores an abnormal pattern indicating an abnormality in the output value of the represented Hall sensor, a pre-pattern immediately before the abnormal pattern appears, and a post-pattern immediately after the abnormal pattern appears, and a plurality of the halls. The detection unit includes a detection unit for detecting whether the output value of the plurality of Hall sensors output from the sensor is the abnormality pattern stored in the storage unit, and the detection unit is an output value of the plurality of Hall sensors. When it is detected that is the abnormal pattern stored in the storage unit, the output value of the Hall sensor immediately before the abnormal pattern appears is the prior pattern stored in the storage unit, and It is collated whether the output value of the Hall sensor immediately after the appearance of the abnormal pattern is the post-pattern stored in the storage unit, and the motor is driven based on the result of the collation by the detection unit.
The motor control method according to the present invention is a motor control method in a motor control device for driving a multi-phase motor having a rotor and a plurality of Hall sensors for detecting the rotation position of the rotor, and is an output of the plurality of Hall sensors. An abnormality pattern indicating an abnormality in the output value of the Hall sensor represented by a combination of values, a pre-pattern immediately before the appearance of the abnormality pattern, and a post-pattern immediately after the appearance of the abnormality pattern are stored in advance, and a plurality of the above-mentioned It is detected whether the output values of the plurality of Hall sensors output from the Hall sensors are the stored abnormal patterns, and it is detected that the output values of the plurality of Hall sensors are the stored abnormal patterns. If so, the output value of the Hall sensor immediately before the appearance of the abnormal pattern is the stored pre-pattern, and the output value of the Hall sensor immediately after the appearance of the abnormal pattern is stored. It is collated whether it is the post-mortem pattern, and the motor is driven based on the result of the collation.
 本発明によれば、ホールセンサの出力の異常を精度よく検出することができる。 According to the present invention, it is possible to accurately detect an abnormality in the output of the Hall sensor.
モータ制御装置の回路構成図である。It is a circuit block diagram of a motor control device. モータ正転時におけるホールセンサの出力値の異常パターンが(H,H、H)の場合の診断マトリックスを示す図である。It is a figure which shows the diagnostic matrix when the abnormality pattern of the output value of a Hall sensor at the time of a normal rotation of a motor is (H, H, H). モータ正転時におけるホールセンサの出力値の異常パターンが(L、L、L)の場合の診断マトリックスを示す図である。It is a figure which shows the diagnostic matrix when the abnormality pattern of the output value of a Hall sensor at the time of a normal rotation of a motor is (L, L, L). モータ制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of a motor control device. (a)~(i)正常時のホールセンサの出力パターンとC相のホールセンサが天絡故障した場合の動作を示すタイムチャートである。(A) to (i) It is a time chart which shows the output pattern of a hall sensor in a normal state, and the operation when a C-phase hall sensor has a ceiling failure. (a)~(i)正常時のホールセンサの出力パターンとC相のホールセンサにハイノイズが注入された場合の動作を示すタイムチャートである。(A) to (i) It is a time chart which shows the output pattern of the hall sensor in a normal state, and the operation when high noise is injected into the hall sensor of C phase. 正常時におけるホールセンサの出力値のパターンを示す。The pattern of the output value of the hall sensor in the normal state is shown. 異常時におけるホールセンサの出力値のパターンの一例を示す。An example of the output value pattern of the Hall sensor at the time of abnormality is shown. 正常時の6パターンと各パターンにおける電気角位相の範囲と推定位相中央値を示す図である。It is a figure which shows 6 patterns in a normal state, the range of the electric angle phase in each pattern, and the estimated median phase. A相が天絡故障した場合の4パターンと各パターンにおける電気角位相の範囲と推定位相中央値を示す図である。It is a figure which shows the 4 patterns when the A phase has a heavenly fault, the range of the electric angle phase in each pattern, and the estimated median phase.
 図1は、モータ制御装置100の回路構成図である。
 モータ制御装置100は、インバータ1、ドライバIC2、制御部3を備える。
 インバータ1は、三相の各相に上アームと下アームとしてスイッチング素子であるMOSトランジスタを直列に配置して構成される。ドライバIC2は、制御部3より出力されるPWM信号に応じてインバータ1の各MOSトランジスタをオンオフ制御する。
FIG. 1 is a circuit configuration diagram of the motor control device 100.
The motor control device 100 includes an inverter 1, a driver IC 2, and a control unit 3.
The inverter 1 is configured by arranging a MOS transistor, which is a switching element, in series as an upper arm and a lower arm in each of the three phases. The driver IC 2 controls each MOS transistor of the inverter 1 on / off according to the PWM signal output from the control unit 3.
 制御部3は、マイコン等により構成される電子回路である。制御部3は、速度制御トルク演算部301、駆動電流制御部302、速度/位相演算部303、センサ信号生成回路304、検出部305、記憶部306、および推定処理部307を備える。 The control unit 3 is an electronic circuit composed of a microcomputer or the like. The control unit 3 includes a speed control torque calculation unit 301, a drive current control unit 302, a speed / phase calculation unit 303, a sensor signal generation circuit 304, a detection unit 305, a storage unit 306, and an estimation processing unit 307.
 モータ200は、ロータ4と、Δ結線されたステータ6とを備えた三相モータである。
ロータ4には、ホールセンサ5が1回転360度(電気角)内に120度(電気角)毎に3個配置される。ホールセンサ5から、A相、B相およびC相のセンサ信号501~503がセンサ信号生成回路304へ入力される。そして、センサ信号生成回路304からホールセンサ5の出力値が、速度/位相演算部303および検出部305に入力される。
The motor 200 is a three-phase motor including a rotor 4 and a delta-connected stator 6.
In the rotor 4, three Hall sensors 5 are arranged every 120 degrees (electrical angle) within 360 degrees (electrical angle) per rotation. From the Hall sensor 5, the A-phase, B-phase, and C-phase sensor signals 501 to 503 are input to the sensor signal generation circuit 304. Then, the output value of the Hall sensor 5 is input from the sensor signal generation circuit 304 to the speed / phase calculation unit 303 and the detection unit 305.
 速度/位相演算部303は、A相、B相およびC相の出力値の論理レベルの組み合わせが変化する毎に、その時の論理レベルを取り込み、モータ200の角速度ωおよび電気角位相θを演算して出力する。 The speed / phase calculation unit 303 takes in the logic level at that time every time the combination of the logic levels of the output values of the A phase, the B phase, and the C phase changes, and calculates the angular velocity ω and the electric angular phase θ of the motor 200. And output.
 記憶部306には、診断マトリックスが記憶されている。診断マトリックスは、異常パターンbが検出された場合に、異常パターンbと事前パターンaと事後パターンcとの組合せによって、どの異常相pがどの異常状態eになっているか対応付けた対応表である。異常パターンbは、各相のホールセンサ5の出力値の組み合わせにより表したホールセンサ5の出力値の異常を示すパターンである。事前パターンaは、異常パターンbが出現する直前のパターンである。事後パターンcは、異常パターンbが出現した直後のパターンである。診断マトリックスの詳細は後述する。 The diagnostic matrix is stored in the storage unit 306. The diagnostic matrix is a correspondence table associating which abnormal phase p is in which abnormal state e by the combination of the abnormal pattern b, the pre-pattern a, and the post-pattern c when the abnormal pattern b is detected. .. The abnormality pattern b is a pattern showing an abnormality in the output value of the Hall sensor 5 represented by a combination of the output values of the Hall sensor 5 in each phase. The pre-pattern a is a pattern immediately before the abnormal pattern b appears. The posterior pattern c is a pattern immediately after the abnormal pattern b appears. The details of the diagnostic matrix will be described later.
 検出部305は、各相のホールセンサ5よりセンサ信号生成回路304を介して出力された出力値が記憶部306に記憶された異常パターンbであるかを検出する。なお、検出部305は、本実施形態に係る異常パターンbの検出以外にも他の要因による診断を行い、他の要因による異常の場合は、モータ200の駆動を停止させるためのゲートオフ要求信号311をドライバIC2に伝達する。ドライバIC2は、ゲートオフ要求信号311を受けた場合は、上アームまたは下アームのスイッチング素子を三相短絡する、もしくは上アームおよび下アームのスイッチング素子を全てオープンにする。 The detection unit 305 detects whether the output value output from the Hall sensor 5 of each phase via the sensor signal generation circuit 304 is the abnormality pattern b stored in the storage unit 306. The detection unit 305 performs diagnosis due to other factors other than the detection of the abnormality pattern b according to the present embodiment, and in the case of an abnormality due to other factors, the gate-off request signal 311 for stopping the driving of the motor 200. Is transmitted to the driver IC2. When the driver IC 2 receives the gate-off request signal 311, it short-circuits the switching elements of the upper arm or the lower arm in three phases, or opens all the switching elements of the upper arm and the lower arm.
 推定処理部307は、検出部305でホールセンサ5の異常相が特定された場合に、特定されたホールセンサ5を含めた各相のホールセンサ5の出力値のパターンからモータ200の回転数(角速度ω’)および電気角位相θ’を推定する。
 速度制御トルク演算部301は、モータ200の速度が制御部3の外部より指定された速度指令値308と同等になるように、速度/位相演算部303より出力された角速度ωもしくは推定された角速度ω’に基づき、必要なトルク指令値Trを演算する。
When the abnormal phase of the hall sensor 5 is specified by the detection unit 305, the estimation processing unit 307 determines the rotation speed of the motor 200 from the pattern of the output value of the hall sensor 5 of each phase including the specified hall sensor 5. Estimate the angular velocity ω') and the electrical angle phase θ'.
The speed control torque calculation unit 301 has the angular velocity ω output from the speed / phase calculation unit 303 or the estimated angular velocity so that the speed of the motor 200 becomes equal to the speed command value 308 specified from the outside of the control unit 3. Calculate the required torque command value Tr based on ω'.
 駆動電流制御部302は、電流センサ7より検出したモータ駆動電流309が、トルク指令値Trで示される電流指令値と同等になるように、電気角位相θもしくは推定された電気角位相θ’に基づき、ドライバIC2に出力するPWMデューティ310を設定する。 The drive current control unit 302 sets the electric angle phase θ or the estimated electric angle phase θ ′ so that the motor drive current 309 detected by the current sensor 7 becomes equal to the current command value indicated by the torque command value Tr. Based on this, the PWM duty 310 to be output to the driver IC 2 is set.
 図2および図3は、モータ正転時におけるホールセンサ5の出力値のパターンを診断する診断マトリックスを示す図である。図2は、ホールセンサ5の3相の出力値の異常パターンbが(H,H、H)であった場合、図3は、ホールセンサ5の3相の出力値の異常パターンbが(L、L、L)であった場合を示す。これらの診断マトリックスは、記憶部306に予め記憶しておく。ここで、Hはホールセンサ5の出力値がハイ(High)レベルであることを、Lはホールセンサ5の出力値がロウ(Low)レベルであることを示す。 2 and 3 are diagrams showing a diagnostic matrix for diagnosing the pattern of the output value of the Hall sensor 5 at the time of normal rotation of the motor. FIG. 2 shows that when the abnormality pattern b of the output value of the three phases of the Hall sensor 5 is (H, H, H), FIG. 3 shows that the abnormality pattern b of the output value of the three phases of the Hall sensor 5 is (L). , L, L). These diagnostic matrices are stored in the storage unit 306 in advance. Here, H indicates that the output value of the Hall sensor 5 is at a high level, and L indicates that the output value of the Hall sensor 5 is at a low level.
 本実施形態における通常あり得ない異常パターンbは、三相の全ての相がハイレベルである(H,H、H)、もしくは三相の全ての相がロウレベルである(L、L、L)である。なお、異常パターンbは、ホールセンサ5自体の故障に限らず、ホールセンサ5に接続される配線等の故障も含めたものである。 In the normally impossible anomalous pattern b in the present embodiment, all three phases are high level (H, H, H), or all three phases are low level (L, L, L). Is. The abnormality pattern b is not limited to the failure of the Hall sensor 5 itself, but also includes the failure of the wiring or the like connected to the Hall sensor 5.
 図2および図3において、通常あり得ないホールセンサ5の出力値のパターンを異常パターンbと定義する。異常パターンbの発生直前において、何れかの相がパルスレベル変化した時のパターンを事前パターンaと定義する。異常パターンbの発生後の最初に何れかの相がパルスレベル変化した時のパターンを事後パターンcと定義する。 In FIGS. 2 and 3, the pattern of the output value of the Hall sensor 5, which is not normally possible, is defined as the abnormality pattern b. Immediately before the occurrence of the abnormal pattern b, the pattern when any phase changes in pulse level is defined as the pre-pattern a. The pattern when any phase changes at the pulse level at the beginning after the occurrence of the abnormal pattern b is defined as the posterior pattern c.
 図2および図3に示すように、診断マトリックスでは、異常パターンbが検出された場合に、異常パターンbと事前パターンaと事後パターンcとの組合せによって、どの異常相pがどの異常状態eになっているかを対応付けている。例えば、図2において、事前パターンa、異常パターンb、事後パターンcが、(L,H,H)→(H,H、H)→(H、L、H)と変化したのであれば、異常相pはA相であり、異常状態eは天絡固着が発生しているものと判定できる。図2および図3において、異常状態eのHigh固着は天絡固着を、ノイズHighはハイレベルのノイズを、Low固着は地絡固着を、ノイズLowはロウレベルのノイズを示す。なお、診断マトリックスに挙げていないパターンの組み合わせは発生し得ないものである為、診断マトリックスからは除外する。この診断マトリックスを参照することにより、詳細は後述するが、ホールセンサ5の出力値について、どの相の出力値が異常であるかの特定、および天絡故障か地絡故障かノイズかの特定をすることが可能になる。 As shown in FIGS. 2 and 3, when the abnormal pattern b is detected in the diagnostic matrix, which abnormal phase p becomes which abnormal state e by the combination of the abnormal pattern b, the pre-pattern a, and the post-pattern c. It is associated with whether it is. For example, in FIG. 2, if the pre-pattern a, the abnormal pattern b, and the post-pattern c change from (L, H, H) → (H, H, H) → (H, L, H), it is abnormal. The phase p is the A phase, and the abnormal state e can be determined to indicate that the heavenly entanglement is stuck. In FIGS. 2 and 3, High fixation in the abnormal state e indicates heavenly fault fixation, noise High indicates high level noise, Low fixation indicates ground fault fixation, and noise Low indicates low level noise. Since combinations of patterns not listed in the diagnostic matrix cannot occur, they are excluded from the diagnostic matrix. By referring to this diagnostic matrix, the details will be described later, but for the output value of the Hall sensor 5, it is possible to identify which phase of the output value is abnormal and whether it is a ceiling fault, a ground fault, or noise. It will be possible to do.
 図4は、モータ制御装置100の動作を示すフローチャートである。モータ制御装置100は、図2および図3に示した診断マトリックスを参照してホールセンサ5の出力値の異常を検出する。 FIG. 4 is a flowchart showing the operation of the motor control device 100. The motor control device 100 detects an abnormality in the output value of the Hall sensor 5 with reference to the diagnostic matrix shown in FIGS. 2 and 3.
 ステップST11において、モータ制御装置100の検出部305は、センサ信号生成回路304より入力されたホールセンサ5の出力値の何れかにパルスレベルの変化が発生した時にこれをエッジ割込みとして割込み処理し、ホールセンサ5の全相の出力値のパターンを今回取得のデータAとして検出部305の内部のメモリに記憶する。そして、ステップST12へ進む。 In step ST11, the detection unit 305 of the motor control device 100 interrupts processing as an edge interrupt when a pulse level change occurs in any of the output values of the Hall sensor 5 input from the sensor signal generation circuit 304. The pattern of the output values of all the phases of the Hall sensor 5 is stored in the internal memory of the detection unit 305 as the data A acquired this time. Then, the process proceeds to step ST12.
 ステップST12において、検出部305は、今回取得したデータAが通常はあり得ない異常パターンbであるか否かを判定する。データAが異常パターンbであった場合は、ステップST13に進む。通常はあり得ない異常パターンbは、本実施形態では(H,H、H)もしくは(L、L、L)である。 In step ST12, the detection unit 305 determines whether or not the data A acquired this time has an abnormal pattern b that cannot normally occur. If the data A is the abnormal pattern b, the process proceeds to step ST13. The normally impossible abnormal pattern b is (H, H, H) or (L, L, L) in this embodiment.
 ステップST13において、検出部305は、前回パルスレベル変化の割込みが発生した時に検出部305に記録しているパターンを、記憶部306に記憶されている診断マトリックスにおける事前パターンaと照合する。具体的には、異常パターンbが(H,H、H)であった場合は、図2に示す診断マトリックスにおける事前パターンaと照合する。
一方、異常パターンbが(L、L、L)であった場合は、図3に示す診断マトリックスにおける事前パターンaと照合する。そして、事前パターンaと合致した場合には、ステップST14に進む。
In step ST13, the detection unit 305 collates the pattern recorded in the detection unit 305 when the interrupt of the pulse level change occurs last time with the prior pattern a in the diagnostic matrix stored in the storage unit 306. Specifically, when the abnormal pattern b is (H, H, H), it is collated with the prior pattern a in the diagnostic matrix shown in FIG.
On the other hand, when the abnormal pattern b is (L, L, L), it is collated with the prior pattern a in the diagnostic matrix shown in FIG. Then, if it matches the pre-pattern a, the process proceeds to step ST14.
 ステップST14において、検出部305は、異常発生予兆フラグに“1”を設定する。ステップST13で事前パターンaと合致しなかった場合は、ステップST15に進み、異常発生予兆フラグに“0”を設定する。 In step ST14, the detection unit 305 sets "1" to the abnormality occurrence sign flag. If it does not match the prior pattern a in step ST13, the process proceeds to step ST15, and the abnormality occurrence sign flag is set to “0”.
 ステップST16において、検出部305は、今回取得のデータAを前回パルスレベル変化時のパターンとするため、データBとして記憶し、ステップST17に進む。 In step ST16, the detection unit 305 stores the data A acquired this time as the data B in order to use it as the pattern at the time of the previous pulse level change, and proceeds to step ST17.
 ステップST17において、後述の異常確定フラグが“1”であるかを判定する。異常が発生していない当初は異常確定フラグは“0”であるので、その後、センサ信号生成回路304より入力されたホールセンサ5の出力値のエッジ割込みにより、ステップST11以降の処理を再び実行する。 In step ST17, it is determined whether the abnormality confirmation flag described later is "1". Since the abnormality confirmation flag is "0" at the beginning when no abnormality has occurred, the processing after step ST11 is executed again by the edge interrupt of the output value of the Hall sensor 5 input from the sensor signal generation circuit 304. ..
 ステップST12において今回取得のデータAが通常あり得ない異常パターンbでなかった場合は、ステップST18に進む。ステップST18において、検出部305は、異常発生予兆フラグが“1”に設定されているかを確認する。異常発生予兆フラグが“1”であった場合、ステップST19に進む。異常発生予兆フラグが“1”でない場合は、ステップST21に進む。 If the data A acquired this time is not an abnormal pattern b that cannot normally occur in step ST12, the process proceeds to step ST18. In step ST18, the detection unit 305 confirms whether the abnormality occurrence sign flag is set to “1”. If the abnormality occurrence sign flag is "1", the process proceeds to step ST19. If the abnormality occurrence sign flag is not "1", the process proceeds to step ST21.
 ステップST19において、検出部305は、今回取得のデータAを、記憶部306に記憶されている診断マトリックスにおける事後パターンcと照合する。具体的には、図2および図3に示す診断マトリックスにおける事後パターンcと照合する。そして、データAが事後パターンcと合致した場合はステップST20に進む。また、データAが事後パターンcと合致しない場合は、ステップST21に進む。 In step ST19, the detection unit 305 collates the data A acquired this time with the post-pattern c in the diagnostic matrix stored in the storage unit 306. Specifically, it collates with the posterior pattern c in the diagnostic matrix shown in FIGS. 2 and 3. Then, if the data A matches the post-pattern c, the process proceeds to step ST20. If the data A does not match the posterior pattern c, the process proceeds to step ST21.
 ステップST20において、検出部305は、ステップST19で照合した診断マトリックスにおいて、事前パターンa、異常パターンb、事後パターンcと対応する異常状態eがノイズハイもしくはノイズロウでない事を判定する。異常状態eがノイズハイもしくはノイズロウでない場合は、ステップST22に進む。異常状態eがノイズハイもしくはノイズロウである場合は、ステップST21に進む。ノイズハイもしくはノイズロウである場合に、ステップST21に進む理由は、ノイズ出力となった相のホールセンサ5が特定された場合に、特定された相のホールセンサ5の出力を無視してモータ200の駆動を継続するためである。 In step ST20, the detection unit 305 determines in the diagnostic matrix collated in step ST19 that the abnormal state e corresponding to the pre-pattern a, the abnormal pattern b, and the post-pattern c is not noise high or noise low. If the abnormal state e is not noise high or noise low, the process proceeds to step ST22. If the abnormal state e is noise high or noise low, the process proceeds to step ST21. The reason for proceeding to step ST21 in the case of noise high or noise low is that when the hall sensor 5 of the phase that has become the noise output is specified, the output of the hall sensor 5 of the specified phase is ignored and the motor 200 is driven. This is to continue.
 ステップST22において、検出部305は、異常発生確定フラグに“1”を設定する。すなわち、ステップST19で照合した診断マトリックスにおいて、事前パターンa、異常パターンb、事後パターンcと対応する異常状態eが、High固着もしくはLow固着であることが確定する。次に、ステップST16に進む。
 また、ステップST21では、異常発生予兆フラグを“0”に設定して、前述ステップST16を介してステップ17に移行する。
In step ST22, the detection unit 305 sets “1” for the abnormality occurrence confirmation flag. That is, in the diagnostic matrix collated in step ST19, it is determined that the abnormal state e corresponding to the pre-pattern a, the abnormal pattern b, and the post-pattern c is high-fixed or low-fixed. Next, the process proceeds to step ST16.
Further, in step ST21, the abnormality occurrence sign flag is set to "0", and the process proceeds to step 17 via the above-mentioned step ST16.
 ステップST17で、検出部305は、異常確定フラグが“1”に設定された状態であると判定された場合は、ステップST23に進み、以後、モータ制御装置100は、故障モードの処理に移行する。 If it is determined in step ST17 that the abnormality confirmation flag is set to "1", the detection unit 305 proceeds to step ST23, and thereafter, the motor control device 100 shifts to the failure mode processing. ..
 ステップST23において、検出部305は、図2および図3に示す診断マトリックスを照合して、異常相pがどの相であるかを特定する。なお、特定した異常相pを図示省略した上位の制御装置へ通知してもよい。この場合、異常相pを特定することによりメンテナンス性向上させることができる。そして、次にステップST24に進む。 In step ST23, the detection unit 305 collates the diagnostic matrices shown in FIGS. 2 and 3 to identify which phase the abnormal phase p is. The specified abnormal phase p may be notified to a higher-level control device (not shown). In this case, maintainability can be improved by specifying the abnormal phase p. Then, the process proceeds to step ST24.
 ステップST24において、推定処理部307は、検出部305で特定された異常相pに基づいて、特定された異常相pを含めた各相のホールセンサ5の出力値のパターンからモータ200の回転数(角速度ω’)および電気角位相θ’を推定する推定処理を実行する。推定処理部307の推定処理の詳細は後述する。 In step ST24, the estimation processing unit 307 is based on the abnormal phase p specified by the detection unit 305, and the rotation speed of the motor 200 is based on the pattern of the output value of the Hall sensor 5 of each phase including the specified abnormal phase p. The estimation process for estimating (angular velocity ω') and the electric angle phase θ'is executed. The details of the estimation processing of the estimation processing unit 307 will be described later.
 そして、異常発生確定フラグが“1”に設定されている故障モードでは、速度制御トルク演算部301は、推定処理部307より出力された回転数(角速度ω’)に基づき、必要なトルク指令値Trを演算する。さらに、異常発生確定フラグが“1”に設定されている状態では、駆動電流制御部302は、電流センサ7より検出したモータ駆動電流309が、トルク指令値Trで示される電流指令値と同等になるように、推定処理部307より出力された電気角位相θ’に基づき、ドライバIC2に出力するPWMデューティ310を設定する。これにより、ホールセンサ5の出力値に異常が発生しても、モータ200の駆動を継続させ、リンプホームに対応することが可能になる。 Then, in the failure mode in which the abnormality occurrence confirmation flag is set to "1", the speed control torque calculation unit 301 has a required torque command value based on the rotation speed (angular velocity ω') output from the estimation processing unit 307. Calculate Tr. Further, in the state where the abnormality occurrence confirmation flag is set to "1", the motor drive current 309 detected by the current sensor 7 in the drive current control unit 302 becomes equivalent to the current command value indicated by the torque command value Tr. Therefore, the PWM duty 310 to be output to the driver IC 2 is set based on the electric angle phase θ'output from the estimation processing unit 307. As a result, even if an abnormality occurs in the output value of the Hall sensor 5, the motor 200 can be continuously driven to cope with the limp home.
 図5(a)~図5(i)は正常時のホールセンサ5の出力パターンとC相のホールセンサ5が天絡故障した場合の動作を示すタイムチャートである。図5(a)は正常時のA相、図5(b)は正常時のB相、図5(c)は正常時のC相のホールセンサ5の信号である。図5(d)~図5(i)は一例としてC相が天絡故障した場合を示す。図5(d)はA相、図5(e)はB相、図5(f)はC相のホールセンサ5の信号である。図5(g)はエッジ割込みのタイミング信号、図5(h)は異常発生予兆フラグ、図5(i)は異常確定フラグの波形を示している。 5 (a) to 5 (i) are time charts showing the output pattern of the hall sensor 5 in the normal state and the operation when the C-phase hall sensor 5 has a ceiling fault. 5 (a) is a signal of the A phase in the normal state, FIG. 5 (b) is the signal of the B phase in the normal state, and FIG. 5 (c) is the signal of the C phase Hall sensor 5 in the normal state. 5 (d) to 5 (i) show, for example, a case where the C phase has a ceiling fault. 5 (d) is an A phase signal, FIG. 5 (e) is a B phase signal, and FIG. 5 (f) is a C phase Hall sensor 5 signal. 5 (g) shows the timing signal of the edge interrupt, FIG. 5 (h) shows the waveform of the abnormality occurrence sign flag, and FIG. 5 (i) shows the waveform of the abnormality confirmation flag.
 図5(a)~図5(c)に示すように、正常時はA相~C相のホールセンサ5の信号は、電気角120°毎に規則正しく出力されている。 As shown in FIGS. 5 (a) to 5 (c), the signals of the A-phase to C-phase Hall sensors 5 are regularly output at every 120 ° electric angle under normal conditions.
 図5(f)に示すように、一例としてC相のホールセンサ5が天絡故障した場合において、地点PC51にてC相の信号レベルがロウからハイにレベル変化する。この時点のA相、B相、C相のパターン(H、L、H)が割込み処理にて検出部305に記憶される。
尚、このデータは後の事前パターンaとなる。
As shown in FIG. 5 (f), as an example, when the C-phase Hall sensor 5 has a ceiling fault, the C-phase signal level changes from low to high at the point PC 51. The A-phase, B-phase, and C-phase patterns (H, L, H) at this point in time are stored in the detection unit 305 by interrupt processing.
It should be noted that this data becomes a later pre-pattern a.
 図5(e)に示すように、地点PC52にてB相の信号レベルがロウからハイにレベル変化することで、この時点のA相、B相、C相のパターン(H、H、H)が割込み処理にて検出部305に記憶される。このパターンは通常では発生しえないパターンであり、これを異常パターンbとする。異常パターンbが発生したことにより、図5(h)に示すように、異常発生予兆フラグを“1”にセットする。 As shown in FIG. 5 (e), the signal level of the B phase changes from low to high at the point PC 52, so that the A phase, B phase, and C phase patterns (H, H, H) at this point in time are used. Is stored in the detection unit 305 by interrupt processing. This pattern is a pattern that cannot normally occur, and this is referred to as an abnormal pattern b. Since the abnormality pattern b has occurred, the abnormality occurrence sign flag is set to “1” as shown in FIG. 5 (h).
 図5(d)に示すように、地点PC53にてA相の信号レベルがハイからロウにレベル変化することで、この時点のA相、B相、C相のパターン(L、H、H)が割込み処理にて検出部305に記憶される。尚、このデータは地点PC52にて発生した異常パターンの次に発生したレベル変化であるため事後パターンcとなる。異常発生予兆フラグが“1”にセットされた状態で、事前パターンa(H、L、H)、異常パターンb(H、H、H)、事後パターンc(L、H、H)の組み合わせが診断マトリックスに該当する為、図5
(i)に示すように、異常確定フラグを“1”にセットする。そして、診断マトリックスを参照することにより、異常状態eはホールセンサ5が天絡故障であり、異常相pはC相であることを特定する。
As shown in FIG. 5D, the signal level of the A phase changes from high to low at the point PC53, so that the A phase, B phase, and C phase patterns (L, H, H) at this point in time are used. Is stored in the detection unit 305 by interrupt processing. Since this data is the level change that occurred next to the abnormal pattern that occurred at the point PC 52, it is the post-pattern c. With the abnormality occurrence sign flag set to "1", the combination of the pre-pattern a (H, L, H), the anomaly pattern b (H, H, H), and the post-pattern c (L, H, H) Since it corresponds to the diagnostic matrix, Fig. 5
As shown in (i), the abnormality confirmation flag is set to "1". Then, by referring to the diagnostic matrix, it is specified that the Hall sensor 5 has a ceiling fault and the abnormal phase p is the C phase in the abnormal state e.
 図6(a)~図6(i)は正常時のホールセンサ5の出力パターンとC相のホールセンサ5にハイノイズが注入された場合の動作を示すタイムチャートである。図6(a)は正常時のA相、図6(b)は正常時のB相、図6(c)は正常時のC相のホールセンサ5の信号である。図6(d)~図6(i)は一例としてC相のホールセンサ5にハイノイズが注入された場合を示す。図6(d)はA相、図6(e)はB相、図6(f)はC相のホールセンサ5の信号である。図6(g)はエッジ割込みのタイミング信号、図6(h)は異常発生予兆フラグ、図6(i)は異常確定フラグの波形を示している。 6 (a) to 6 (i) are time charts showing the output pattern of the hall sensor 5 in the normal state and the operation when high noise is injected into the hall sensor 5 of the C phase. 6 (a) is a signal of the A phase in the normal state, FIG. 6 (b) is the signal of the B phase in the normal state, and FIG. 6 (c) is the signal of the C phase Hall sensor 5 in the normal state. 6 (d) to 6 (i) show a case where high noise is injected into the C-phase Hall sensor 5 as an example. 6 (d) is an A phase signal, FIG. 6 (e) is a B phase signal, and FIG. 6 (f) is a C phase Hall sensor 5 signal. 6 (g) shows the timing signal of the edge interrupt, FIG. 6 (h) shows the waveform of the abnormality occurrence sign flag, and FIG. 6 (i) shows the waveform of the abnormality confirmation flag.
 図6(f)に示すように、C相ホールセンサ5にハイノイズが注入された場合において、図6(e)に示すように、地点PC61においてB相の信号レベルがロウからハイにレベル変化する。この時点のA相、B相、C相のパターン(H、H、L)が割込み処理にて検出部305に記憶される。尚、このデータは後の事前パターンaとなる。 As shown in FIG. 6 (f), when high noise is injected into the C-phase Hall sensor 5, the signal level of phase B changes from low to high at the point PC 61 as shown in FIG. 6 (e). .. The A-phase, B-phase, and C-phase patterns (H, H, L) at this point in time are stored in the detection unit 305 by interrupt processing. It should be noted that this data becomes a later pre-pattern a.
 図6(f)に示すように、地点PC62にてC相の信号レベルがロウからハイにレベル変化することで、この時点のA相、B相、C相のパターン(H、H、H)が割込み処理にて検出部305に記憶される。このパターンは通常では起きえないパターンであり、これは異常パターンbである。異常パターンbが発生したことにより、図6(h)に示すように、異常発生予兆フラグを“1”にセットする。 As shown in FIG. 6 (f), the signal level of the C phase changes from low to high at the point PC62, so that the A phase, B phase, and C phase patterns (H, H, H) at this point in time are used. Is stored in the detection unit 305 by interrupt processing. This pattern is a pattern that cannot normally occur, and this is an abnormal pattern b. Since the abnormality pattern b has occurred, the abnormality occurrence sign flag is set to “1” as shown in FIG. 6 (h).
 図6(f)に示すように、地点PC63にてC相の信号レベルがハイからロウにレベル変化することで、この時点のA相、B相、C相のパターン(H、H、L)が割込み処理にて検出部305に記憶される。尚、このデータは地点PC62にて発生した異常パターンbの次に発生したレベル変化であるため事後パターンcとなる。異常発生予兆フラグがセットされた状態で、事前パターンa(H、H、L)、異常パターンb(H、H、H)、事後パターンc(H、H、L)の組み合わせが診断マトリックスに該当する。しかし、診断マトリックスを参照すると、異常状態eがノイズハイであるので、図6(h)に示すように、異常発生予兆フラグ(h)をクリアする。 As shown in FIG. 6 (f), the signal level of the C phase changes from high to low at the point PC63, so that the A phase, B phase, and C phase patterns (H, H, L) at this time point. Is stored in the detection unit 305 by interrupt processing. Since this data is the level change that occurred next to the abnormality pattern b that occurred at the point PC62, it becomes the post-pattern c. With the abnormality occurrence sign flag set, the combination of the pre-pattern a (H, H, L), the abnormality pattern b (H, H, H), and the post-pattern c (H, H, L) corresponds to the diagnostic matrix. do. However, referring to the diagnostic matrix, since the abnormal state e is noise high, the abnormality occurrence sign flag (h) is cleared as shown in FIG. 6 (h).
 このように、ある相に天絡或いは地絡などの故障が発生している場合、ホールセンサ5からは必ず規則性のあるパターンが出力される為、一連の動きをトレースする事で、ノイズ等により瞬間的に異常パターンbが出力されたとしても異常確定とは完全に区別することが可能であるためロバスト性に優れる。 In this way, when a failure such as a sky fault or a ground fault occurs in a certain phase, a regular pattern is always output from the Hall sensor 5, so by tracing a series of movements, noise, etc. Even if the abnormality pattern b is output instantaneously, it can be completely distinguished from the abnormality confirmation, so that it is excellent in robustness.
<推定処理部307の推定処理>
 モータ制御装置100は、異常確定フラグが“1”に設定された後には、推定処理部307による推定処理を実行する。以下に推定処理部307の推定処理について説明する。
 図7は、正常時におけるホールセンサ5の出力値のパターンの例を示す。図8は、異常時におけるホールセンサ5の出力値のパターンの一例を示す。
<Estimation processing of estimation processing unit 307>
After the abnormality determination flag is set to "1", the motor control device 100 executes the estimation process by the estimation process unit 307. The estimation process of the estimation processing unit 307 will be described below.
FIG. 7 shows an example of the pattern of the output value of the Hall sensor 5 in the normal state. FIG. 8 shows an example of the pattern of the output value of the Hall sensor 5 at the time of abnormality.
 正常時には、モータ制御装置100に取り込まれるパターンは、図7に示すような(H、L、H)(H、L、L)(H、H、L)(L、H、L)(L、H、H)および(L、L、H)の順である。一方、前述のステップST23において、異常相pが特定され、例えばA相が天絡故障した場合は、図8に示すような(H、L、H)(H、L、L)(H、H、L)および(H、H、H)の順となる。このような異常確定状態におけるリンプホームの動作を以下に説明する。 In the normal state, the patterns taken into the motor control device 100 are (H, L, H) (H, L, L) (H, H, L) (L, H, L) (L, as shown in FIG. 7). H, H) and (L, L, H) in that order. On the other hand, in the above-mentioned step ST23, when the abnormal phase p is specified and, for example, the phase A has a sky fault, (H, L, H) (H, L, L) (H, H) as shown in FIG. , L) and (H, H, H). The operation of the limp home in such an abnormally confirmed state will be described below.
 図9は、本実施形態における正常時の6パターンと各パターンにおける電気角位相の範囲と推定位相中央値を示す図である。
 図9に示すように、A相、B相、C相が(H、L、H)の場合は、電気角位相の範囲は、0°~60°であり、推定位相中央値は、30°である。A相、B相、C相が(H、L、L)の場合は、電気角位相の範囲は、60°~120°であり、推定位相中央値は、90°である。A相、B相、C相が(H、H、L)の場合は、電気角位相の範囲は、120°~180°であり、推定位相中央値は、150°である。A相、B相、C相が(L、H、L)の場合は、電気角位相の範囲は、180°~240°であり、推定位相中央値は、210°である。A相、B相、C相が(L、H、H)の場合は、電気角位相の範囲は、240°~300°であり、推定位相中央値は、270°である。A相、B相、C相が(L、L、H)の場合は、電気角位相の範囲は、300°~0°であり、推定位相中央値は、330°である。
FIG. 9 is a diagram showing the six patterns in the normal state in the present embodiment, the range of the electric angle phase in each pattern, and the estimated median phase value.
As shown in FIG. 9, when the A phase, the B phase, and the C phase are (H, L, H), the range of the electric angle phase is 0 ° to 60 °, and the estimated median phase value is 30 °. Is. When the A phase, the B phase, and the C phase are (H, L, L), the range of the electric angle phase is 60 ° to 120 °, and the estimated median phase is 90 °. When the A phase, the B phase, and the C phase are (H, H, L), the range of the electric angle phase is 120 ° to 180 °, and the estimated median phase is 150 °. When the A phase, the B phase, and the C phase are (L, H, L), the range of the electric angle phase is 180 ° to 240 °, and the estimated median phase is 210 °. When the A phase, the B phase, and the C phase are (L, H, H), the range of the electric angle phase is 240 ° to 300 °, and the estimated median phase is 270 °. When the A phase, the B phase, and the C phase are (L, L, H), the range of the electric angle phase is 300 ° to 0 °, and the estimated median phase is 330 °.
 図10は、本実施形態におけるA相が天絡故障した場合の4パターンと各パターンにおける電気角位相の範囲と推定位相中央値を示す図である。
 図10に示すように、A相、B相、C相が(H、L、H)の場合は、電気角位相の範囲は、300°~60°であり、推定位相中央値は、0°である。A相、B相、C相が(H、L、L)の場合は、電気角位相の範囲は、60°~120°であり、推定位相中央値は、90°である。A相、B相、C相が(H、H、L)の場合は、電気角位相の範囲は、120°~240°であり、推定位相中央値は、180°である。A相、B相、C相が(H、H、H)の場合は、電気角位相の範囲は、240°~300°であり、推定位相中央値は、270°である。
FIG. 10 is a diagram showing four patterns in the case where the A phase in the present embodiment has a ceiling fault, the range of the electric angular phase in each pattern, and the estimated median phase value.
As shown in FIG. 10, when the A phase, the B phase, and the C phase are (H, L, H), the range of the electric angle phase is 300 ° to 60 °, and the estimated median phase value is 0 °. Is. When the A phase, the B phase, and the C phase are (H, L, L), the range of the electric angle phase is 60 ° to 120 °, and the estimated median phase is 90 °. When the A phase, the B phase, and the C phase are (H, H, L), the range of the electric angle phase is 120 ° to 240 °, and the estimated median phase is 180 °. When the A phase, the B phase, and the C phase are (H, H, H), the range of the electric angle phase is 240 ° to 300 °, and the estimated median phase is 270 °.
 まず、図10に示す(H、H,H)のパターンが出力される時は、電気角位相の範囲は240°~300°である。この電気角位相の範囲は図9に示す正常時における(L,H,H)のパターンのみと同一であることが分かる。この場合は、推定位相中央値は270°である。 First, when the pattern (H, H, H) shown in FIG. 10 is output, the range of the electrical angle phase is 240 ° to 300 °. It can be seen that the range of this electrical angle phase is the same as only the pattern (L, H, H) in the normal state shown in FIG. In this case, the estimated median phase is 270 °.
 一方、図10に示す(H、H、L)発生時においては、図9に示す正常時の(H,H,L)に加えて(L、H、L)のパターンの可能性を含む。このため、電気角位相の範囲は150°±30°および210°±30°を含むため、180°±60°であると判断することが可能である。この場合は、推定位相中央値は180°である。 On the other hand, when (H, H, L) is generated as shown in FIG. 10, the possibility of the pattern of (L, H, L) is included in addition to the normal (H, H, L) shown in FIG. Therefore, since the range of the electrical angle phase includes 150 ° ± 30 ° and 210 ° ± 30 °, it can be determined that it is 180 ° ± 60 °. In this case, the estimated median phase is 180 °.
 同様に、図10に示す(H、L、H)発生時においては、図9に示す正常時の(H,L,H)に加えて(L、L、H)の領域の可能性を含むため、電気角位相の範囲は30°±30°および330°±30°を含むため、0°±60°であると判断することが可能である。この場合は、推定位相中央値は0°である。 Similarly, at the time of occurrence of (H, L, H) shown in FIG. 10, the possibility of the region of (L, L, H) is included in addition to the normal (H, L, H) shown in FIG. Therefore, since the range of the electrical angle phase includes 30 ° ± 30 ° and 330 ° ± 30 °, it can be determined that it is 0 ° ± 60 °. In this case, the estimated median phase is 0 °.
 以上より、ホールセンサ5の出力値のパターンが持つ電気角位相の範囲は異なるが、パルス変化時の基準位相(電気角位相領域の端)は認識可能であるため、推定演算では基準位相から次の基準位相まで、或いは中央値を推定すれば良い。前述のようにパターンより凡その電気角位相が得られるため、これを用いた電気角位相の範囲内の電気角位相の推定演算について次に説明する。 From the above, although the range of the electric angle phase of the output value pattern of the Hall sensor 5 is different, the reference phase (edge of the electric angle phase region) at the time of pulse change can be recognized. It suffices to estimate up to the reference phase of, or the median value. Since the electric angle phase can be obtained from the pattern as described above, the estimation calculation of the electric angle phase within the range of the electric angle phase using this will be described next.
 推定位相は基本的には基準位相からどの程度位相が進んだかを演算すればよいため、モータ200の電気角周波数を演算する必要がある。モータ200の電気角周波数は正常なホールセンサ5の少なくとも1つのパルス信号の立ち上がりエッジから立ち上がりエッジまでの所要時間、或いは立下りエッジから立下りエッジまでの所要時間を計算する。これは、それぞれは電気角360°に要する時間となるため、以下の式(1)の演算によりモータ200の電気角周波数fが計算できる。電気角周波数fが求まれば、角速度ω’=2πfが求まる。なお、時間計測には例えばマイコンである制御部3のフリーランニングタイマを使用し、エッジ発生時にタイマキャプチャし各エッジ間の相対時間を求めることでも可能である。
  f[Hz]=1/パルスエッジ間所要時間[sec]・・・(1)
Since the estimated phase basically needs to calculate how much the phase has advanced from the reference phase, it is necessary to calculate the electric angular frequency of the motor 200. The electric angular frequency of the motor 200 calculates the time required from the rising edge to the rising edge of at least one pulse signal of the normal Hall sensor 5, or the time required from the falling edge to the falling edge. Since each of these is the time required for the electric angle of 360 °, the electric angular frequency f of the motor 200 can be calculated by the calculation of the following equation (1). If the electric angular frequency f is obtained, the angular velocity ω'= 2πf can be obtained. It is also possible to use, for example, a free running timer of the control unit 3 which is a microcomputer for time measurement, capture the timer when an edge occurs, and obtain the relative time between each edge.
f [Hz] = 1 / Time required between pulse edges [sec] ... (1)
 マイコンの演算周期Tsあたりの演算周期毎位相変化量Δθは、電気角周波数より以下の式(2)により求まる。
  Δθ[°/Ts]=360°×(演算周期×f)・・・(2)
The phase change amount Δθ for each calculation cycle per calculation cycle Ts of the microcomputer can be obtained from the electric angular frequency by the following equation (2).
Δθ [° / Ts] = 360 ° × (calculation cycle × f) ・ ・ ・ (2)
 そして、マイコンの演算周期Tsあたりの演算周期毎位相変化量Δθを積分することにより現在の電気角位相θ’は以下の式(3)により求まる位相であると推定される。
  θ’=パルス変化時基準位相+∫ΔθdTs・・・(3)
Then, by integrating the phase change amount Δθ for each calculation cycle per the calculation cycle Ts of the microcomputer, it is estimated that the current electric angle phase θ'is the phase obtained by the following equation (3).
θ'= reference phase at pulse change + ∫ΔθdTs ・ ・ ・ (3)
 なお、パルス変化時基準位相の値は、いずれかのパルスエッジが入力された都度、パターンに応じて更新するものとする。以上により、推定処理部307によるモータ200の回転数(角速度ω’)および電気角位相θ’の推定演算が可能であり、これらを用いてモータ200の駆動を継続することができる。 The value of the reference phase at the time of pulse change shall be updated according to the pattern each time any pulse edge is input. As described above, the estimation processing unit 307 can estimate the rotation speed (angular velocity ω') and the electric angle phase θ'of the motor 200, and can continue to drive the motor 200 using these.
 次に回転停止時やパルスレベル変化周期が長い場合における位相の推定について説明する。回転停止時においては前述のように電気角周波数基準で推定演算が出来ないため、図10に示すようなパターンによる電気角位相の範囲判定により推定位相中央値を決定する。推定位相は制御部3にて取得した各ホールセンサ5値の状態に応じて、電気角位相の範囲に分類し、その中央値を推定位相とする。モータ200の始動時にはこの推定位相を使用し起動させ、回転数が得られた時点で前述の推定演算に切り替えることが望ましい。 Next, the phase estimation when the rotation is stopped or when the pulse level change cycle is long will be explained. Since the estimation calculation cannot be performed based on the electric angular frequency as described above when the rotation is stopped, the estimated median phase value is determined by determining the range of the electric angular phase according to the pattern shown in FIG. The estimated phase is classified into the range of the electric angle phase according to the state of each Hall sensor 5 value acquired by the control unit 3, and the median value thereof is used as the estimated phase. It is desirable to start the motor 200 using this estimated phase when starting the motor 200, and switch to the above-mentioned estimation calculation when the rotation speed is obtained.
 なお、以上の実施形態においてはモータ200の回転数が正転の場合について述べたものであるが、逆転時にも同様な考えにより診断が可能である。また、異常パターンを(H,H,H)および(L、L、L)として診断マトリックスを提示したが、それ以外の異常パターンにおいても同様な考えで診断マトリックスを作成する事は可能である。 Although the above embodiment describes the case where the rotation speed of the motor 200 is normal rotation, it is possible to make a diagnosis based on the same idea even at the time of reverse rotation. Further, although the diagnostic matrix is presented with the abnormal patterns as (H, H, H) and (L, L, L), it is possible to create the diagnostic matrix with the same idea for other abnormal patterns.
 本実施形態によれば、各ホールセンサの出力値のうちの1つのホールセンサの出力値が異常になった場合に、モータ200の回転速度によらず、異常相を特定し、モータ200の駆動を継続することを可能にするモータ制御装置100を提供することができる。 According to the present embodiment, when the output value of one of the output values of each Hall sensor becomes abnormal, the abnormal phase is specified regardless of the rotation speed of the motor 200, and the motor 200 is driven. It is possible to provide a motor control device 100 that enables the continuation of the above.
 なお、制御部3は、速度制御トルク演算部301、駆動電流制御部302、速度/位相演算部303、センサ信号生成回路304、検出部305、記憶部306、および推定処理部307を備える構成で説明したが、これらはマイコン等のCPU、メモリなどを備えたコンピュータおよびプログラムにより構成してもよい。そして、図4のフローチャートで示したプログラムを、コンピュータにより実行することができる。そして、全部の処理、または一部の処理をハードロジック回路により実現してもよい。更に、このプログラムは、記憶媒体やデータ信号(搬送波)などの種々の形態のコンピュータ読み込み可能なコンピュータプログラム製品として供給してもよい。 The control unit 3 includes a speed control torque calculation unit 301, a drive current control unit 302, a speed / phase calculation unit 303, a sensor signal generation circuit 304, a detection unit 305, a storage unit 306, and an estimation processing unit 307. As described above, these may be configured by a computer and a program equipped with a CPU such as a microcomputer and a memory. Then, the program shown in the flowchart of FIG. 4 can be executed by a computer. Then, all or a part of the processing may be realized by a hard logic circuit. Further, the program may be supplied as a computer-readable computer program product in various forms such as a storage medium or a data signal (carrier wave).
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)モータ制御装置100は、ロータ4とロータ4の回転位置を検出する複数のホールセンサ5とを有する複数相のモータ200を駆動する。そして、モータ制御装置100は、複数のホールセンサ5の出力値の組み合わせにより表したホールセンサ5の出力値の異常を示す異常パターンbと、異常パターンbが出現する直前の事前パターンaと、異常パターンbが出現した直後の事後パターンcとを予め記憶する記憶部306と、複数のホールセンサ5より出力された複数のホールセンサ5の出力値が記憶部306に記憶された異常パターンbであるかを検出する検出部305と、を備え、検出部305は、複数のホールセンサ5の出力値が記憶部306に記憶された異常パターンbであることを検出した場合、異常パターンbが出現する直前のホールセンサ5の出力値が記憶部306に記憶された事前パターンaであり、且つ、異常パターンbが出現した直後のホールセンサ5の出力値が記憶部306に記憶された事後パターンcであるかを照合し、検出部305による照合の結果に基づいてモータ200を駆動する。これにより、ホールセンサ5の出力の異常を精度よく検出することができる。
According to the embodiment described above, the following effects can be obtained.
(1) The motor control device 100 drives a multi-phase motor 200 having a rotor 4 and a plurality of Hall sensors 5 for detecting the rotation position of the rotor 4. Then, the motor control device 100 includes an abnormality pattern b indicating an abnormality in the output value of the Hall sensor 5 represented by a combination of output values of the plurality of Hall sensors 5, a pre-pattern a immediately before the appearance of the abnormality pattern b, and an abnormality. The storage unit 306 that stores the post-pattern c immediately after the appearance of the pattern b in advance, and the abnormal pattern b in which the output values of the plurality of Hall sensors 5 output from the plurality of Hall sensors 5 are stored in the storage unit 306. When the detection unit 305 detects that the output value of the plurality of Hall sensors 5 is the abnormality pattern b stored in the storage unit 306, the abnormality pattern b appears. The output value of the Hall sensor 5 immediately before is the pre-pattern a stored in the storage unit 306, and the output value of the Hall sensor 5 immediately after the appearance of the abnormal pattern b is the post-pattern c stored in the storage unit 306. The presence or absence is collated, and the motor 200 is driven based on the collation result by the detection unit 305. This makes it possible to accurately detect an abnormality in the output of the Hall sensor 5.
(2)モータ制御装置100におけるモータ制御方法は、ロータ4とロータ4の回転位置を検出する複数のホールセンサ5とを有する複数相のモータ200を駆動する。モータ制御方法は、複数のホールセンサ5の出力値の組み合わせにより表したホールセンサ5の出力値の異常を示す異常パターンbと、異常パターンbが出現する直前の事前パターンaと、異常パターンbが出現した直後の事後パターンcとを予め記憶し、複数のホールセンサ5より出力された複数のホールセンサ5の出力値が記憶された異常パターンbであるかを検出し、複数のホールセンサ5の出力値が記憶された異常パターンbであることを検出した場合、異常パターンbが出現する直前のホールセンサ5の出力値が記憶された事前パターンaであり、且つ、異常パターンbが出現した直後のホールセンサ5の出力値が記憶された事後パターンcであるかを照合し、照合の結果に基づいてモータ200を駆動する。これにより、ホールセンサ5の出力の異常を精度よく検出することができる。 (2) The motor control method in the motor control device 100 drives a multi-phase motor 200 having a rotor 4 and a plurality of Hall sensors 5 for detecting the rotation position of the rotor 4. The motor control method includes an abnormality pattern b indicating an abnormality in the output value of the Hall sensor 5 represented by a combination of output values of a plurality of Hall sensors 5, a pre-pattern a immediately before the appearance of the abnormality pattern b, and an abnormality pattern b. The post-pattern c immediately after the appearance is stored in advance, and it is detected whether the output values of the plurality of Hall sensors 5 output from the plurality of Hall sensors 5 are the stored abnormality pattern b, and the plurality of Hall sensors 5 are stored. When it is detected that the output value is the stored abnormality pattern b, the output value of the Hall sensor 5 immediately before the abnormality pattern b appears is the stored pre-pattern a, and immediately after the abnormality pattern b appears. It is collated whether the output value of the Hall sensor 5 is the stored post-pattern c, and the motor 200 is driven based on the collation result. This makes it possible to accurately detect an abnormality in the output of the Hall sensor 5.
(変形例)
 本発明は、上述の実施形態を次のように変形して実施することができる。
(1)上述の実施形態では三相モータの例で説明したが、三相に限らず複数相のモータに適用することができる。複数相のモータの場合は、複数のホールセンサの出力値の組み合わせにより表したパターンに基づいて、異常パターンと、事前パターンと、事後パターンとを予め記憶して、上述した実施形態を適用することができる。
(Modification example)
The present invention can be implemented by modifying the above-described embodiment as follows.
(1) Although the above-described embodiment has been described with the example of a three-phase motor, the present invention can be applied not only to a three-phase motor but also to a multi-phase motor. In the case of a multi-phase motor, the abnormal pattern, the pre-pattern, and the post-pattern are stored in advance based on the pattern represented by the combination of the output values of the plurality of Hall sensors, and the above-described embodiment is applied. Can be done.
 本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と変形例を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and the modified example.
 1・・・インバータ、2・・・ドライバIC、3・・・制御部、4・・・ロータ、5・・・ホールセンサ、6・・・ステータ、7・・・電流センサ、100・・・モータ制御装置、200・・・モータ、301・・・速度制御トルク演算部、302・・・駆動電流制御部、303・・・速度/位相演算部、304・・・センサ信号生成回路、305・・・検出部、306・・・記憶部、307・・・推定処理部、308・・・速度指令値、309・・・モータ駆動電流、310・・・PWMデューティ、311・・・ゲートオフ要求信号、501・・・A相ホールセンサ信号、502・・・B相ホールセンサ信号、503・・・C相ホールセンサ信号。
 
1 ... Inverter, 2 ... Driver IC, 3 ... Control unit, 4 ... Rotor, 5 ... Hall sensor, 6 ... Stator, 7 ... Current sensor, 100 ... Motor control device, 200 ... motor, 301 ... speed control torque calculation unit, 302 ... drive current control unit, 303 ... speed / phase calculation unit, 304 ... sensor signal generation circuit, 305.・ ・ Detection unit, 306 ・ ・ ・ Storage unit, 307 ・ ・ ・ Estimating processing unit, 308 ・ ・ ・ Speed command value, 309 ・ ・ ・ Motor drive current, 310 ・ ・ ・ PWM duty, 311 ・ ・ ・ Gate off request signal , 501 ... A-phase hall sensor signal, 502 ... B-phase hall sensor signal, 503 ... C-phase hall sensor signal.

Claims (8)

  1.  ロータと前記ロータの回転位置を検出する複数のホールセンサとを有する複数相のモータを駆動するモータ制御装置であって、
     複数の前記ホールセンサの出力値の組み合わせにより表したホールセンサの出力値の異常を示す異常パターンと、前記異常パターンが出現する直前の事前パターンと、前記異常パターンが出現した直後の事後パターンとを予め記憶する記憶部と、
     複数の前記ホールセンサより出力された複数の前記ホールセンサの出力値が前記記憶部に記憶された前記異常パターンであるかを検出する検出部と、を備え、
     前記検出部は、複数の前記ホールセンサの出力値が前記記憶部に記憶された前記異常パターンであることを検出した場合、前記異常パターンが出現する直前の前記ホールセンサの出力値が前記記憶部に記憶された前記事前パターンであり、且つ、前記異常パターンが出現した直後の前記ホールセンサの出力値が前記記憶部に記憶された前記事後パターンであるかを照合し、
     前記検出部による前記照合の結果に基づいて前記モータを駆動するモータ制御装置。
    A motor control device for driving a multi-phase motor having a rotor and a plurality of Hall sensors for detecting the rotational position of the rotor.
    An abnormality pattern indicating an abnormality in the output value of the Hall sensor represented by a combination of the output values of the plurality of Hall sensors, a pre-pattern immediately before the appearance of the abnormality pattern, and a post-pattern immediately after the appearance of the abnormality pattern are shown. A storage unit that is stored in advance and
    A detection unit for detecting whether or not the output value of the plurality of Hall sensors output from the plurality of Hall sensors is the abnormality pattern stored in the storage unit is provided.
    When the detection unit detects that the output value of the plurality of Hall sensors is the abnormality pattern stored in the storage unit, the output value of the Hall sensor immediately before the appearance of the abnormality pattern is the storage unit. It is collated whether the pre-pattern stored in the storage unit and the output value of the Hall sensor immediately after the abnormal pattern appears is the post-pattern stored in the storage unit.
    A motor control device that drives the motor based on the result of the collation by the detection unit.
  2.  請求項1に記載のモータ制御装置において、
     前記検出部による前記照合の結果に基づいて、複数の前記ホールセンサのうち異常出力となった相のホールセンサを特定するモータ制御装置。
    In the motor control device according to claim 1,
    A motor control device that identifies a Hall sensor of a phase having an abnormal output among a plurality of the Hall sensors based on the result of the collation by the detection unit.
  3.  請求項2に記載のモータ制御装置において、
     前記異常出力となった相のホールセンサが特定された場合に、前記特定された前記ホールセンサを含めた複数の前記ホールセンサの出力値のパターンに基づいて、前記モータの回転数および電気角位相を推定し、前記推定した前記回転数および前記電気角位相に基づいて前記モータの駆動を継続するモータ制御装置。
    In the motor control device according to claim 2,
    When the Hall sensor of the phase having the abnormal output is specified, the rotation speed and the electric angle phase of the motor are based on the pattern of the output values of the plurality of Hall sensors including the specified Hall sensor. A motor control device that estimates and continues to drive the motor based on the estimated rotation speed and the electric angle phase.
  4.  請求項1から請求項3までのいずれか一項に記載のモータ制御装置において、
     前記記憶部は、ノイズによって出現する前記事前パターンおよび前記事後パターンを予め記憶し、
     前記検出部による前記照合の結果に基づいて、複数の前記ホールセンサのうちノイズ出力となった相のホールセンサを特定するモータ制御装置。
    The motor control device according to any one of claims 1 to 3.
    The storage unit previously stores the pre-pattern and the post-pattern that appear due to noise, and stores the pre-pattern and the post-pattern.
    A motor control device that identifies a hall sensor of a phase that has become a noise output among a plurality of the hall sensors based on the result of the collation by the detection unit.
  5.  請求項4に記載のモータ制御装置において、
     前記ノイズ出力となった相のホールセンサが特定された場合に、前記特定された相の前記ホールセンサの出力を無視して前記モータの駆動を継続するモータ制御装置。
    In the motor control device according to claim 4,
    A motor control device that ignores the output of the Hall sensor of the specified phase and continues to drive the motor when the Hall sensor of the phase that has become the noise output is specified.
  6.  ロータと前記ロータの回転位置を検出する複数のホールセンサとを有する複数相のモータを駆動するモータ制御装置におけるモータ制御方法であって、
     複数の前記ホールセンサの出力値の組み合わせにより表したホールセンサの出力値の異常を示す異常パターンと、前記異常パターンが出現する直前の事前パターンと、前記異常パターンが出現した直後の事後パターンとを予め記憶し、
     複数の前記ホールセンサより出力された複数の前記ホールセンサの出力値が前記記憶された前記異常パターンであるかを検出し、
     複数の前記ホールセンサの出力値が前記記憶された前記異常パターンであることを検出した場合、前記異常パターンが出現する直前の前記ホールセンサの出力値が前記記憶された前記事前パターンであり、且つ、前記異常パターンが出現した直後の前記ホールセンサの出力値が前記記憶された前記事後パターンであるかを照合し、前記照合の結果に基づいて前記モータを駆動するモータ制御方法。
    A motor control method in a motor control device for driving a multi-phase motor having a rotor and a plurality of Hall sensors for detecting the rotation position of the rotor.
    An abnormality pattern indicating an abnormality in the output value of the Hall sensor represented by a combination of the output values of the plurality of Hall sensors, a pre-pattern immediately before the appearance of the abnormality pattern, and a post-pattern immediately after the appearance of the abnormality pattern are shown. Remember in advance,
    It is detected whether the output values of the plurality of Hall sensors output from the plurality of Hall sensors are the stored abnormal patterns.
    When it is detected that the output values of the plurality of Hall sensors are the stored abnormal patterns, the output values of the Hall sensors immediately before the appearance of the abnormal patterns are the stored prior patterns. A motor control method for collating whether the output value of the Hall sensor immediately after the appearance of the abnormal pattern is the stored post-event pattern, and driving the motor based on the result of the collation.
  7.  請求項6に記載のモータ制御方法において、
     前記照合の結果に基づいて、複数の前記ホールセンサのうち異常出力となった相のホールセンサを特定し、
     前記異常出力となった相のホールセンサが特定された場合に、前記特定された前記ホールセンサを含めた複数の前記ホールセンサの出力値のパターンに基づいて、前記モータの回転数および電気角位相を推定し、前記推定した前記回転数および前記電気角位相に基づいて前記モータの駆動を継続するモータ制御方法。
    In the motor control method according to claim 6,
    Based on the result of the collation, the Hall sensor of the phase having an abnormal output is identified among the plurality of Hall sensors.
    When the Hall sensor of the phase having the abnormal output is specified, the rotation speed and the electric angle phase of the motor are based on the pattern of the output values of the plurality of Hall sensors including the specified Hall sensor. A motor control method for estimating and continuing to drive the motor based on the estimated rotation speed and the electric angle phase.
  8.  請求項6または請求項7に記載のモータ制御方法において、
     ノイズによって出現する前記事前パターンおよび前記事後パターンを予め記憶し、
     前記照合の結果に基づいて、複数の前記ホールセンサのうちノイズ出力となった相のホールセンサを特定し、
     前記ノイズ出力となった相のホールセンサが特定された場合に、前記特定された相の前記ホールセンサの出力を無視して前記モータの駆動を継続するモータ制御方法。
     
    In the motor control method according to claim 6 or 7.
    The pre-pattern and the post-pattern that appear due to noise are stored in advance,
    Based on the result of the collation, the hall sensor of the phase that became the noise output is identified among the plurality of hall sensors.
    A motor control method in which, when a Hall sensor in a phase that has become a noise output is specified, the output of the Hall sensor in the specified phase is ignored and the motor is continued to be driven.
PCT/JP2021/004257 2020-06-05 2021-02-05 Motor control device and motor control method WO2021245985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-098917 2020-06-05
JP2020098917A JP2023102793A (en) 2020-06-05 2020-06-05 Motor controller and motor control method

Publications (1)

Publication Number Publication Date
WO2021245985A1 true WO2021245985A1 (en) 2021-12-09

Family

ID=78830394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004257 WO2021245985A1 (en) 2020-06-05 2021-02-05 Motor control device and motor control method

Country Status (2)

Country Link
JP (1) JP2023102793A (en)
WO (1) WO2021245985A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033928A (en) * 2004-07-13 2006-02-02 Hitachi Ltd Brushless motor
US20060261807A1 (en) * 2004-01-09 2006-11-23 Hr Textron, Inc. Motor state counting
WO2010128538A1 (en) * 2009-05-08 2010-11-11 三菱電機株式会社 Motor controller
JP2015092795A (en) * 2013-11-08 2015-05-14 株式会社ミツバ Brushless motor controller, and brushless motor control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060261807A1 (en) * 2004-01-09 2006-11-23 Hr Textron, Inc. Motor state counting
JP2006033928A (en) * 2004-07-13 2006-02-02 Hitachi Ltd Brushless motor
WO2010128538A1 (en) * 2009-05-08 2010-11-11 三菱電機株式会社 Motor controller
JP2015092795A (en) * 2013-11-08 2015-05-14 株式会社ミツバ Brushless motor controller, and brushless motor control method

Also Published As

Publication number Publication date
JP2023102793A (en) 2023-07-26

Similar Documents

Publication Publication Date Title
CN106063120B (en) The control device and control method of motor
US7719217B2 (en) Drive device for a brushless motor
JPH0972758A (en) Abnormality detector and detection method for resolver
US9979331B2 (en) Method for controlling a motor
CN104518715B (en) The control method of motor drive control device and motor drive control device
JPH08182103A (en) Fail-safe control system of drive motor for electric vehicle
CN104467562B (en) The control method of motor drive control apparatus and motor drive control apparatus
JP2001086660A (en) Detection of abnormality of charge system for automobile
JPH09172791A (en) Failure detection device for a.c. motor control circuit
US5635811A (en) Method and apparatus for standstill recognition when restarting a power converter-fed AC motor without a tachometer generator
JP2009207315A (en) Motor controller
US10135380B2 (en) AC rotary machine control apparatus
JPH0749779B2 (en) Throttle actuator controller
JP2008022645A (en) Motor controller, current sensor failure diagnosing method, and motor control method
WO2021245985A1 (en) Motor control device and motor control method
JP3724060B2 (en) Motor drive device and control method thereof
JP6493046B2 (en) Current sensor abnormality diagnosis device
JP4230443B2 (en) Synchronous motor drive device
JP2005049178A (en) Failure detection diagnostic system in motor drive system
JP3846599B2 (en) Motor control device and washing machine
CN101652922A (en) Fan motor controller and fan motor control method
JP6451533B2 (en) Current sensor abnormality diagnosis device
JP3806678B2 (en) Power supply device and motor control device using the same
JP3684940B2 (en) Anomaly detection system
JPH1023783A (en) Dc brushless motor drive method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP