JP3806267B2 - Polyimide film - Google Patents

Polyimide film Download PDF

Info

Publication number
JP3806267B2
JP3806267B2 JP13076399A JP13076399A JP3806267B2 JP 3806267 B2 JP3806267 B2 JP 3806267B2 JP 13076399 A JP13076399 A JP 13076399A JP 13076399 A JP13076399 A JP 13076399A JP 3806267 B2 JP3806267 B2 JP 3806267B2
Authority
JP
Japan
Prior art keywords
film
mol
polyamic acid
polyimide film
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13076399A
Other languages
Japanese (ja)
Other versions
JP2000319421A (en
Inventor
康充 宗像
田中  滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP13076399A priority Critical patent/JP3806267B2/en
Publication of JP2000319421A publication Critical patent/JP2000319421A/en
Application granted granted Critical
Publication of JP3806267B2 publication Critical patent/JP3806267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気記録テープ用ベースフィルムに好適な、高弾性で剛性と靱性を兼ね備えたポリイミドフィルムに関する。
【0002】
【従来の技術】
近年、情報技術分野の進展にともない、コンピューターサーバー等の記録容量も飛躍的に大きくなっている。同時に、それらのデータのバックアップ用の磁気記録テープの記録密度の大容量化が望まれている。従来、バックアップ用の磁気記録テープの支持体となるフィルムは、高弾性率なアラミドフィルムが使用されてきた。しかしながら、アラミドフィルムは、コストパフォーマンスが悪いことが指摘されてきた。そのため、アラミドフィルムよりも安価なポリイミドフィルムをベースフィルムに用いることが提案されてきた。磁気記録テープ用途のポリイミドフィルムに対しては、記録容量の拡大のために厚みの薄さが求められる。しかし、極度に厚みを薄くすると使用時の張力でテープが変形しやすくなるため、高弾性率も同時に求められる。特開昭62−280224においてポリイミドフィルムのカルボン酸二無水物系成分としてビフェニルテトラカルボン酸二無水物類を、またジアミン成分としてジアミノベンズアニリド類を用いる方法が開示されているが、この方法により得たポリイミドフィルムは高弾性率ではあるものの、フィルムが脆く靱性に欠けるという問題点があった。
【0003】
【発明が解決しようとする課題】
本発明の目的は、高弾性率で靱性の改善されたポリイミドフィルムを提供することである。具体的には、引張り試験において900kg/mm以上の高い弾性率を示しながら15%以上の高い破断時伸び率を保持するデータバックアップ磁気記録テープ用ポリイミドフィルムの提供を目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、ビフェニルテトラカルボン酸二無水物類、ジアミノベンズアニリド類の他にパラフェニレンジアミン類を反応させることにより上記問題を解決できることを見出した。すなわち本発明に係るポリイミドフィルムは一般式(1)で示されるビフェニルテトラカルボン酸二無水物類、一般式(2)で示されるジアミノベンズアニリド類及び一般式(3)で示されるパラフェニレンジアミン類を反応させて得られるポリイミドフィルムであって、該ジアミノベンズアニリド類がジアミン成分の5〜55モル%であり、該パラフェニレンジアミン類がジアミン成分の95〜45モル%であり、引張り伸び率が15%以上かつ弾性率が900kg/mm以上であることを特徴とするポリイミドフィルムを内容とする。
【0005】
【化4】

Figure 0003806267
【0006】
【化5】
Figure 0003806267
【0007】
【化6】
Figure 0003806267
【0008】
また、本発明に係るポリイミドフィルムは、前記ビフェニルテトラカルボン酸二無水物類が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物であり、前記ジアミノベンズアニリド類が4,4’−ジアミノベンズアニリドであることが好ましい。また、本発明に係るポリイミドフィルムは、前記パラフェニレンジアミン類がパラフェニレンジアミンであることが好ましい。
【0009】
【発明の実施の形態】
本発明にかかるポリイミドフィルムを製造する方法としては、先ずその前駆体であるポリアミド酸の重合を行い、得られたポリアミド酸を流延塗布などの方法によりフィルム化する方法が挙げられる。本発明のポリアミド酸の重合おいては一般式(1)で示される種々のビフェニルテトラカルボン酸二無水物類が利用できるが、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物が好ましい。またジアミノベンズアニリド類としては一般式(2)で示される種々の化合物が利用できるが、4,4’−ジアミノベンズアニリドの使用が好ましい。パラフェニレンジアミン類としては一般式(3)で示される種々の化合物が利用できるが、パラフェニレンジアミンの使用が好ましい。
【0010】
【化7】
Figure 0003806267
【0011】
【化8】
Figure 0003806267
【0012】
【化9】
Figure 0003806267
【0013】
本発明ではジアミン系成分としてジアミノベンズアニリド類とパラフェニレンジアミン類を利用する。各々の成分の全ジアミン系成分に対する仕込み比率については様々な選択が可能であるが、ジアミノベンズアニリド類が全ジアミン系成分の5モル%を下回ると、弾性率の向上作用が発現し難くなるため5モル%以上の仕込み比率とする方が好ましく、20モル%以上が更に好ましい。逆に55モル%を越えた場合、破断時伸び率の低下すなわち靱性の低下が起こるために55モル%以下の仕込み比率とする方が好ましく、40モル%以下が更に好ましい。一方、パラフェニレンジアミン類に関しては全ジアミン系成分に対して95〜45モル%の仕込み比率が好ましく、80〜60モル%が更に好ましい。
【0014】
一般的にポリアミド酸の重合には種々の有機溶剤が使用可能であるが、使用する有機溶剤の種類によって本発明の効果が大きく影響されることはなく種々の有機溶剤が用いられ得る。有機溶剤の一例としては、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド等のホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド等のアセトアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドン等のピロリドン系溶媒、フェノ−ル、o−,m−,またはp−クレゾ−ル等のフェノール系溶媒等を挙げることができ、これらを単独または混合物として用いるのが望ましいが、更にキシレン、トルエンのような芳香族炭化水素の使用も可能である。また、このポリアミド酸は、前記の有機極性溶媒中に1〜40重量%、好ましくは5〜25重量%溶解されているのが取り扱いの面からも望ましい。
【0015】
ポリアミド酸の重合手順については公知の技術が適用できる。代表的な重合手順としては、有機溶剤に対してジアミン系成分であるジアミノベンズアニリド類およびパラフェニレンジアミン類を溶解し、次いでビフェニルテトラカルボン酸二無水物類を全ジアミン系成分に対してほぼ等モル量となるように添加しポリアミド酸を合成する方法が挙げられる。ポリアミド酸の重合においてポリアミド酸の重量平均分子量は最終添加化合物の添加量により調整が可能であるが、15万以上が好ましく、20万以上が更に好ましい。重量平均分子量が15万以下であると、強度に劣るポリイミドフィルムが得られるからである。以上、本発明にかかるポリアミド酸の重合方法を説明したが、これらの方法により重合したポリアミド酸を前駆体として得られるポリイミドフィルムは弾性率が900kg/mm以上、伸び率が15%以上、と磁気記録テープ用フィルムとして良好なフィルムとなる。
【0016】
次に、本発明かかるポリイミドフィルムの製造方法について具体的に説明する。有機溶媒中にカルボン酸二無水物成分とジアミン成分を反応させて、ポリアミド酸とし、この溶液をそのまま、または、一旦閉環処理してポリイミドとして再度溶液化して、乾式法または湿式法にて製膜する。ポリアミド酸から本発明のポリイミドフィルムを得るには、1.熱的に脱水しイミド化する熱的方法と2.脱水剤を用いる化学的方法のいずれを用いてもよいが、伸びや強度などの機械的特性の優れるフィルムを得やすい化学的方法による方がより好ましい。乾式法では、溶液はダイから押し出され金属ドラムやエンドレスベルトなどの支持体上にキャストされ、キャストされた溶液が自己支持性があるフィルムを形成するまで乾燥またはイミド化反応が進められる。上記製造方法において、自己支持性を有するフィルムを支持体から剥がれやすくするためにポリアミド酸溶液にかえてポリアミド酸溶液に剥離剤を加えた混合溶液を用いてもよい。また、化学的方法によりポリイミドフィルムを得る場合は、ポリアミド酸溶液にかえて、ポリアミド酸溶液に化学量論以上の脱水剤及び3級アミン類等の触媒を加えた混合溶液を用いればよい。ここで言う剥離剤としては、例えばジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等の脂肪族エーテル類、ピリジン、ピコリンなどの3級アミン類、トリフェニルホスフィン、トリフェニルホスフェート等の有機りん化合物類等が挙げられる。また、脱水剤としては、例えば無水酢酸、無水フタル酸などの脂肪族あるいは芳香族酸無水物類等が挙げられる。触媒としては、例えばトリエチルアミンなどの脂肪族3級アミン、ピリジン、ピコリン、イソキノリン等の複素環式3級アミン類などが挙げられる。また、フィルムに接着性や耐熱性、または滑り性等の各種特性を向上させることを目的に、フィルム中に、酸化チタン、炭酸カルシウム、アルミナ、シリカゲル等の微粒子を含有させたり、フィルム表面を、シランカップリング剤などの表面改質剤や微粒子とバインダー樹脂を含む溶液等を塗布したり、コロナ処理やプラズマ処理などの放電処理などを施してもよい。湿式法では、溶液はダイから直接凝固液中に押し出されるか、乾式と同様に金属ドラムまたはエンドレスベルト上にキャストされた後、必要ならば溶剤の除去が一部行われた後に凝固液中に導かれ、凝固される。ついでこれらフィルムに延伸、乾燥、熱処理などの処理を施す。また乾式法と同じく、フィルムに接着性や耐熱性、または滑り性等の各種特性を向上させることを目的に、フィルム中に、酸化チタン、炭酸カルシウム、アルミナ、シリカゲル等の微粒子を含有させたり、フィルム表面を、シランカップリング剤などの表面改質剤や微粒子とバインダー樹脂を含む溶液等を塗布したり、コロナ処理やプラズマ処理などの放電処理などを施してもよい。以上、本発明にかかるポリイミドフィルムについて、製造方法も含め説明したが、本発明は、これらの実施の形態のみに限定されるものではなく、その趣旨を逸脱しない範囲内で当事業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施し得るものである。
【0017】
【実施例】
次に、本発明の実施例をより具体的に説明するが、本発明はこれらの実施例のみによって限定されるものではない。
【0018】
実施例中、BPDAは3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、PPDAはパラフェニレンジアミン、DABAは4,4’−ジアミノベンズアニリド、DMFはN,N−ジメチルホルムアミド、NMPはN−メチル−2−ピロリドン、DMACはジメチルアセトアミドを表す。
【0019】
(実施例1)室温下において、攪拌機を備えた1リットルの三口セパラブルフラスコにDABA 0.03molとPPDA0.07molのDMF溶液にBPDA 0.095molの粉体を加え、窒素雰囲気で1時間攪拌した。次いで、この溶液にゆっくりとBPDA 0.005molのDMF溶液を加えて15重量%のポリアミド酸を得た。上記の操作により得られたポリアミド酸溶液から化学的方法によりポリイミドフィルムを作製した。フィルムの作製は、以下のようにして行った。100gのポリアミド酸溶液に無水酢酸15g、β−ピコリン5g、NMP10gを加え充分攪拌した後、PETフィルム上にコーターで塗布し、80℃で10分間加熱し自己支持性を有する膜を得た。この膜をPETから剥したのち、端部を固定して100℃〜450℃へ連続的に加熱し、更に450℃で5分間加熱しイミド化を完了させて、厚みが15μmのポリイミドフィルム得た。得られたフィルムを用い引張試験をASTM D−882に従って行い、フィルムの弾性率と破断時伸び率を測定し、弾性率1100kg/mm、破断時伸び率28%の結果を得た。表1に実施例1の仕込み比率と測定結果を示す。
【0020】
(実施例2)室温下において、攪拌機を備えた1リットルの三口セパラブルフラスコにDABA 0.05molとPPDA 0.05molのDMF溶液にBPDA 0.095molの粉体を加え、窒素雰囲気で1時間攪拌した。次いで、この溶液にゆっくりとBPDA 0.005molのDMF溶液を加えて15重量%のポリアミド酸を得た。上記の操作により得られたポリアミド酸溶液から化学的方法によりポリイミドフィルムを作製した。フィルムの作製は、以下のようにして行った。100gのポリアミド酸溶液に無水酢酸15g、β−ピコリン5g、NMP10gを加え充分攪拌した後、PETフィルム上にコーターで塗布し、80℃で10分間加熱し自己支持性を有する膜を得た。この膜をPETから剥したのち、端部を固定して100℃〜450℃へ連続的に加熱し、更に450℃で5分間加熱しイミド化させて、厚みが15μmのポリイミドフィルム得た。得られたフィルムを用い引張試験をASTM D−882に従って行い、フィルムの弾性率と破断時伸び率を測定し、弾性率1050kg/mm、破断時伸び率23%の結果を得た。表1に実施例2の仕込み比率と測定結果を示す。
【0021】
(実施例3)室温下において、攪拌機を備えた1リットルの三口セパラブルフラスコにDABA 0.01molとPPDA 0.09molのDMF溶液にBPDA 0.095molの粉体を加え、窒素雰囲気で1時間攪拌した。次いで、この溶液にゆっくりとBPDA 0.005molのDMF溶液を加えて15重量%のポリアミド酸を得た。上記の操作により得られたポリアミド酸溶液から化学的方法によりポリイミドフィルムを作製した。フィルムの作製は、以下のようにして行った。100gのポリアミド酸溶液に無水酢酸15g、β−ピコリン5g、NMP10gを加え充分攪拌した後、PETフィルム上にコーターで塗布し、80℃で10分間加熱し自己支持性を有する膜を得た。この膜をPETから剥したのち、端部を固定して100℃〜450℃へ連続的に加熱し、更に450℃で5分間加熱しイミド化させて、厚みが15μmのポリイミドフィルム得た。得られたフィルムを用い引張試験をASTM D−882に従って行い、フィルムの弾性率と破断時伸び率を測定し、弾性率1010kg/mm、破断時伸び率24%の結果を得た。表1に実施例3の仕込み比率と測定結果を示す。
【0022】
(比較例1)室温下において、攪拌機を備えた1リットルの三口セパラブルフラスコ中でDABA 0.10molのDMAC溶液にBPDA 0.095molの粉体を加え、窒素雰囲気で1時間攪拌した。次いで、この溶液にゆっくりとBPDA 0.005molのDMF溶液を加えて15重量%のポリアミド酸を得た。上記の操作により得られたポリアミド酸溶液から化学的方法によりポリイミドフィルムを作製した。フィルムの作製は、以下のようにして行った。100gのポリアミド酸溶液に無水酢酸15g、β−ピコリン5g、NMP10gを加え充分攪拌した後、PETフィルム上にコーターで塗布し、80℃で10分間加熱し自己支持性を有する膜を得た。この膜をPETから剥したのち、端部を固定して100℃〜450℃へ連続的に加熱し、更に450℃で5分間加熱しイミド化させて、厚みが15μmのポリイミドフィルム得た。得られたフィルムを用い引張試験をASTM D−882に従って行い、フィルムの弾性率と破断時伸び率を測定し、弾性率1200kg/mm、破断時伸び率3%の結果を得た。表1に比較例1の仕込み比率と測定結果を示す。
【0023】
(比較例2)室温下において、攪拌機を備えた1リットルの三口セパラブルフラスコにDABA 0.07molとPPDA0.03molのDMF溶液にBPDA 0.095molの粉体を加え、窒素雰囲気で1時間攪拌した。次いで、この溶液にゆっくりとBPDA 0.005molのDMF溶液を加えて15重量%のポリアミド酸を得た。上記の操作により得られたポリアミド酸溶液から化学的方法によりポリイミドフィルムを作製した。フィルムの作製は、以下のようにして行った。100gのポリアミド酸溶液に無水酢酸15g、β−ピコリン5g、NMP10gを加え充分攪拌した後、PETフィルム上にコーターで塗布し、80℃で10分間加熱し自己支持性を有する膜を得た。この膜をPETから剥したのち、端部を固定して100℃〜450℃へ連続的に加熱し、更に450℃で5分間加熱しイミド化させて、厚みが15μmのポリイミドフィルム得た。得られたフィルムを用い引張試験をASTM D−882に従って行い、フィルムの弾性率と破断時伸び率を測定し、弾性率1150kg/mm、破断時伸び率4%の結果を得た。表1に比較例2の仕込み比率と測定結果を示す。
【0024】
(比較例3)室温下において、攪拌機を備えた1リットルの三口セパラブルフラスコにPPDA 0.10molのDMF溶液にBPDA 0.095molの粉体を加え、窒素雰囲気で1時間攪拌した。次いで、この溶液にゆっくりとBPDA 0.005molのDMF溶液を加えて15重量%のポリアミド酸を得た。上記の操作により得られたポリアミド酸溶液から化学的方法によりポリイミドフィルムを作製した。フィルムの作製は、以下のようにして行った。100gのポリアミド酸溶液に無水酢酸15g、β−ピコリン5g、NMP10gを加え充分攪拌した後、PETフィルム上にコーターで塗布し、80℃で10分間加熱し自己支持性を有する膜を得た。この膜をPETから剥したのち、端部を固定して100℃〜450℃へ連続的に加熱し、更に450℃で5分間加熱しイミド化させて、厚みが15μmのポリイミドフィルム得た。得られたフィルムを用い引張試験をASTM D−882に従って行い、フィルムの弾性率と破断時伸び率を測定し、弾性率800kg/mm、破断時伸び率30%の結果を得た。表1に比較例3の仕込み比率と測定結果を示す。
【0025】
【表1】
Figure 0003806267
【0026】
【発明の効果】
以上のように、本発明にかかるポリイミドフィルムは、弾性率が900kg/mm以上、伸び率が15%以上という、高弾性かつ高伸び率をあわせ有している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyimide film suitable for a magnetic recording tape base film and having both high elasticity and rigidity and toughness.
[0002]
[Prior art]
In recent years, with the progress of the information technology field, the recording capacity of computer servers and the like has increased dramatically. At the same time, it is desired to increase the recording density of the magnetic recording tape for backing up these data. Conventionally, an aramid film having a high elastic modulus has been used as a film as a support for a magnetic recording tape for backup. However, it has been pointed out that aramid films have poor cost performance. For this reason, it has been proposed to use a polyimide film that is cheaper than an aramid film as a base film. For polyimide films for magnetic recording tape applications, a thin thickness is required to increase recording capacity. However, if the thickness is extremely reduced, the tape is likely to be deformed by the tension during use, and a high elastic modulus is also required at the same time. JP-A-62-280224 discloses a method using biphenyltetracarboxylic dianhydride as a carboxylic dianhydride component of a polyimide film and diaminobenzanilide as a diamine component. Although the polyimide film has a high elastic modulus, there is a problem that the film is brittle and lacks toughness.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a polyimide film having a high elastic modulus and improved toughness. Specifically, an object is to provide a polyimide film for a data backup magnetic recording tape that retains a high elongation at break of 15% or more while exhibiting a high elastic modulus of 900 kg / mm 2 or more in a tensile test.
[0004]
[Means for Solving the Problems]
The present inventors have found that the above problem can be solved by reacting paraphenylenediamines in addition to biphenyltetracarboxylic dianhydrides and diaminobenzanilides. That is , the polyimide film according to the present invention includes biphenyltetracarboxylic dianhydrides represented by general formula (1), diaminobenzanilides represented by general formula (2), and paraphenylenediamines represented by general formula (3). The diaminobenzanilides are 5 to 55 mol% of the diamine component, the paraphenylenediamines are 95 to 45 mol% of the diamine component, and the tensile elongation is The content of the polyimide film is 15% or more and an elastic modulus is 900 kg / mm 2 or more.
[0005]
[Formula 4]
Figure 0003806267
[0006]
[Chemical formula 5]
Figure 0003806267
[0007]
[Chemical 6]
Figure 0003806267
[0008]
In the polyimide film according to the present invention, the biphenyltetracarboxylic dianhydride is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the diaminobenzanilide is 4,4 ′. -Diaminobenzanilide is preferred. In the polyimide film according to the present invention, the paraphenylenediamine is preferably paraphenylenediamine .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the method for producing the polyimide film according to the present invention include a method in which the polyamic acid that is the precursor is first polymerized, and the obtained polyamic acid is formed into a film by a method such as cast coating. In the polymerization of the polyamic acid of the present invention, various biphenyltetracarboxylic dianhydrides represented by the general formula (1) can be used, but 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride can be used. Is preferred. Further, as diaminobenzanilides, various compounds represented by the general formula (2) can be used, but use of 4,4′-diaminobenzanilide is preferable. As the paraphenylenediamine, various compounds represented by the general formula (3) can be used, but use of paraphenylenediamine is preferable.
[0010]
[Chemical 7]
Figure 0003806267
[0011]
[Chemical 8]
Figure 0003806267
[0012]
[Chemical 9]
Figure 0003806267
[0013]
In the present invention, diaminobenzanilides and paraphenylenediamines are used as diamine components. Various ratios can be selected for the charging ratio of each component to the total diamine-based component, but if the diaminobenzanilide is less than 5 mol% of the total diamine-based component, the effect of improving the elastic modulus is hardly exhibited. The charging ratio is preferably 5 mol% or more, and more preferably 20 mol% or more. On the other hand, when it exceeds 55 mol%, the elongation at break is lowered, that is, the toughness is lowered. Therefore, the charging ratio is preferably 55 mol% or less, and more preferably 40 mol% or less. On the other hand, with respect to paraphenylenediamines, a charging ratio of 95 to 45 mol% is preferable with respect to all diamine components, and 80 to 60 mol% is more preferable.
[0014]
In general, various organic solvents can be used for polymerization of polyamic acid, but the effects of the present invention are not greatly affected by the type of organic solvent used, and various organic solvents can be used. Examples of organic solvents include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide Acetamide solvents such as N-methyl-2-pyrrolidone, pyrrolidone solvents such as N-vinyl-2-pyrrolidone, phenol solvents such as phenol, o-, m-, or p-cresol. These are preferably used alone or as a mixture, but it is also possible to use aromatic hydrocarbons such as xylene and toluene. Further, it is desirable from the viewpoint of handling that the polyamic acid is dissolved in the organic polar solvent in an amount of 1 to 40% by weight, preferably 5 to 25% by weight.
[0015]
A known technique can be applied to the polyamic acid polymerization procedure. A typical polymerization procedure is to dissolve diaminobenzanilides and paraphenylenediamines, which are diamine components, in an organic solvent, and then add biphenyltetracarboxylic dianhydrides to almost all diamine components. A method of synthesizing polyamic acid by adding it in a molar amount can be mentioned. In the polymerization of the polyamic acid, the weight average molecular weight of the polyamic acid can be adjusted by the amount of the final additive compound, but is preferably 150,000 or more, more preferably 200,000 or more. This is because when the weight average molecular weight is 150,000 or less, a polyimide film having poor strength can be obtained. The polyamic acid polymerization method according to the present invention has been described above. The polyimide film obtained using the polyamic acid polymerized by these methods as a precursor has an elastic modulus of 900 kg / mm 2 or more and an elongation of 15% or more. It becomes a good film as a film for magnetic recording tape.
[0016]
Next, the manufacturing method of the polyimide film concerning this invention is demonstrated concretely. Carboxylic acid dianhydride component and diamine component are reacted in an organic solvent to form polyamic acid, and this solution is used as it is or once it is ring-closed to form a solution again as a polyimide, and a film is formed by a dry method or a wet method. To do. To obtain the polyimide film of the present invention from polyamic acid: Thermal method of dehydrating imidization thermally, 2. Although any chemical method using a dehydrating agent may be used, it is more preferable to use a chemical method that makes it easy to obtain a film having excellent mechanical properties such as elongation and strength. In the dry process, the solution is extruded from a die, cast on a support such as a metal drum or endless belt, and the drying or imidization reaction proceeds until the cast solution forms a self-supporting film. In the above production method, a mixed solution in which a release agent is added to the polyamic acid solution may be used instead of the polyamic acid solution in order to make the film having self-supporting properties easy to peel from the support. When a polyimide film is obtained by a chemical method, a mixed solution obtained by adding a dehydrating agent of a stoichiometric amount or higher and a catalyst such as a tertiary amine to the polyamic acid solution may be used instead of the polyamic acid solution. Examples of the release agent herein include aliphatic ethers such as diethylene glycol dimethyl ether and triethylene glycol dimethyl ether, tertiary amines such as pyridine and picoline, and organophosphorus compounds such as triphenylphosphine and triphenyl phosphate. . Examples of the dehydrating agent include aliphatic or aromatic acid anhydrides such as acetic anhydride and phthalic anhydride. Examples of the catalyst include aliphatic tertiary amines such as triethylamine, and heterocyclic tertiary amines such as pyridine, picoline and isoquinoline. In addition, for the purpose of improving various properties such as adhesiveness, heat resistance, or slipperiness in the film, the film may contain fine particles such as titanium oxide, calcium carbonate, alumina, silica gel, A surface modifier such as a silane coupling agent or a solution containing fine particles and a binder resin may be applied, or a discharge treatment such as a corona treatment or a plasma treatment may be performed. In the wet method, the solution is extruded directly from the die into the coagulation liquid, or cast onto a metal drum or endless belt as in the dry process, and if necessary, the solvent is partially removed into the coagulation liquid. Guided and solidified. Then stretching these films, drying, processing such as heat treatment applied. Also, like the dry method, the film contains fine particles such as titanium oxide, calcium carbonate, alumina, silica gel, etc. for the purpose of improving various properties such as adhesiveness, heat resistance, or slipperiness, The film surface may be applied with a surface modifier such as a silane coupling agent, a solution containing fine particles and a binder resin, or a discharge treatment such as a corona treatment or a plasma treatment. As mentioned above, although the manufacturing method was demonstrated about the polyimide film concerning this invention, this invention is not limited only to these embodiment, In the range which does not deviate from the meaning, it is knowledge of this operator. Based on this, the present invention can be implemented with various improvements, corrections, and modifications.
[0017]
【Example】
Next, examples of the present invention will be described more specifically, but the present invention is not limited only to these examples.
[0018]
In the examples, BPDA is 3,3 ′, 4,4′- biphenyltetracarboxylic dianhydride, PPDA is paraphenylenediamine, DABA is 4,4′-diaminobenzanilide, DMF is N, N-dimethylformamide, NMP represents N-methyl-2-pyrrolidone, and DMAC represents dimethylacetamide.
[0019]
(Example 1) At room temperature, a powder of BPDA 0.095 mol was added to a DMF solution of DABA 0.03 mol and PPDA 0.07 mol in a 1 liter three-necked separable flask equipped with a stirrer, and stirred for 1 hour in a nitrogen atmosphere. . Then, a BPDA 0.005 mol DMF solution was slowly added to this solution to obtain 15 wt% polyamic acid. A polyimide film was produced from the polyamic acid solution obtained by the above operation by a chemical method. The film was produced as follows. To 100 g of the polyamic acid solution, 15 g of acetic anhydride, 5 g of β-picoline and 10 g of NMP were added and sufficiently stirred, and then applied onto a PET film with a coater and heated at 80 ° C. for 10 minutes to obtain a film having self-supporting properties. After peeling this film from PET, the ends were fixed and heated continuously to 100 ° C. to 450 ° C., and further heated at 450 ° C. for 5 minutes to complete imidation, and a polyimide film having a thickness of 15 μm was obtained. . Using the obtained film, a tensile test was conducted in accordance with ASTM D-882, and the elastic modulus and elongation at break of the film were measured. The result was an elastic modulus of 1100 kg / mm 2 and an elongation at break of 28%. Table 1 shows the charging ratio and measurement results of Example 1.
[0020]
(Example 2) At room temperature, a powder of BPDA 0.095 mol was added to a DMF solution of 0.05 mol of DABA and 0.05 mol of PPDA to a 1 liter three-necked separable flask equipped with a stirrer, and stirred for 1 hour in a nitrogen atmosphere. did. Then, a BPDA 0.005 mol DMF solution was slowly added to this solution to obtain 15 wt% polyamic acid. A polyimide film was produced from the polyamic acid solution obtained by the above operation by a chemical method. The film was produced as follows. To 100 g of the polyamic acid solution, 15 g of acetic anhydride, 5 g of β-picoline and 10 g of NMP were added and sufficiently stirred, and then applied onto a PET film with a coater and heated at 80 ° C. for 10 minutes to obtain a film having self-supporting properties. After peeling off this film from PET, the end portion was fixed and continuously heated to 100 ° C. to 450 ° C., and further imidized by heating at 450 ° C. for 5 minutes to obtain a polyimide film having a thickness of 15 μm. Using the obtained film, a tensile test was performed according to ASTM D-882, and the elastic modulus and elongation at break of the film were measured. The result was an elastic modulus of 1050 kg / mm 2 and an elongation at break of 23%. Table 1 shows the charging ratio and measurement results of Example 2.
[0021]
(Example 3) At room temperature, a powder of BPDA 0.095 mol was added to a DMF solution of DABA 0.01 mol and PPDA 0.09 mol in a 1 liter three-necked separable flask equipped with a stirrer, and the mixture was stirred in a nitrogen atmosphere for 1 hour. did. Then, a BPDA 0.005 mol DMF solution was slowly added to this solution to obtain 15 wt% polyamic acid. A polyimide film was produced from the polyamic acid solution obtained by the above operation by a chemical method. The film was produced as follows. To 100 g of the polyamic acid solution, 15 g of acetic anhydride, 5 g of β-picoline and 10 g of NMP were added and sufficiently stirred, and then applied onto a PET film with a coater and heated at 80 ° C. for 10 minutes to obtain a film having self-supporting properties. After peeling off this film from PET, the end portion was fixed and continuously heated to 100 ° C. to 450 ° C., and further imidized by heating at 450 ° C. for 5 minutes to obtain a polyimide film having a thickness of 15 μm. Using the obtained film, a tensile test was conducted according to ASTM D-882, and the elastic modulus and elongation at break of the film were measured. The result was an elastic modulus of 1010 kg / mm 2 and an elongation at break of 24%. Table 1 shows the charging ratio and measurement results of Example 3.
[0022]
Comparative Example 1 At room temperature, 0.095 mol of BPDA powder was added to a DMAC solution of DABA 0.10 mol in a 1 liter three-necked separable flask equipped with a stirrer, and the mixture was stirred for 1 hour in a nitrogen atmosphere. Then, a BPDA 0.005 mol DMF solution was slowly added to this solution to obtain 15 wt% polyamic acid. A polyimide film was produced from the polyamic acid solution obtained by the above operation by a chemical method. The film was produced as follows. To 100 g of the polyamic acid solution, 15 g of acetic anhydride, 5 g of β-picoline and 10 g of NMP were added and sufficiently stirred, and then applied onto a PET film with a coater and heated at 80 ° C. for 10 minutes to obtain a film having self-supporting properties. After peeling off this film from PET, the end portion was fixed and continuously heated to 100 ° C. to 450 ° C., and further imidized by heating at 450 ° C. for 5 minutes to obtain a polyimide film having a thickness of 15 μm. Using the obtained film, a tensile test was performed according to ASTM D-882, and the elastic modulus and elongation at break of the film were measured. The result was an elastic modulus of 1200 kg / mm 2 and an elongation at break of 3%. Table 1 shows the charging ratio and measurement results of Comparative Example 1.
[0023]
(Comparative Example 2) At room temperature, a powder of BPDA 0.095 mol was added to a DMF solution of DABA 0.07 mol and PPDA 0.03 mol in a 1 liter three-necked separable flask equipped with a stirrer, and the mixture was stirred in a nitrogen atmosphere for 1 hour. . Then, a BPDA 0.005 mol DMF solution was slowly added to this solution to obtain 15 wt% polyamic acid. A polyimide film was produced from the polyamic acid solution obtained by the above operation by a chemical method. The film was produced as follows. To 100 g of the polyamic acid solution, 15 g of acetic anhydride, 5 g of β-picoline and 10 g of NMP were added and sufficiently stirred, and then applied onto a PET film with a coater and heated at 80 ° C. for 10 minutes to obtain a film having self-supporting properties. After peeling off this film from PET, the end portion was fixed and continuously heated to 100 ° C. to 450 ° C., and further imidized by heating at 450 ° C. for 5 minutes to obtain a polyimide film having a thickness of 15 μm. Using the obtained film, a tensile test was conducted in accordance with ASTM D-882, and the elastic modulus and elongation at break of the film were measured. The result was an elastic modulus of 1150 kg / mm 2 and an elongation at break of 4%. Table 1 shows the charging ratio and measurement results of Comparative Example 2.
[0024]
Comparative Example 3 At room temperature, 0.095 mol of BPDA powder was added to a DMF solution of 0.10 mol of PPDA in a 1 liter three-necked separable flask equipped with a stirrer, and the mixture was stirred in a nitrogen atmosphere for 1 hour. Then, a BPDA 0.005 mol DMF solution was slowly added to this solution to obtain 15 wt% polyamic acid. A polyimide film was produced from the polyamic acid solution obtained by the above operation by a chemical method. The film was produced as follows. To 100 g of the polyamic acid solution, 15 g of acetic anhydride, 5 g of β-picoline and 10 g of NMP were added and sufficiently stirred, and then applied onto a PET film with a coater and heated at 80 ° C. for 10 minutes to obtain a film having self-supporting properties. After peeling off this film from PET, the end was fixed and heated continuously to 100 ° C. to 450 ° C., and further imidized by heating at 450 ° C. for 5 minutes to obtain a polyimide film having a thickness of 15 μm. Using the obtained film, a tensile test was conducted in accordance with ASTM D-882, and the elastic modulus and elongation at break of the film were measured. The result was an elastic modulus of 800 kg / mm 2 and an elongation at break of 30%. Table 1 shows the charging ratio and measurement results of Comparative Example 3.
[0025]
[Table 1]
Figure 0003806267
[0026]
【The invention's effect】
As described above, the polyimide film according to the present invention has both a high elasticity and a high elongation rate of an elastic modulus of 900 kg / mm 2 or more and an elongation rate of 15% or more.

Claims (3)

一般式(1)で示されるビフェニルテトラカルボン酸二無水物類、一般式(2)で示されるジアミノベンズアニリド類及び一般式(3)で示されるパラフェニレンジアミン類を反応させて得られるポリイミドフィルムであって、
該ジアミノベンズアニリド類がジアミン成分の5〜55モル%であり、該パラフェニレンジアミン類がジアミン成分の95〜45モル%であり、
引張り伸び率が15%以上かつ弾性率が900kg/mm以上であることを特徴とするポリイミドフィルム。
Figure 0003806267
Figure 0003806267
Figure 0003806267
Polyimide film obtained by reacting biphenyltetracarboxylic dianhydrides represented by general formula (1), diaminobenzanilides represented by general formula (2) and paraphenylenediamines represented by general formula (3) Because
The diaminobenzanilide is 5-55 mol% of the diamine component, the paraphenylenediamine is 95-45 mol% of the diamine component,
A polyimide film having a tensile elongation of 15% or more and an elastic modulus of 900 kg / mm 2 or more.
Figure 0003806267
Figure 0003806267
Figure 0003806267
ビフェニルテトラカルボン酸二無水物類が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物であり、ジアミノベンズアニリド類が4,4’−ジアミノベンズアニリドである請求項1記載のポリイミドフィルム。  The polyimide according to claim 1, wherein the biphenyltetracarboxylic dianhydride is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and the diaminobenzanilide is 4,4'-diaminobenzanilide. the film. パラフェニレンジアミン類がパラフェニレンジアミンである請求項1又は2記載のポリイミドフィルム。The polyimide film of claim 1 or 2 wherein the para-phenylenediamines are paraphenylenediamine.
JP13076399A 1999-05-12 1999-05-12 Polyimide film Expired - Lifetime JP3806267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13076399A JP3806267B2 (en) 1999-05-12 1999-05-12 Polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13076399A JP3806267B2 (en) 1999-05-12 1999-05-12 Polyimide film

Publications (2)

Publication Number Publication Date
JP2000319421A JP2000319421A (en) 2000-11-21
JP3806267B2 true JP3806267B2 (en) 2006-08-09

Family

ID=15042085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13076399A Expired - Lifetime JP3806267B2 (en) 1999-05-12 1999-05-12 Polyimide film

Country Status (1)

Country Link
JP (1) JP3806267B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3919549A4 (en) * 2019-01-29 2022-03-23 Mitsubishi Chemical Corporation Composition and metal-insulating coating material
WO2022113415A1 (en) * 2020-11-27 2022-06-02 東洋紡株式会社 Laminate

Also Published As

Publication number Publication date
JP2000319421A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
EP0879839A1 (en) Polyimide copolymer, polyimide copolymer resin molded products and their preparation
JPS63221138A (en) Polyimide film
EP0393638B1 (en) Thermosetting resin compostion and thermosetting dry film
JP2003335874A (en) Polyimide film
JP3687044B2 (en) Copolymerized polyimide film and method for producing the same
JPH1036506A (en) New polyimide composition and polyimide film
JP2624724B2 (en) Polyimide siloxane composition
JP3048690B2 (en) Method for producing polyimide film
JPH047333A (en) New polyimide
JP3048703B2 (en) Polyamic acid copolymer and polyimide film comprising the same
JP2955724B2 (en) Method for producing polyimide film
JP3806267B2 (en) Polyimide film
JP2511987B2 (en) Aromatic polyimide polymer molded article manufacturing method
JP3989650B2 (en) Polyimide film
JP2766640B2 (en) New polyimide copolymer and its production method
JP2910796B2 (en) Polyamic acid copolymer, polyimide film comprising the same, and methods for producing them
JP3026957B2 (en) Preparation of polyimide with excellent thermal dimensional stability.
JPH09227697A (en) Preparation of heat-resistant polyimide film through gel
JP3676073B2 (en) Polyimide film and manufacturing method thereof
JPH08217877A (en) Polyimide resin and polyimide film
JP3339205B2 (en) Method for producing polyimide copolymer
JP3299777B2 (en) Polyimide film and method for producing the same
JP3048702B2 (en) Polyamic acid copolymer, polyimide copolymer, polyimide film and methods for producing them
JP3375346B2 (en) Polyamic acid and polyimide film and their production method
JP3022625B2 (en) Polyamic acid copolymer, polyimide copolymer comprising the same, polyimide film, and methods for producing them

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term