JP3805595B2 - Hot water temperature control method and hot water supply apparatus - Google Patents

Hot water temperature control method and hot water supply apparatus Download PDF

Info

Publication number
JP3805595B2
JP3805595B2 JP2000060769A JP2000060769A JP3805595B2 JP 3805595 B2 JP3805595 B2 JP 3805595B2 JP 2000060769 A JP2000060769 A JP 2000060769A JP 2000060769 A JP2000060769 A JP 2000060769A JP 3805595 B2 JP3805595 B2 JP 3805595B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
mixing ratio
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000060769A
Other languages
Japanese (ja)
Other versions
JP2001248911A (en
Inventor
幸弘 鈴木
郁朗 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2000060769A priority Critical patent/JP3805595B2/en
Priority to KR10-2001-0002520A priority patent/KR100390149B1/en
Publication of JP2001248911A publication Critical patent/JP2001248911A/en
Application granted granted Critical
Publication of JP3805595B2 publication Critical patent/JP3805595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/04Gas or oil fired boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0271Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel

Description

【0001】
【発明の属する技術分野】
本発明は、混合弁の制御位置を調節して給湯温度を制御する給湯温度の制御方法及び給湯装置に関する。
【0002】
【従来の技術】
従来、図4に示したように、熱交換器50と接続された給水管51と給湯管52を連通するバイパス管53を設け、熱交換器50から供給される湯とバイパス管53を介して供給される水との混合比率を、給湯管52とバイパス管53との合流箇所に設けた混合弁54により調節することで、合流箇所の下流に供給される湯の温度を制御するいわゆるミキシング式の給湯装置が知られている。
【0003】
かかる給湯装置においては、給水管51に供給される水の有無を検出する水流スイッチ55、給水管51に供給される水の温度を検出する給水温度センサ56、熱交換器50から出湯される湯の温度を検出する熱交温度センサ57、及び給湯管52とバイパス管53の合流箇所の下流側に供給される湯の温度を検出する給湯温度センサ58が設けられる。
【0004】
そして、水流スイッチ55により給水管51に水が供給されていることが検出されている間、給湯温度センサ58の検出温度Tout(以下、実給湯温度Toutという)がリモコン61で設定される目標給湯温度Tsetと一致するように、コントローラ60により混合弁54の制御位置が調節される。
【0005】
コントローラ60は、給水温度センサ56により検出される給水管51に供給される水の温度Tinと、熱交温度センサ57により検出される熱交換器50から供給される湯の温度Thとを認識することで、実給湯温度Toutを目標給湯温度Tsetの給湯を行うために必要な混合比率である必要混合比率Rnを算出することができる。
【0006】
そして、このように算出した必要混合比率Rnが得られるように混合弁54の制御位置を調節することで、コントローラ60は、実給湯温度Toutを目標給湯温度Tsetと一致させることができる。しかし、実際には、混合弁54は個体によりばらつく位置決め誤差を有するため、コントローラ60が混合弁54の制御位置を直ちに前記必要混合比率Rnが得られる制御位置に操作することは困難である。
【0007】
すなわち、コントローラ60は、混合弁54の制御位置と該制御位置に応じて定まると想定した混合比率との対応関係を保持したデータテーブル62を有しているが、前記必要混合比率Rnに応じた混合弁54の制御位置をデータテーブル62によって求め、混合弁54を該制御位置に操作しても、上述した位置決め誤差により、実際に設定される混合比率は前記必要混合比率Rnとはならない。そのため、実給湯温度Toutは目標給湯温度Tsetと一致しない。
【0008】
そこで、コントローラ60は、実給湯温度Toutと目標給湯温度Tsetとの偏差ΔT(=Tset−Tout)を解消するように、以下の式(1)、(2)に基づくPI制御を行っていた。なお、式(1)のP1、及び式(2)のI1は実験により定めた定数であり、P,Iは混合弁54の制御位置を可変するステッピングモータ59の制御ステップを単位として算出される。
【0009】
P=P1×(Tset−Tout) ・・・・・(1)
I=I1×∫(Tset−Tout) ・・・・・(2)
PI制御においては、上記式(1)と(2)によりP,Iを算出して、混合弁54の制御位置をP+Iステップ分動かすことで、上述した偏差ΔTを減らしていく操作が行われる。
【0010】
しかし、混合弁54の制御位置と該制御位置に応じて定まる実際の混合比率との関係は、混合弁54の個体ばらつきにより一定とはならない。そのため、定数P1とI1は、このような混合弁54の個体ばらつきを考慮して定める必要があるが、実験等により、ばらつきが生じても実給湯温度Toutを速やかに目標給湯温度Tsetと一致させることができる定数P1,I1を定めるのに工数を要するという不都合があった。さらに、想定したばらつきの範囲を超えた混合弁を使用した場合には、該混合弁に対しては不適当な定数P1,I1に基づいたPI制御が行われるため、実給湯温度Toutが目標給湯温度Tsetと一致するまでに要する時間が長くなってしまうという不都合があった。
【0011】
【発明が解決しようとする課題】
本発明は、上記不都合を解消し、混合弁の制御位置と該制御位置によって定まる実際の混合比率との関係が混合弁の個体によりばらつく場合であっても、給湯温度を速やかに目標給湯温度と一致させることができる給湯温度の制御方法及び給湯装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は上記目的を達成するためになされたものであり、本発明の給湯温度の制御方法は、給水管及び給湯管と接続された熱交換器により該給水管から供給された水から加熱生成されて該給湯管に供給される湯と、前記熱交換器をバイパスして前記給水管と前記給湯管とを連通するバイパス管を介して前記給湯管に供給される水との混合比率を、該混合比率を可変する混合弁の制御位置を調節して制御することによって、前記給湯管の前記バイパス管との合流箇所の下流側に供給される湯の温度を所定の目標給湯温度と一致させる給湯温度の制御方法の改良に関する。
【0013】
そして、前記混合弁の制御位置と該制御位置に応じて定まると想定した前記混合比率との関係を記憶したデータテーブルにより求めた、前記混合弁の制御位置に応じた混合比率である想定混合比率と、前記熱交換器から供給される湯の温度と、前記給湯管の前記バイパス管との合流箇所の下流側に供給される湯の温度とに基づいて、前記給水管から供給される水の温度を算出し、このようにして算出した水の温度と前記熱交換器から供給される湯の温度とに基づいて、前記目標給湯温度を得るために必要な混合比率である必要混合比率を算出して、前記混合弁の制御位置を前記必要混合比率に応じて前記データテーブルから求めた制御位置とすることにより、前記給湯管の前記バイパス管との合流箇所の下流側に供給される湯の温度が所定の目標給湯温度と一致するようにしたことを特徴とする。
【0014】
かかる本発明によれば、先ず前記データテーブルにより求めた前記想定混合比率と、前記熱交換器から供給される湯の温度と、前記給湯管の前記バイパス管との合流箇所の下流側に供給される湯の温度とに基づいて、前記給水管から供給される水の温度が算出される。そして、このように算出される水の温度は、前記想定混合比率と前記混合弁の制御位置により定まる実際の混合比率(以下、実混合比率という)の誤差を反映したものとなる。例えば、前記混合比率を、前記熱交換器から供給される湯の流量に対する前記バイパス管から供給される水の流量の割合とすると、前記想定混合比率が実混合比率よりも大きいときは、算出される水の温度は実際に前記給水管に供給される水の温度よりも低くなる。また、逆に、前記想定混合比率が実混合比率よりも小さいときには、算出される水の温度は実際に前記給水管に供給される水の温度よりも高くなる。
【0015】
そのため、このようにして算出された水の温度と、前記熱交換器から供給される湯の温度とに基づいて算出される前記必要混合比率は、前記想定混合比率と前記実混合比率との差を解消する混合比率となる。したがって、前記混合弁の制御位置を前記必要混合比率に応じて前記データテーブルから求めた制御位置とすることで、前記混合弁の個体ばらつきにより前記想定混合比率と実混合比率との差がばらつく場合であっても、前記給湯管の前記バイパス管との合流箇所の下流側に供給される湯の温度を、速やかに所定の目標給湯温度とすることができる。
【0016】
また、上述した本発明の給湯温度の制御方法の具体的な実施態様である本発明の給湯装置は、給水管及び給湯管と接続され、該給水管から供給される水を加熱して生成した湯を前記給湯管に供給する熱交換器と、該熱交換器をバイパスして前記給水管と前記給湯管を連通するバイパス管と、前記熱交換器から前記給湯管に供給される湯と前記給水管から前記バイパス管を介して前記給湯管に供給される水との混合比率を調節する混合弁と、前記熱交換器から供給される湯の温度を検出する熱交温度センサと、前記給湯管の前記バイパス管との合流箇所の下流側に供給される湯の温度を検出する給湯温度センサと、該給湯温度センサの検出温度が所定の目標給湯温度と一致するように、前記混合弁の制御位置を調節して前記混合比率を制御する給湯温制御手段とを備える。
【0017】
そして、前記混合弁の制御位置と該制御位置に応じて定まると想定した前記混合比率との対応関係を記憶したデータテーブルと、前記熱交温度センサの検出温度と、前記給湯温度センサの検出温度と、前記混合弁の制御位置に応じて前記データテーブルから求めた混合比率である想定混合比率とに基づいて、前記給水管から供給される水の温度を算出する給水温度算出手段と、該給水温度算出手段により算出された水の温度と、前記熱交温度センサの検出温度とに基づいて、前記目標給湯温度を得るために必要な混合比率である必要混合比率を算出する必要混合比率算出手段とを備え、前記給湯温制御手段は、前記混合弁の制御位置を、前記必要混合比率に応じて前記データテーブルから求めた制御位置とすることによって、前記給湯温度センサの検出温度が前記目標給湯温度と一致するようにしたことを特徴とする。
【0018】
かかる本発明によれば、先ず、前記熱交温度センサの検出温度と前記給湯温度センサの検出温度と前記データテーブルによって求められた前記混合弁の制御位置に応じた前記想定混合比率とに基づいて、前記給水温度算出手段により、前記給水管から供給される水の温度が算出される。そして、このように算出される水の温度は、上述したように、前記想定混合比率と前記混合弁の制御位置により定まる実際の混合比率(以下、実混合比率という)の差を反映したものとなる。
【0019】
そのため、前記給水温度算出手段により算出した水の温度に基づいて、前記必要混合比率算出手段により算出される前記必要混合比率は、前記想定混合比率と前記実混合比率との差に起因する前記給湯温度センサの検出温度と前記目標給湯温度との差を解消する混合比率となる。したがって、前記給湯温制御手段は、前記混合弁の制御位置を前記必要混合比率に応じて前記データテーブルから求めた制御位置とすることで、前記混合弁の個体ばらつきにより前記想定混合比率と実混合比率との差がばらつく場合であっても、前記給湯温度センサにより検出される前記給湯管の前記バイパス管との合流箇所の下流に供給される湯の温度を前記目標給湯温度と速やかに一致させることができる。
【0020】
また、前記給湯装置が給湯開始前の待機状態にあるときに、前記必要混合比率算出手段は、前記給水温度算出手段により算出された水の温度が通常供給される水の温度よりも高く設定した初期給水温度であると仮定して前記必要混合比率を算出し、前記給湯制御手段は、前記混合弁の制御位置を、このようにして算出された必要混合比率に応じて前記データテーブルから求めた制御位置とすることを特徴とする。
【0021】
かかる本発明において、前記初期給水温度に応じて前記必要混合比率算出手段により算出される前記必要混合比率は、前記給水管から供給される水の通常の温度に応じて算出される前記必要混合比率よりも、前記熱交換器から供給される湯の量を減少させるものとなる。そのため、前記給湯制御手段は、前記給湯装置が待機状態にあるときに、前記混合弁の制御位置を前記初期給水温度に基づいて算出された前記必要混合比率算出手段に応じた制御位置とすることで、給湯が開始されたときに、前記給湯管の前記バイパス管との合流箇所の下流側に異常に高温の湯が供給されることを防止することができる。
【0022】
【発明の実施の形態】
本発明の実施の形態の一例について、図1〜図3を参照して説明する。図1は本発明の給湯装置の全体構成図、図2は図1に示した給湯装置における給湯温度の制御手順を示したフローチャート、図3は図1に示した給湯装置における給湯温度の制御の実行結果を示したグラフである。
【0023】
図1を参照して、本発明の給湯装置は、給湯熱交換器1(本発明の熱交換器に相当する)と接続された給水管2及び給湯管3と、給湯熱交換器1をバイパスして給水管2と給湯管3を連通するバイパス管4と、給湯管3とバイパス管4の合流箇所に設けられて、給湯熱交換器1から供給される湯とバイパス管4を介して供給される水との混合比率を調節する混合弁5と、給水管2に供給される水の有無を検出する水流スイッチ6とを備える。
【0024】
そしてさらに、給湯装置は、給水管2に供給される水の温度を検出する給水温度センサ7と、給湯熱交換器1から供給される湯の温度を検出する熱交温度センサ8と、給湯管3のバイパス管4との合流箇所の下流に供給される湯の温度を検出する給湯温度センサ9と、混合弁5の制御位置を調節するためのステッピングモータ10と、給湯装置の作動を制御するコントローラ11と、使用者が給湯装置の作動を指示するためのリモコン12とを備える。
【0025】
なお、本実施の形態では、給湯熱交換器1から供給される湯の流量を1としたときのバイパス管4から供給される水の流量の割合を、給湯熱交換器1から供給される湯とバイパス管4から供給される水の混合比率とする。
【0026】
給湯熱交換器1には、熱源機20から温水循環配管21を介して温水が供給され、熱源機20は、温水循環配管21中に温水を循環させるポンプ23と、温水循環配管21中の温水をバーナ24により加熱する循環熱交換器22とを備える。そして、熱源機20は、給湯熱交換器1内に貯まった湯の温度が所定温度(例えば80℃)に保たれるように、バーナ24の燃焼量を調節して温水循環配管21を介して給湯熱交換器1に供給する温水の温度を制御すると共に、ポンプ23の作動を制御して温水循環配管21を介して給湯熱交換器1に供給する温水の量を制御する。これにより、給湯熱交換器1から給湯管3には、ほぼ一定の温度(80℃)の湯が、ほぼ一定の圧力で供給される。
【0027】
コントローラ11は、給湯温度センサ9により検出される給湯管3のバイパス管4との合流箇所の下流に供給される湯の温度Tout(以下、実給湯温度Toutという)が、リモコン12により設定された目標給湯温度Tsetと一致するように、モータドライバー30に位置制御信号Pcmを出力する給湯温制御手段31と、混合弁5の制御位置Vpと該制御位置Vpに応じて設定されると想定した混合比率である想定混合比率Rsとの対応関係を記憶したデータテーブル32とを備える。
【0028】
さらに、コントローラ11は、熱交温度センサ8により検出される給湯熱交換器1から供給される湯の温度Th(以下、出湯温度Thという)と実給湯温度Toutとデータテーブル32により求めた混合弁5の制御位置Vpに応じた想定混合比率Rsとから、給水管2に供給される水の温度Tinc(以下、算出給水温度Tincという)を算出する給水温度算出手段33と、出湯温度Thと実給湯温度Toutと算出給水温度Tincとに基づいて実給湯温度Toutを目標給湯温度Tsetと一致させるのに必要な混合比率である必要混合比率Rnを算出する必要混合比率算出手段34とを備える。
【0029】
給湯温制御手段31からモータドライバー30に出力される位置制御信号Pcmは混合弁5の制御位置Vpに応じたものであり、本実施の形態では、給湯温制御手段31は、ステッピングモータ10の回転位置を0〜2000ステップの範囲で制御することで、混合弁5の制御位置Vpを調節する。
【0030】
ここで、コントローラ11は、給水温度センサ7により検出される前記給水管に供給される水の温度Tin(以下、実給水温度Tinという)と、出湯温度Thとから、以下の式(3)により実給湯温度Toutを目標給湯温度Tsetと一致させるのに必要な混合比率である必要混合比率Rnrを算出することができる。
【0031】
nr=(Th−Tin)/(Tset−Tin)−1 ・・・・・(3)
そして、データテーブル32から求められる混合弁5の制御位置Vpに応じた想定混合比率RSと、混合弁5の制御位置Vpに応じて設定される実際の混合比率(以下、実混合比率Rrという)とが一致していれば、混合弁5の制御位置Vpを前記必要混合比率Rnrに応じてデータテーブル32から定められる制御位置とすることで、実給湯温度Toutを目標給湯温度Tsetと一致させることができる。
【0032】
しかし、実際には、混合弁5の制御位置Vpは、以下の式(4)で表されるように、混合弁5の個体によりばらつく固有値a,bの影響により、ステッピングモータ10の制御ステップ数が同じであっても一定とはならない。
【0033】
p=a×ステップ数+b ・・・・・(4)
そのため、混合弁5の制御位置Vpに対する想定混合比率Rsと実混合比率Rrとは一致せず、上記式(3)で算出した必要混合比率Rnrに対応する混合弁5の制御位置をデータテーブル32により求め、該制御位置に応じた位置制御信号Pcmをモータドライバー30に出力しても、設定される実混合比率Rrは上記式(4)による誤差を含むため前記必要混合比率Rnrとはならない。したがって、実給湯温度Toutを目標給湯温度Tsetと一致させることはできない。
【0034】
そこで、コントローラ11は、想定混合比率Rsと実混合比率Rrとの誤差を考慮して実給湯温度Toutを目標給湯温度Tsetと一致させるための処理を行う。以下、図2のフローチャートを参照して、この処理について説明する。
【0035】
図2を参照して、STEP1で給湯装置への通電が開始されると、給湯装置は待機状態となる。そして、STEP2に進んで、コントローラ11は、後述する算出給水温度Tincの初期値(本発明の初期給水温度に相当する)を25℃に設定する。
【0036】
そして、次のSTEP3で水流スイッチ6がONしている間、すなわち、給水管2に水が供給されている間、コントローラ11は、STEP4〜STEP7を繰り返し実行する。STEP4は、給水温度算出手段33による処理であり、給水温度算出手段33は、出湯温度Thと実給湯温度Toutと混合弁5の現状の制御位置Vpに応じてデータテーブル32から求めた想定混合比率Rsとに基づいて、以下の式(5)により、給水管2から供給される水の温度(以下、算出給水温度Tincという)を算出する。
【0037】
inc={(1+Rs)×Tout−Th}/Rs ・・・・・(5)
ここで、算出給水温度Tincは、想定混合比率Rsと実混合比率Rrとの誤差を反映したものとなる。すなわち、想定混合比率Rsが実混合比率Rrよりも大きいときは、算出給水温度Tincは実給水温度Tinよりも低くなり、逆に、想定混合比率Rsが実混合比率Rrよりも小さいときには、算出給水温度Tincは実給水温度Tinよりも高くなる。
【0038】
続くSTEP5は、必要混合比率算出手段34による処理であり、必要混合比率算出手段34は、算出給水温度Tincと出湯温度Thとから、以下の式(6)により、実給湯温度Toutを目標給湯温度Tsetに一致させるために必要な混合比率である必要混合比率Rnsを算出する。
【0039】
ns=(Th−Tinc)/(Tset−Tinc)−1 ・・・・・(6)
このように、算出給水温度Tincに基づいて必要混合比率Rnsを算出した場合、算出される必要混合比率Rnsは、上述した式(3)により算出される必要混合比率Rnrと異なり、実混合比率Rrではなく誤差を含んだ想定混合比率Rsとなる。
【0040】
そのため、上記式(5)で算出した必要混合比率Rnsに対応する混合弁5の制御位置Vpをデータテーブル32から求め、混合弁5を該制御位置Vpとすることで、実給湯温度Toutを目標給湯温度Tsetと一致させることができる。
【0041】
そこで、次のSTEP6で、給湯温制御手段31は、必要混合比率Rnsに対応する混合弁5の制御位置をデータテーブル32から求め、続くSTEP7で、該制御位置に応じた位置指令信号Pcmをモータドライバー30に出力する。これにより、モータドライバー30からステッピングモータ10に駆動信号が出力されて、混合弁5の制御位置Vpが必要混合比率Rnsに応じた制御位置に操作される。以上説明したSTEP4〜STEP7の処理を繰り返すことにより、実給湯温度Toutを目標給湯温度Tsetに速やかに一致させることができる。
【0042】
図3は、算出給水温度Tincの初期値を10℃、目標給湯温度Tsetを45℃としたときに、上述したSTEP4からSTEP7の処理を実行した例を示したものであり、実線は実給湯温度Tout、点線は目標給湯温度Tset、一点鎖線は想定混合比率Rsをそれぞれ示している。図3から、STEP4からSTEP7の処理回数が進むにつれて想定混合比率Rsの設定が減少し、それに応じて実給湯温度Toutが速やかに目標給湯温度Tsetに収束している様子がわかる。
【0043】
なお、STEP1で通電が開始された後、STEP3で水流スイッチ6がOFF状態であったとき、すなわち、給水管2に水が供給されていない待機状態にあるときは、STEP3からSTEP5に分岐し、必要混合比率算出手段34は、算出給水温度Tincが初期値(25℃)であるとして、必要混合比率Rnsを算出する。これにより、給湯装置が待機状態にあるときは、混合弁5の制御位置Vpが初期値(25℃)に応じた位置に保持され、実混合比率Rrが極めて小さい状態で給湯が開始されて異常に高温の湯が給湯管3の下流に供給されることを防止している。
【0044】
また、STEP3で水流スイッチ6がONして給湯が開始された後、給水管2への給水が停止されたときは、停止時の算出給水温度Tincにより必要混合比率Rnsが算出され、混合弁5は該Rnsに応じた制御位置Vpに保持される。そのため、この場合にも、実混合比率Rrが極めて小さい状態で給湯が開始されて異常に高温の湯が給湯管3の下流に供給されることを防止することができる。
【0045】
また、図2のSTEP2における初期値として、固定値(25℃)ではなく、前回の給湯停止直前にSTEP4で算出された給水温度Tincを用いてもよい。この場合、前回の給湯停止時における給水温度と、給湯再開時における給水温度との間にはさほど差がないと考えられるため、給湯停止中の混合弁5の制御位置Vpを実際の給水温度に応じた制御位置の付近に予め操作しておくことができる。そのため、給湯が再開されたときに、より速く実給湯温度Toutを目標給湯温度Tsetに安定させることができる。
【0046】
また、本実施の形態では、本発明の熱交換器として熱源機20から供給される湯により貯められた湯を一定(80℃)に保つ給湯熱交換器1を用いたが、ガスバーナや電気ヒータ等を用いて、給水管2から供給される水を加熱する熱交換器を用いてもよい。
【図面の簡単な説明】
【図1】本発明の給湯装置の全体構成図。
【図2】図1に示した給湯装置における給湯温度の制御手順を示したフローチャート。
【図3】図1に示した給湯装置における給湯温度の制御の実行結果を示したグラフ。
【図4】従来の給湯装置の全体構成図。
【符号の説明】
1…給湯熱交換器、2…給水管、3…給湯管、4…バイパス管、5…混合弁、6…水流スイッチ、7…給水温度センサ、8…熱交温度センサ、9…給湯温度センサ、10…ステッピングモータ、11…コントローラ、12…リモコン、20…熱源機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water supply temperature control method and a hot water supply apparatus for controlling a hot water supply temperature by adjusting a control position of a mixing valve.
[0002]
[Prior art]
Conventionally, as shown in FIG. 4, a bypass pipe 53 that communicates the water supply pipe 51 and the hot water supply pipe 52 connected to the heat exchanger 50 is provided, and the hot water supplied from the heat exchanger 50 and the bypass pipe 53 are provided. A so-called mixing type that controls the temperature of hot water supplied downstream of the junction by adjusting the mixing ratio with the supplied water by a mixing valve 54 provided at the junction of the hot water supply pipe 52 and the bypass pipe 53. A hot water supply apparatus is known.
[0003]
In such a hot water supply device, a water flow switch 55 that detects the presence or absence of water supplied to the water supply pipe 51, a water supply temperature sensor 56 that detects the temperature of water supplied to the water supply pipe 51, and hot water discharged from the heat exchanger 50. A heat exchange temperature sensor 57 for detecting the temperature of the hot water and a hot water supply temperature sensor 58 for detecting the temperature of hot water supplied to the downstream side of the joining point of the hot water supply pipe 52 and the bypass pipe 53 are provided.
[0004]
While the water flow switch 55 detects that water is being supplied to the water supply pipe 51, the remote controller 61 sets the detected temperature T out of the hot water supply temperature sensor 58 (hereinafter referred to as the actual hot water supply temperature T out ). The control position of the mixing valve 54 is adjusted by the controller 60 so as to coincide with the target hot water supply temperature Tset .
[0005]
Controller 60, and the temperature T in of the water supplied to the water supply pipe 51 detected by the water temperature sensor 56, the temperature T h of the hot water supplied from the heat exchanger 50 as detected by the heat exchanger temperature sensor 57 By recognizing, it is possible to calculate a necessary mixing ratio R n that is a mixing ratio necessary for performing the hot water supply of the actual hot water supply temperature T out to the target hot water supply temperature T set .
[0006]
Then, by adjusting the control position of the mixing valve 54 so as to obtain the necessary mixing ratio R n calculated in this way, the controller 60 can match the actual hot water supply temperature Tout with the target hot water supply temperature Tset. . However, in practice, since the mixing valve 54 has a positioning error that varies depending on the individual, it is difficult for the controller 60 to immediately operate the control position of the mixing valve 54 to a control position where the required mixing ratio R n can be obtained.
[0007]
That is, the controller 60 has a data table 62 that holds the correspondence relationship between the control position of the mixing valve 54 and the mixing ratio that is assumed to be determined according to the control position, but according to the required mixing ratio R n . Even if the control position of the mixing valve 54 is obtained from the data table 62 and the mixing valve 54 is operated to the control position, the actually set mixing ratio does not become the required mixing ratio R n due to the positioning error described above. . Therefore, the actual hot water supply temperature Tout does not coincide with the target hot water supply temperature Tset .
[0008]
Therefore, the controller 60 performs PI control based on the following equations (1) and (2) so as to eliminate the deviation ΔT (= T set −T out ) between the actual hot water temperature T out and the target hot water temperature T set. I was going. Note that P 1 in the formula (1) and I 1 in the formula (2) are constants determined by experiments, and P and I are calculated in units of control steps of the stepping motor 59 that changes the control position of the mixing valve 54. Is done.
[0009]
P = P 1 × (T set −T out ) (1)
I = I 1 × ∫ (T set −T out ) (2)
In PI control, P and I are calculated by the above formulas (1) and (2), and the control position of the mixing valve 54 is moved by P + I steps, so that the above-described deviation ΔT is reduced.
[0010]
However, the relationship between the control position of the mixing valve 54 and the actual mixing ratio determined according to the control position is not constant due to individual variations of the mixing valve 54. For this reason, the constants P 1 and I 1 need to be determined in consideration of such individual variations of the mixing valve 54. However, even if variations occur through experiments or the like, the actual hot water supply temperature Tout is quickly set to the target hot water supply temperature T. There is an inconvenience that man-hours are required to determine the constants P 1 and I 1 that can be matched with set . Further, when a mixing valve exceeding the assumed range of variation is used, PI control based on the inappropriate constants P 1 and I 1 is performed on the mixing valve, so the actual hot water supply temperature T out Has a disadvantage that it takes a long time to coincide with the target hot water supply temperature Tset .
[0011]
[Problems to be solved by the invention]
The present invention eliminates the above inconveniences, and even when the relationship between the control position of the mixing valve and the actual mixing ratio determined by the control position varies depending on the individual mixing valve, the hot water supply temperature is quickly changed to the target hot water supply temperature. It is an object of the present invention to provide a hot water supply temperature control method and a hot water supply device that can be matched.
[0012]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and the hot water supply temperature control method of the present invention is generated by heating from water supplied from the water supply pipe by a water supply pipe and a heat exchanger connected to the hot water supply pipe. The mixing ratio of the hot water supplied to the hot water supply pipe and the water supplied to the hot water supply pipe via a bypass pipe that bypasses the heat exchanger and connects the hot water supply pipe and the hot water supply pipe, By adjusting and controlling the control position of the mixing valve that varies the mixing ratio, the temperature of hot water supplied to the downstream side of the joining point of the hot water supply pipe with the bypass pipe is matched with a predetermined target hot water supply temperature. The present invention relates to an improvement in a method for controlling a hot water supply temperature.
[0013]
And the assumed mixing ratio which is a mixing ratio according to the control position of the mixing valve obtained from a data table storing the relationship between the control position of the mixing valve and the mixing ratio assumed to be determined according to the control position Water supplied from the water supply pipe based on the temperature of the hot water supplied from the heat exchanger and the temperature of the hot water supplied downstream of the junction with the bypass pipe of the hot water supply pipe Based on the temperature of the water calculated in this way and the temperature of hot water supplied from the heat exchanger, a necessary mixing ratio that is a mixing ratio necessary for obtaining the target hot water supply temperature is calculated. Then, by setting the control position of the mixing valve to the control position obtained from the data table in accordance with the required mixing ratio, the hot water supplied to the downstream side of the junction with the bypass pipe of the hot water supply pipe Temperature is given Characterized in that to match the target hot water temperature.
[0014]
According to this invention, first, the assumed mixing ratio obtained from the data table, the temperature of hot water supplied from the heat exchanger, and the downstream side of the joining point of the bypass pipe of the hot water supply pipe are supplied. The temperature of the water supplied from the water supply pipe is calculated based on the temperature of the hot water. And the temperature of the water calculated in this way reflects the error of the actual mixing ratio (hereinafter referred to as the actual mixing ratio) determined by the assumed mixing ratio and the control position of the mixing valve. For example, when the mixing ratio is a ratio of the flow rate of water supplied from the bypass pipe to the flow rate of hot water supplied from the heat exchanger, the calculation is performed when the assumed mixing ratio is larger than the actual mixing ratio. The temperature of the water is actually lower than the temperature of the water supplied to the water supply pipe. Conversely, when the assumed mixing ratio is smaller than the actual mixing ratio, the calculated water temperature is higher than the temperature of the water actually supplied to the water supply pipe.
[0015]
Therefore, the required mixing ratio calculated based on the temperature of water calculated in this way and the temperature of hot water supplied from the heat exchanger is the difference between the assumed mixing ratio and the actual mixing ratio. The mixing ratio is eliminated. Therefore, when the control position of the mixing valve is set to the control position obtained from the data table according to the required mixing ratio, the difference between the assumed mixing ratio and the actual mixing ratio varies due to individual variation of the mixing valve Even so, the temperature of hot water supplied to the downstream side of the joining point of the hot water supply pipe with the bypass pipe can be quickly set to a predetermined target hot water supply temperature.
[0016]
The hot water supply apparatus of the present invention, which is a specific embodiment of the above-described hot water supply temperature control method of the present invention, is connected to a water supply pipe and a hot water supply pipe, and is generated by heating water supplied from the water supply pipe. A heat exchanger that supplies hot water to the hot water supply pipe, a bypass pipe that bypasses the heat exchanger and communicates the water supply pipe and the hot water supply pipe, hot water supplied from the heat exchanger to the hot water supply pipe, A mixing valve that adjusts a mixing ratio of water supplied from the water supply pipe to the hot water supply pipe through the bypass pipe, a heat exchanger temperature sensor that detects a temperature of hot water supplied from the heat exchanger, and the hot water supply A hot water temperature sensor for detecting the temperature of hot water supplied to the downstream side of the joining point of the pipe with the bypass pipe, and the mixing valve so that the detected temperature of the hot water temperature sensor coincides with a predetermined target hot water temperature. Adjust the control position to control the mixing ratio And a hot water temperature control means.
[0017]
A data table storing a correspondence relationship between the control position of the mixing valve and the mixing ratio assumed to be determined according to the control position; a detected temperature of the heat exchanger temperature sensor; and a detected temperature of the hot water supply temperature sensor And a water supply temperature calculation means for calculating a temperature of water supplied from the water supply pipe based on an assumed mixing ratio that is a mixing ratio obtained from the data table according to the control position of the mixing valve, and the water supply Necessary mixing ratio calculating means for calculating a necessary mixing ratio that is a mixing ratio necessary for obtaining the target hot water supply temperature based on the temperature of water calculated by the temperature calculating means and the temperature detected by the heat exchange temperature sensor And the hot water temperature control means sets the control position of the mixing valve to the control position obtained from the data table in accordance with the required mixing ratio. Detection temperature of Sa is characterized in that to match with the target hot-water supply temperature.
[0018]
According to this invention, first, based on the detected temperature of the heat exchanger temperature sensor, the detected temperature of the hot water supply temperature sensor, and the assumed mixing ratio according to the control position of the mixing valve determined by the data table. The temperature of water supplied from the water supply pipe is calculated by the water supply temperature calculation means. The water temperature thus calculated reflects the difference between the assumed mixing ratio and the actual mixing ratio (hereinafter referred to as the actual mixing ratio) determined by the control position of the mixing valve, as described above. Become.
[0019]
Therefore, the required mixing ratio calculated by the required mixing ratio calculating means based on the water temperature calculated by the water supply temperature calculating means is the hot water supply caused by the difference between the assumed mixing ratio and the actual mixing ratio. The mixing ratio cancels the difference between the temperature detected by the temperature sensor and the target hot water supply temperature. Accordingly, the hot water supply temperature control means sets the control position of the mixing valve to the control position obtained from the data table in accordance with the required mixing ratio, so that the assumed mixing ratio and the actual mixing ratio are varied depending on individual variations of the mixing valve. Even when the difference from the ratio varies, the temperature of hot water supplied downstream of the joining point of the hot water pipe and the bypass pipe detected by the hot water temperature sensor is quickly matched with the target hot water temperature. be able to.
[0020]
Further, when the hot water supply apparatus is in a standby state before the start of hot water supply, the required mixing ratio calculating means sets the temperature of the water calculated by the water supply temperature calculating means to be higher than the temperature of the water that is normally supplied. The required mixing ratio is calculated on the assumption that the temperature is the initial feed water temperature, and the hot water supply control means obtains the control position of the mixing valve from the data table in accordance with the calculated required mixing ratio. It is a control position.
[0021]
In the present invention, the required mixing ratio calculated by the required mixing ratio calculating means according to the initial feed water temperature is the required mixing ratio calculated according to the normal temperature of water supplied from the water supply pipe. Rather, the amount of hot water supplied from the heat exchanger is reduced. Therefore, when the hot water supply apparatus is in a standby state, the hot water supply control means sets the control position of the mixing valve to a control position according to the required mixing ratio calculation means calculated based on the initial water supply temperature. Thus, when hot water supply is started, it is possible to prevent abnormally high temperature hot water from being supplied to the downstream side of the junction of the hot water supply pipe and the bypass pipe.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment of the present invention will be described with reference to FIGS. 1 is an overall configuration diagram of the hot water supply apparatus of the present invention, FIG. 2 is a flowchart showing a control procedure of hot water temperature in the hot water supply apparatus shown in FIG. 1, and FIG. 3 is a control of hot water temperature in the hot water supply apparatus shown in FIG. It is the graph which showed the execution result.
[0023]
Referring to FIG. 1, a hot water supply apparatus of the present invention bypasses hot water supply heat exchanger 1 and hot water supply pipe 2 and hot water supply pipe 3 connected to hot water supply heat exchanger 1 (corresponding to the heat exchanger of the present invention). The hot water supplied from the hot water supply heat exchanger 1 and the bypass pipe 4 are provided at the joining point of the hot water pipe 3 and the bypass pipe 4. The mixing valve 5 for adjusting the mixing ratio with the water to be supplied and the water flow switch 6 for detecting the presence or absence of the water supplied to the water supply pipe 2 are provided.
[0024]
Furthermore, the hot water supply apparatus includes a water supply temperature sensor 7 that detects the temperature of water supplied to the water supply pipe 2, a heat exchanger temperature sensor 8 that detects the temperature of hot water supplied from the hot water supply heat exchanger 1, and a hot water supply pipe. The hot water supply temperature sensor 9 for detecting the temperature of hot water supplied downstream of the junction with the 3 bypass pipe 4, the stepping motor 10 for adjusting the control position of the mixing valve 5, and the operation of the hot water supply device are controlled. A controller 11 and a remote controller 12 for a user to instruct the operation of the hot water supply device are provided.
[0025]
In the present embodiment, the ratio of the flow rate of water supplied from the bypass pipe 4 when the flow rate of hot water supplied from the hot water supply heat exchanger 1 is set to 1 is the hot water supplied from the hot water supply heat exchanger 1. And the mixing ratio of water supplied from the bypass pipe 4.
[0026]
Hot water is supplied to the hot water supply heat exchanger 1 through a hot water circulation pipe 21 from the heat source machine 20, and the heat source machine 20 circulates hot water in the hot water circulation pipe 21 and hot water in the hot water circulation pipe 21. And a circulating heat exchanger 22 that heats the gas by a burner 24. The heat source unit 20 adjusts the combustion amount of the burner 24 through the hot water circulation pipe 21 so that the temperature of the hot water stored in the hot water supply heat exchanger 1 is maintained at a predetermined temperature (for example, 80 ° C.). While controlling the temperature of the hot water supplied to the hot water supply heat exchanger 1, the operation of the pump 23 is controlled to control the amount of hot water supplied to the hot water supply heat exchanger 1 through the hot water circulation pipe 21. As a result, hot water having a substantially constant temperature (80 ° C.) is supplied from the hot water supply heat exchanger 1 to the hot water supply pipe 3 at a substantially constant pressure.
[0027]
The controller 11 sets the temperature T out of hot water supplied to the downstream of the junction with the bypass pipe 4 of the hot water supply pipe 3 detected by the hot water supply temperature sensor 9 (hereinafter referred to as the actual hot water supply temperature T out ) by the remote controller 12. to match the target hot-water supply temperature T set which is set in accordance with the hot water supply temperature control means 31 for outputting a position control signal P cm to the motor driver 30, the control position V p and the control position V p of the mixing valve 5 A data table 32 storing a correspondence relationship with an assumed mixing ratio R s that is assumed to be set.
[0028]
Furthermore, the controller 11 obtains the hot water supplied from the hot water supply heat exchanger 1, which is detected by the thermal exchange temperature sensor 8 temperature T h (hereinafter, the hot water temperature T h hereinafter) by the actual hot-water supply temperature T out and the data table 32 From the assumed mixing ratio R s according to the control position V p of the mixing valve 5, the feed water temperature calculating means 33 for calculating the temperature T inc of the water supplied to the feed water pipe 2 (hereinafter referred to as the calculated feed water temperature T inc ). Based on the tapping temperature T h , the actual hot water temperature T out, and the calculated hot water temperature T inc , the necessary mixing ratio R n , which is a mixing ratio necessary to match the actual hot water temperature T out with the target hot water temperature T set, is set. And a necessary mixing ratio calculating means 34 for calculating.
[0029]
The position control signal P cm output from the hot water supply temperature control means 31 to the motor driver 30 is in accordance with the control position V p of the mixing valve 5. In this embodiment, the hot water supply temperature control means 31 is the stepping motor 10. the rotational position by controlling the range of 0 to 2000 steps, to adjust the control position V p of the mixing valve 5.
[0030]
Here, the controller 11 calculates the following equation (1) from the temperature T in of water supplied to the water supply pipe detected by the water supply temperature sensor 7 (hereinafter referred to as the actual water supply temperature T in ) and the tapping temperature T h. 3) it is possible to calculate the required mixture ratio R nr a mixture ratio required to the actual hot-water supply temperature T out is equal to the target hot-water supply temperature T the set.
[0031]
R nr = (T h −T in ) / (T set −T in ) −1 (3)
Then, the assumed mixing ratio R S according to the control position V p of the mixing valve 5 obtained from the data table 32 and the actual mixing ratio set according to the control position V p of the mixing valve 5 (hereinafter, the actual mixing ratio). if R of r) and match, the control position V p of the mixing valve 5 by the control position determined from the data table 32 in accordance with the required mixture ratio R nr, target actual hot-water supply temperature T out It can be made to coincide with the hot water supply temperature Tset .
[0032]
However, in practice, the control position V p of the mixing valve 5 is controlled by the control step of the stepping motor 10 due to the influence of the eigenvalues a and b that vary depending on the individual mixing valve 5 as represented by the following equation (4). Even if the numbers are the same, they are not constant.
[0033]
V p = a × number of steps + b (4)
Therefore, the assumed mixing ratio R s and the actual mixing ratio R r with respect to the control position V p of the mixing valve 5 do not coincide with each other, and the control position of the mixing valve 5 corresponding to the necessary mixing ratio R nr calculated by the above equation (3). the determined by the data table 32, also outputs a position control signal P cm corresponding to the control position to the motor driver 30, the actual mixing ratio R r that is set in the required mixing for including errors due to the above formula (4) It is not the ratio R nr . Therefore, the actual hot water supply temperature Tout cannot be matched with the target hot water supply temperature Tset .
[0034]
Therefore, the controller 11 performs processing for causing the actual hot-water supply temperature T out in consideration of the error between the assumed mixing ratio R s and the actual mixing ratio R r is equal to the target hot-water supply temperature T The set. Hereinafter, this process will be described with reference to the flowchart of FIG.
[0035]
Referring to FIG. 2, when energization of the hot water supply device is started in STEP 1, the hot water supply device enters a standby state. Then, proceeding to STEP 2, the controller 11 sets an initial value (corresponding to the initial feed water temperature of the present invention) of a calculated feed water temperature T inc described later to 25 ° C.
[0036]
Then, while the water flow switch 6 is ON in the next STEP 3, that is, while water is being supplied to the water supply pipe 2, the controller 11 repeatedly executes STEP 4 to STEP 7. STEP4 is a treatment with water temperature calculation section 33, the feed water temperature calculation section 33 was determined from the data table 32 in response to tapping temperature T h and the control position V p of the current actual hot-water supply temperature T out and mixing valve 5 Based on the assumed mixing ratio R s , the temperature of the water supplied from the water supply pipe 2 (hereinafter referred to as the calculated water supply temperature T inc ) is calculated by the following equation (5).
[0037]
T inc = {(1 + R s ) × T out −T h } / R s (5)
Here, the calculated feed water temperature T inc reflects an error between the assumed mixing ratio R s and the actual mixing ratio R r . That is, when the assumed mixing ratio R s is greater than the actual mixing ratio R r , the calculated feed water temperature T inc is lower than the actual feed water temperature T in , and conversely, the assumed mixing ratio R s is greater than the actual mixing ratio R r . Is smaller, the calculated feed water temperature T inc is higher than the actual feed water temperature T in .
[0038]
Continued STEP5 is a process by requiring the mixing ratio calculating unit 34, required mixing ratio calculating means 34 from the calculated feedwater temperature T inc and the hot water temperature T h, the following equation (6), the actual hot-water supply temperature T out A required mixing ratio R ns that is a mixing ratio required to match the target hot water supply temperature T set is calculated.
[0039]
R ns = (T h −T inc ) / (T set −T inc ) −1 (6)
Thus, when the required mixing ratio R ns is calculated based on the calculated feed water temperature T inc , the calculated required mixing ratio R ns is different from the required mixing ratio R nr calculated by the above-described equation (3), Instead of the actual mixing ratio R r , the assumed mixing ratio R s including an error is obtained.
[0040]
For this reason, the control position V p of the mixing valve 5 corresponding to the required mixing ratio R ns calculated by the above formula (5) is obtained from the data table 32, and the mixing valve 5 is set to the control position V p , so that the actual hot water supply temperature T out can be matched with the target hot water supply temperature T set .
[0041]
Therefore, at the next STEP 6, the hot water temperature control means 31 obtains the control position of the mixing valve 5 corresponding to the required mixing ratio R ns from the data table 32, and at the next STEP 7, the position command signal P cm corresponding to the control position. Is output to the motor driver 30. Thus, the drive signal from the motor driver 30 to the stepping motor 10 is output, the control position V p of the mixing valve 5 is operated to control a position corresponding to the required mixture ratio R ns. Or by repeating the process of STEP4~STEP7 described, it is possible to quickly match the actual hot-water supply temperature T out at the target hot-water supply temperature T The set.
[0042]
FIG. 3 shows an example in which the above processing from STEP 4 to STEP 7 is executed when the initial value of the calculated feed water temperature T inc is 10 ° C. and the target hot water supply temperature T set is 45 ° C. The solid line represents the solid line. The hot water supply temperature T out , the dotted line indicates the target hot water supply temperature T set , and the alternate long and short dash line indicates the assumed mixing ratio R s . FIG. 3 shows that the setting of the assumed mixing ratio R s decreases as the number of times of processing from STEP 4 to STEP 7 progresses, and the actual hot water temperature T out quickly converges to the target hot water temperature T set accordingly .
[0043]
In addition, after energization is started in STEP 1, when the water flow switch 6 is OFF in STEP 3, that is, in a standby state where water is not supplied to the water supply pipe 2, the flow branches from STEP 3 to STEP 5, The necessary mixing ratio calculating means 34 calculates the necessary mixing ratio R ns assuming that the calculated feed water temperature T inc is an initial value (25 ° C.). Thereby, when the hot water supply apparatus is in the standby state, the control position V p of the mixing valve 5 is held at a position corresponding to the initial value (25 ° C.), and hot water supply is started with the actual mixing ratio R r being extremely small. Thus, abnormally high temperature hot water is prevented from being supplied downstream of the hot water supply pipe 3.
[0044]
Further, when water supply to the water supply pipe 2 is stopped after the water flow switch 6 is turned ON in STEP 3 and the water supply pipe 2 is stopped, the necessary mixing ratio R ns is calculated from the calculated water supply temperature T inc at the time of stop, and the mixing is performed. The valve 5 is held at a control position V p corresponding to the R ns . Therefore, also in this case, it is possible to prevent the hot water supply from being started in a state where the actual mixing ratio R r is extremely small and abnormally hot water to be supplied downstream of the hot water supply pipe 3.
[0045]
In addition, as an initial value in STEP2 of FIG. 2, the water supply temperature T inc calculated in STEP4 immediately before the previous hot water supply stop may be used instead of the fixed value (25 ° C.). In this case, since it is considered that there is not much difference between the water supply temperature at the previous hot water supply stop and the water supply temperature at the time of hot water supply restart, the control position V p of the mixing valve 5 during the hot water supply stop is set to the actual water supply temperature. It is possible to operate in the vicinity of the control position according to the above. Therefore, when the hot water supply is resumed, it is possible to stabilize faster real hot-water supply temperature T out at the target hot-water supply temperature T The set.
[0046]
Moreover, in this Embodiment, although the hot water supply heat exchanger 1 which keeps the hot water stored with the hot water supplied from the heat source machine 20 constant (80 degreeC) was used as a heat exchanger of this invention, a gas burner or an electric heater A heat exchanger that heats the water supplied from the water supply pipe 2 may be used.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a hot water supply apparatus of the present invention.
FIG. 2 is a flowchart showing a hot water supply temperature control procedure in the hot water supply apparatus shown in FIG. 1;
3 is a graph showing an execution result of hot water temperature control in the hot water supply apparatus shown in FIG. 1;
FIG. 4 is an overall configuration diagram of a conventional hot water supply apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hot water supply heat exchanger, 2 ... Water supply pipe, 3 ... Hot water supply pipe, 4 ... Bypass pipe, 5 ... Mixing valve, 6 ... Water flow switch, 7 ... Water supply temperature sensor, 8 ... Heat exchange temperature sensor, 9 ... Hot water supply temperature sensor DESCRIPTION OF SYMBOLS 10 ... Stepping motor, 11 ... Controller, 12 ... Remote control, 20 ... Heat source machine

Claims (3)

給水管及び給湯管と接続された熱交換器により該給水管から供給された水から加熱生成されて該給湯管に供給される湯と、前記熱交換器をバイパスして前記給水管と前記給湯管とを連通するバイパス管を介して前記給湯管に供給される水との混合比率を、該混合比率を可変する混合弁の制御位置を調節して制御することによって、前記給湯管の前記バイパス管との合流箇所の下流側に供給される湯の温度を所定の目標給湯温度と一致させる給湯温度の制御方法において、
前記混合弁の制御位置と該制御位置に応じて定まると想定した前記混合比率との関係を記憶したデータテーブルにより求めた、前記混合弁の制御位置に応じた混合比率である想定混合比率と、前記熱交換器から供給される湯の温度と、前記給湯管の前記バイパス管との合流箇所の下流側に供給される湯の温度とに基づいて、前記給水管から供給される水の温度を算出し、
このようにして算出した水の温度と前記熱交換器から供給される湯の温度とに基づいて、前記目標給湯温度を得るために必要な混合比率である必要混合比率を算出して、
前記混合弁の制御位置を前記必要混合比率に応じて前記データテーブルから求めた制御位置とすることにより、前記給湯管の前記バイパス管との合流箇所の下流側に供給される湯の温度が所定の目標給湯温度と一致するようにしたことを特徴とする給湯温度の制御方法。
Hot water generated by heating from the water supplied from the water supply pipe by a heat exchanger connected to the water supply pipe and the hot water supply pipe and supplied to the hot water supply pipe; bypassing the heat exchanger; the water supply pipe and the hot water supply The bypass ratio of the hot water supply pipe is controlled by adjusting the control position of the mixing valve that varies the mixing ratio with the water supplied to the hot water supply pipe via a bypass pipe communicating with the pipe. In the hot water temperature control method for matching the temperature of hot water supplied to the downstream side of the junction with the pipe with a predetermined target hot water temperature,
An assumed mixing ratio, which is a mixing ratio according to the control position of the mixing valve, obtained from a data table storing the relationship between the control position of the mixing valve and the mixing ratio assumed to be determined according to the control position; Based on the temperature of the hot water supplied from the heat exchanger and the temperature of the hot water supplied to the downstream side of the junction with the bypass pipe of the hot water supply pipe, the temperature of the water supplied from the water supply pipe is Calculate
Based on the temperature of water calculated in this way and the temperature of hot water supplied from the heat exchanger, a required mixing ratio that is a mixing ratio required to obtain the target hot water supply temperature is calculated,
By setting the control position of the mixing valve to the control position obtained from the data table in accordance with the required mixing ratio, the temperature of hot water supplied to the downstream side of the joining point of the hot water supply pipe with the bypass pipe is predetermined. The hot water temperature control method is characterized in that it matches the target hot water temperature.
給水管及び給湯管と接続され、該給水管から供給される水を加熱して生成した湯を前記給湯管に供給する熱交換器と、該熱交換器をバイパスして前記給水管と前記給湯管を連通するバイパス管と、前記熱交換器から前記給湯管に供給される湯と前記給水管から前記バイパス管を介して前記給湯管に供給される水との混合比率を調節する混合弁と、前記熱交換器から供給される湯の温度を検出する熱交温度センサと、前記給湯管の前記バイパス管との合流箇所の下流側に供給される湯の温度を検出する給湯温度センサと、該給湯温度センサの検出温度が所定の目標給湯温度と一致するように、前記混合弁の制御位置を調節して前記混合比率を制御する給湯温制御手段とを備えた給湯装置において、
前記混合弁の制御位置と該制御位置に応じて定まると想定した前記混合比率との対応関係を記憶したデータテーブルと、
前記熱交温度センサの検出温度と、前記給湯温度センサの検出温度と、前記混合弁の制御位置に応じて前記データテーブルから求めた混合比率である想定混合比率とに基づいて、前記給水管から供給される水の温度を算出する給水温度算出手段と、
該給水温度算出手段により算出された水の温度と、前記熱交温度センサの検出温度とに基づいて、前記目標給湯温度を得るために必要な混合比率である必要混合比率を算出する必要混合比率算出手段とを備え、
前記給湯温制御手段は、前記混合弁の制御位置を、前記必要混合比率に応じて前記データテーブルから求めた制御位置とすることによって、前記給湯温度センサの検出温度が前記目標給湯温度と一致するようにしたことを特徴とする給湯装置。
A heat exchanger connected to the water supply pipe and the hot water supply pipe and supplying hot water generated by heating water supplied from the water supply pipe to the hot water supply pipe; bypassing the heat exchanger; the water supply pipe and the hot water supply A bypass pipe communicating with the pipe, and a mixing valve for adjusting a mixing ratio of hot water supplied from the heat exchanger to the hot water supply pipe and water supplied from the water supply pipe via the bypass pipe to the hot water supply pipe; A hot water temperature sensor for detecting the temperature of hot water supplied from the heat exchanger, and a hot water temperature sensor for detecting the temperature of hot water supplied downstream of the junction of the hot water pipe and the bypass pipe, In a hot water supply apparatus comprising hot water temperature control means for controlling the mixing ratio by adjusting the control position of the mixing valve so that the detected temperature of the hot water temperature sensor coincides with a predetermined target hot water temperature.
A data table storing a correspondence relationship between the control position of the mixing valve and the mixing ratio assumed to be determined according to the control position;
Based on the detected temperature of the heat exchanger temperature sensor, the detected temperature of the hot water supply temperature sensor, and the assumed mixing ratio that is the mixing ratio obtained from the data table according to the control position of the mixing valve, from the water supply pipe Water supply temperature calculation means for calculating the temperature of the supplied water;
Necessary mixing ratio for calculating a necessary mixing ratio, which is a mixing ratio necessary for obtaining the target hot water supply temperature, based on the temperature of water calculated by the water supply temperature calculating means and the temperature detected by the heat exchange temperature sensor A calculating means,
The hot water temperature control means sets the control position of the mixing valve to a control position obtained from the data table according to the required mixing ratio, so that the detected temperature of the hot water temperature sensor coincides with the target hot water temperature. A hot water supply apparatus characterized by the above.
前記給湯装置が給湯開始前の待機状態にあるときに、前記必要混合比率算出手段は、前記給水温度算出手段により算出された水の温度が通常供給される水の温度よりも高く設定した初期給水温度であると仮定して前記必要混合比率を算出し、前記給湯制御手段は、前記混合弁の制御位置を、このようにして算出された必要混合比率に応じて前記データテーブルから求めた制御位置とすることを特徴とする請求項2記載の給湯装置。When the hot water supply apparatus is in a standby state before the start of hot water supply, the required mixing ratio calculating means sets an initial water supply in which the temperature of the water calculated by the water supply temperature calculating means is set higher than the temperature of water normally supplied The required mixing ratio is calculated on the assumption that it is a temperature, and the hot water supply control means determines the control position of the mixing valve from the data table according to the required mixing ratio thus calculated. The hot water supply apparatus according to claim 2, wherein:
JP2000060769A 2000-03-06 2000-03-06 Hot water temperature control method and hot water supply apparatus Expired - Fee Related JP3805595B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000060769A JP3805595B2 (en) 2000-03-06 2000-03-06 Hot water temperature control method and hot water supply apparatus
KR10-2001-0002520A KR100390149B1 (en) 2000-03-06 2001-01-17 Water temperature control method and hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060769A JP3805595B2 (en) 2000-03-06 2000-03-06 Hot water temperature control method and hot water supply apparatus

Publications (2)

Publication Number Publication Date
JP2001248911A JP2001248911A (en) 2001-09-14
JP3805595B2 true JP3805595B2 (en) 2006-08-02

Family

ID=18581022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060769A Expired - Fee Related JP3805595B2 (en) 2000-03-06 2000-03-06 Hot water temperature control method and hot water supply apparatus

Country Status (2)

Country Link
JP (1) JP3805595B2 (en)
KR (1) KR100390149B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101382B (en) * 2017-05-09 2019-07-26 珠海格力电器股份有限公司 Water heater temperature control method, water heater and readable storage medium storing program for executing
KR102606221B1 (en) * 2018-12-31 2023-11-27 주식회사 경동나비엔 Apparatus and method for supplying hot water
US20220010976A1 (en) * 2018-12-31 2022-01-13 Kyungdong Navien Co., Ltd. Apparatus and method for supplying hot water
KR102253337B1 (en) * 2018-12-31 2021-05-18 주식회사 경동나비엔 Apparatus and method for supplying hot water
CN114636186B (en) * 2022-04-17 2023-05-26 台州半城暖通科技有限公司 Bypass control method for water collector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112092A (en) * 1988-07-15 1989-04-28 Matsushita Electric Ind Co Ltd Hot water and cold water mixing device
JP2878799B2 (en) * 1990-07-19 1999-04-05 パロマ工業株式会社 Hot water supply temperature control device
JPH0674560A (en) * 1992-08-27 1994-03-15 Noritz Corp Control method for hot water supply device
JP3674118B2 (en) * 1995-10-25 2005-07-20 株式会社ノーリツ Water heater bypass water mixing device

Also Published As

Publication number Publication date
JP2001248911A (en) 2001-09-14
KR20010087158A (en) 2001-09-15
KR100390149B1 (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP3805595B2 (en) Hot water temperature control method and hot water supply apparatus
JP5914307B2 (en) Heat pump heating system
KR920009304B1 (en) Water heater
JP4909049B2 (en) Combustion device
JPH07234014A (en) Hot water supplying apparatus
JP3962640B2 (en) Water heater
JP2004028456A (en) Hot-water space heating system
JP3681532B2 (en) Water heater
JPH06257852A (en) Hot-water supplier
JP2669771B2 (en) Combustion equipment
JP3164712B2 (en) Circulating water heater
JP3644088B2 (en) Hot water supply device with automatic bath water supply function
JP3033415B2 (en) Hot water supply control device
JPH1047772A (en) Hot water supply device
JP3277104B2 (en) Water supply device
JP3773706B2 (en) Water heater
JP3845099B2 (en) Water heater heating control device
JPH0478899B2 (en)
JPH08100950A (en) Storage type hot water supply system
JP3144729B2 (en) Circulating warm water heater
JP3377063B2 (en) Water heater
JP2594363B2 (en) Air supply for combustion equipment
JPH10160176A (en) Antifreezing system
JP2658655B2 (en) humidifier
JP2655385B2 (en) Water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

R150 Certificate of patent or registration of utility model

Ref document number: 3805595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees