JP3803592B2 - Low resistance transparent conductive film and method for producing the same - Google Patents

Low resistance transparent conductive film and method for producing the same Download PDF

Info

Publication number
JP3803592B2
JP3803592B2 JP2002050300A JP2002050300A JP3803592B2 JP 3803592 B2 JP3803592 B2 JP 3803592B2 JP 2002050300 A JP2002050300 A JP 2002050300A JP 2002050300 A JP2002050300 A JP 2002050300A JP 3803592 B2 JP3803592 B2 JP 3803592B2
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
gas
low
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002050300A
Other languages
Japanese (ja)
Other versions
JP2003249125A (en
Inventor
裕明 川村
日出夫 竹井
暁 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002050300A priority Critical patent/JP3803592B2/en
Publication of JP2003249125A publication Critical patent/JP2003249125A/en
Application granted granted Critical
Publication of JP3803592B2 publication Critical patent/JP3803592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、低抵抗透明導電膜及びその製造法に関する。低抵抗透明導電膜は、LCD、有機EL等のフラットパネルディスプレイ用透明導電膜として利用できる。
【0002】
【従来の技術】
従来より、LCDや有機EL等のフラットパネルディスプレイ用透明導電膜は、蒸着法、イオンプレーティング法、スパッタリング法等によって、ガラス基板上に金属酸化物を付着せしめることにより製造されている。しかしながら、これらの方法では、装置が大がかりになり装置コストが高くなると共に、製造コストが高くなる等のため、簡単な装置で安価に製造する方法が求められていた。
【0003】
そのために、フラットパネルディスプレイ用透明導電膜を簡単な装置で安価に製造することを目的として、従来のスパッタ成膜法等に代えて、近年、ITO膜等の透明導電膜をスピン塗布、スプレー塗布、インクジェット塗布で形成することが提案されている。この場合、透明導電膜形成材料としては、例えば、CRT表面のコーティング用途に、ITO等の微粒子を有機溶媒に分散した分散液が使用される。この分散液を上記塗布方法で基板に塗布した後加熱して、有機溶媒の除去とITO微粒子の焼結とを行い、基板上に薄膜状のITO膜を形成する。
【0004】
【発明が解決しようとする課題】
上記塗布法で用いられる従来の材料は、低温加熱では焼結後の電気抵抗(シート抵抗)が数kΩ/□と大きく、また、電気抵抗が小さいものを得ようとすると焼結の際に高温加熱(例えば、300℃程度以上)が必要なため、LCD、有機EL等のフラットパネルディスプレイの分野における透明導電膜の形成には使用できないという問題がある。そのため、低温で焼結でき、低抵抗値を有する透明導電膜及びその製造法が求められている。
本発明の課題は、上記従来技術の問題点を解決することにあり、焼結温度が低く、かつ、焼結後の電気抵抗(シート抵抗)が小さい薄膜状透明導電膜の製造法及び得られた低抵抗透明導電膜を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、低抵抗透明導電膜を得るために、その材料及び製造プロセスについて鋭意研究・開発を行ってきた。その結果、低温加熱で電気抵抗を大幅に下げることができる低抵抗透明導電膜の製造法を見出し、本発明を完成させるに至った。
本発明の低抵抗透明導電膜は、透明導電膜形成用金属酸化物の微粒子を酸素又はオゾンを含むガスとハロゲン化金属ガス又は有機金属化合物ガスとの混合ガス雰囲気中で100〜250℃で焼結した、該金属酸化物からなる多孔質透明導電膜中の空孔が酸素又はオゾンとハロゲン化金属又は有機金属化合物との反応により生成された金属酸化物で充填されている構造を有する。焼結温度が100℃未満であると充分焼結せず、また、250℃を超えるとディスプレイの製造工程上問題が生じる。
【0006】
金属酸化物としては、透明導電膜を形成する際に通常使用される材料であれば適宜選択して用いることができるが、例えば、ITO、ATO、IZO、ZnO、SnO、CaWO等から選ばれたものが好ましい。
ハロゲン化金属ガスは、ハロゲン化インジウムガス、ハロゲン化スズガスから選ばれるものが好ましく、また、有機金属化合物ガスは、トリメチルインジウムガス、トリメチルスズガスから選ばれるものが好ましい。
本発明の低抵抗透明導電膜の厚さは1〜20nmであることが好ましい。1nm未満だと電気抵抗が下がらず、20nmを超えると透過率が低下するという問題があるからである。
【0007】
本発明の低抵抗透明導電膜の製造法は、透明導電膜形成用金属酸化物の微粒子の分散液を被処理基板上に塗布し、大気中で150〜200℃で燒結して多孔質透明導電膜を形成し、次いで、酸素又はオゾンを含むガスとハロゲン化金属ガス又は有機金属化合物との混合ガス雰囲気中で100〜250℃で加熱して目的とする透明導電膜を形成することからなる。
本製造法で用いる金属酸化物は、ハロゲン化金属ガス、有機金属化合物ガスは、上記の通りである。
本発明の低抵抗透明導電膜は、ガラス基板や有機樹脂材料からあんる基板との密着性も併せ持つという特徴と有する。
【0008】
【発明の実施の形態】
本発明の低抵抗透明導電膜は、上記したように、透明導電膜形成用金属酸化物の微粒子を特定の混合ガス雰囲気中で低温で焼結した、金属酸化物からなる多孔質透明導電膜中の空孔がインジウム酸化物で充填されている構造を有している。この透明導電膜は、上記したように、透明導電膜形成用金属酸化物の微粒子の分散液を調製し、この分散液を被処理基板上に、例えば、スピン塗布、スプレー塗布、インクジェット塗布、浸漬塗布、ロールコート法、スクリーン印刷法等の公知の方法を用いて塗布し、大気中で150〜200℃で加熱して多孔質透明導電膜を形成し、次いで、酸素又はオゾンを含むガスとハロゲン化インジウムガス又は有機インジウムガスとの混合ガス雰囲気中で、通常の透明導電膜形成用材料の微粒子を単体で焼結するのに必要な温度(一般に、500〜700℃)よりはるかに低温(100〜250℃)で焼結して成膜することにより得られる。
【0009】
本発明における透明導電膜形成用金属酸化物としては、通常、透明導電膜形成用材料として用いられる酸化インジウム、酸化錫、酸化亜鉛、酸化カドミウム、酸化ガリウム、In(ZnO)、及びInGaO(ZnO)等や、これら酸化物にドーパントを添加したもの、例えば、錫添加酸化インジウム(ITO)、アンチモン添加酸化錫(ATO)、亜鉛添加酸化インジウム(IZO)及びアルミニウム添加酸化亜鉛(AZO)等を用いることができる。LCD、有機EL等のディスプレイ用透明導電膜形成用材料としては、特に、ITO、IZO、酸化亜鉛、SnO、CaWOが好ましい。
【0010】
本発明における分散液は、上記金属酸化物微粒子を有機溶媒に分散させたものである。用いる有機溶媒としては、使用する微粒子によって適宜選択すればよく、例えば、次のようなものがある。すなわち、メタノール、エタノール、プロパノール、イソプロピルアルコール、及びブタノール等のアルコール類、エチレングリコール等のグリコール類、アセトン、メチルエチルケトン及びジエチルケトン等のケトン類、酢酸エチル、酢酸ブチル及び酢酸ベンジル等のエステル類、メトキシエタノール及びエトキシエタノール等のエーテルアルコール類、ジオキサン及びテトラヒドロフラン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、トルエン、キシレン等の芳香族炭化水素類等を挙げることができる。さらに、本発明では、この有機溶媒中には水も含まれるものとする。
【0011】
上記有機溶媒の使用量は、使用する微粒子に応じて、分散液とした場合に塗布しやすく、かつ所望の膜厚を得ることができるように適宜選択すればよい。例えば、溶媒に対し微粒子1〜10wt%である。
分散液を塗布する被処理基板としての支持体には、通常用いられるガラス基板や有機樹脂材料からなる基板を挙げることができ、その形状としては平板、立体物、フィルム等であってもよい。有機樹脂材料としては、例えば、セルロースアセテート類、ポリスチレン、ポリエチレンテレフタレート、ポリスチレン類、ポリエーテル類、ポリイミド、エポキシ樹脂、フェノキシ樹脂、ポリカーボネート、ポリフッ化ビニリデン、テフロン等を用いることができる。これらを単独又は貼り合わせて支持体として用いてもよい。この被処理基板は、分散液を塗布する前に、純水や超音波等を用いて洗浄することが好ましい。
【0012】
本発明の透明導電膜製造の際に用いる混合ガスの1成分であるハロゲン化金属ガスとしては、好ましくは、フッ化インジウム、塩化インジウム、臭化インジウム及びヨウ化インジウムガスをあげることができる。また、有機金属化合物ガスとしては、酸素又はオゾンと反応するものであればよく、好ましくは、トリメチルインジウム、トリメチルスズ等のガスがある。また、酸素、オゾンを含むガスとしては、反応するのに充分な量の酸素、オゾンを含んでいるガスであればよい。さらに、混合ガスを導入するためにキャリアーガスとしてアルゴン等の不活性ガスを用いることができる。これらのガスの成分金属としては、金属酸化物微粒子の導電性金属と同じものでも異なったものでもよい。
【0013】
通常、金属酸化物微粒子分散液を塗布した後に250℃程度の低温で加熱処理すると、透明電導膜形成用金属酸化物単体では充分に焼結せず、小さな空孔を持った多孔質膜が生成され、電気抵抗の小さな透明導電膜を形成することができない。しかし、本発明のプロセス条件で加熱処理すると、生成した多孔質膜中の空孔が、例えば、酸素又はオゾンとハロゲン化インジウムガス又は有機インジウムガスとの反応で生成したインジウム酸化物で充填されるようになる。そのため、透明導電膜は緻密化し、電気抵抗も小さい。同時に、金属酸化物微粒子と被処理基板との空隙もこのインジウム酸化物で完全に充填されるため、金属酸化物単体の場合と比べて、透明導電膜と被処理基板との密着性も著しく向上する。
【0014】
【実施例】
以下、本発明の実施例を図面を参照して説明する。
(実施例1)
Snが5重量%添加されたInの微粒子(ITO:粒径1μm以下)を、濃度が5%となるように酢酸n−ブチル中に分散して分散液を調製した。この分散液をスピンコート法でガラス基板に塗布した。この基板を、大気中で200℃で5分間大気中で加熱し、膜厚が約100nmの多孔質透明導電膜を形成した。次いで、この基板をさらに加熱処理した。すなわち、図1に示すステンレス製真空容器内に設けた加熱機構としてのヒータープレート1上に基板2を設置し、容器内を真空排気した後、酸素ガス導入パイプ3及び有機金属化合物ガス導入パイプ4を経て、容器内に、酸素ガス及びトリメチルインジウムガスをアルゴンガスをキャリアーガスとして用いたバブリング法で導入した。この時の容器内の圧力を90kPa以下、また、基板温度を250℃とした。かくして、膜厚約150nmの透明導電膜が形成された。このようにして得られた透明導電膜は緻密化しており、以下述べるように電気抵抗も小さい。
【0015】
得られた透明導電膜の模式的な断面構造を図2に示す。図2に示すように、基板11上に形成された透明導電膜は、導電膜形成用金属酸化物(ITO)の微粒子12からなり、多孔質膜中の空孔及び金属酸化物微粒子12と被処理基板11との空隙等が、酸素とトリメチルインジウムとの反応の生成物であるインジウム酸化物膜13で充填されている構造を有している。
上記製造方法において加熱時間を3、5、10分で行い、各加熱時間において得られた透明電導膜に対し、シート抵抗(Ω/□)を測定した。その結果を表1に示す。
【0016】
(表1)

Figure 0003803592
表1から明らかなように、本実施例記載の方法によれば、シート抵抗の低い透明導電膜が得られている。このシート抵抗は、対照としてITO微粒子を大気中で500℃で焼結して得られた透明導電膜のシート抵抗(15〜30KΩ/□)と比べて、極めて低い値であった。
その他の上記透明導電膜形成用金属酸化物微粒子を用いた場合も、上記方法に従えば、低温燒結で同様に低いシート抵抗を有する透明導電膜が得られる。
【0017】
【発明の効果】
本発明の透明導電膜によれば、多孔質透明導電膜の空孔及び被処理基板と金属酸化物微粒子との空隙が導電性金属酸化物膜で充填されているので、電気抵抗が低く、かつ、被処理基板との密着性も高い。
また、本発明の低抵抗透明導電膜の製造法によれば、低い焼結温度で、焼結後の電気抵抗が小さい薄膜状透明導電膜を簡単な装置で安価に製造することができる。
【図面の簡単な説明】
【図1】 本発明で用いる成膜装置(真空容器)の構成を模式的に示す概略構成図。
【図2】 実施例1で得られた透明導電膜の構造を模式的に示す断面図。
【符号の説明】
1 ヒータープレート 2 基板
3 酸素ガス導入パイプ 4 有機金属化合物ガス導入パイプ
11 基板 12 ITO微粒子
13 インジウム酸化物膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low resistance transparent conductive film and a method for producing the same. The low resistance transparent conductive film can be used as a transparent conductive film for flat panel displays such as LCD and organic EL.
[0002]
[Prior art]
Conventionally, a transparent conductive film for flat panel displays such as LCD and organic EL has been manufactured by depositing a metal oxide on a glass substrate by vapor deposition, ion plating, sputtering, or the like. However, in these methods, since the apparatus becomes large, the apparatus cost increases, and the manufacturing cost increases. Therefore, a method of manufacturing at low cost with a simple apparatus has been demanded.
[0003]
Therefore, in order to manufacture transparent conductive films for flat panel displays at low cost with a simple device, instead of the conventional sputtering film forming method, etc., in recent years, transparent conductive films such as ITO films have been applied by spin coating and spray coating. It has been proposed to form by ink jet coating. In this case, as the transparent conductive film forming material, for example, a dispersion liquid in which fine particles such as ITO are dispersed in an organic solvent is used for coating the CRT surface. The dispersion is applied to the substrate by the above application method and then heated to remove the organic solvent and sinter the ITO fine particles, thereby forming a thin ITO film on the substrate.
[0004]
[Problems to be solved by the invention]
The conventional material used in the above coating method has a large electrical resistance (sheet resistance) after sintering of several kΩ / □ at low temperature heating, and a high electrical resistance during sintering when trying to obtain a low electrical resistance. Since heating (for example, about 300 ° C. or higher) is required, there is a problem that it cannot be used for forming a transparent conductive film in the field of flat panel displays such as LCD and organic EL. Therefore, a transparent conductive film that can be sintered at a low temperature and has a low resistance value and a method for producing the same are demanded.
An object of the present invention is to solve the above-mentioned problems of the prior art, and a method for producing a thin film-like transparent conductive film having a low sintering temperature and a low electrical resistance (sheet resistance) after sintering and the obtained Another object of the present invention is to provide a low resistance transparent conductive film.
[0005]
[Means for Solving the Problems]
In order to obtain a low-resistance transparent conductive film, the present inventors have intensively studied and developed the material and manufacturing process. As a result, the inventors have found a method for producing a low-resistance transparent conductive film that can significantly reduce electrical resistance by low-temperature heating, and have completed the present invention.
The low resistance transparent conductive film of the present invention is obtained by baking fine particles of a metal film for forming a transparent conductive film at 100 to 250 ° C. in a mixed gas atmosphere of a gas containing oxygen or ozone and a metal halide gas or an organometallic compound gas. It has a structure in which the pores in the porous transparent conductive film made of the metal oxide are filled with a metal oxide generated by a reaction between oxygen or ozone and a metal halide or an organometallic compound. If the sintering temperature is less than 100 ° C., it will not sinter sufficiently, and if it exceeds 250 ° C., problems will arise in the manufacturing process of the display.
[0006]
The metal oxide can be appropriately selected and used as long as it is a material usually used when forming a transparent conductive film. For example, it is selected from ITO, ATO, IZO, ZnO, SnO 2 , CaWO 4 and the like. The ones are preferred.
The metal halide gas is preferably selected from indium halide gas and tin halide gas, and the organometallic compound gas is preferably selected from trimethylindium gas and trimethyltin gas.
The thickness of the low resistance transparent conductive film of the present invention is preferably 1 to 20 nm. This is because if the thickness is less than 1 nm, the electrical resistance does not decrease, and if it exceeds 20 nm, the transmittance decreases.
[0007]
In the method for producing a low resistance transparent conductive film of the present invention, a dispersion of metal oxide fine particles for forming a transparent conductive film is applied on a substrate to be processed and sintered in the atmosphere at 150 to 200 ° C. A film is formed, and then the target transparent conductive film is formed by heating at 100 to 250 ° C. in a mixed gas atmosphere of a gas containing oxygen or ozone and a metal halide gas or an organometallic compound.
The metal oxide used in this production method is as described above for the metal halide gas and the organometallic compound gas.
The low-resistance transparent conductive film of the present invention is characterized in that it also has adhesion to a glass substrate or a substrate made of an organic resin material.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the low-resistance transparent conductive film of the present invention is a porous transparent conductive film made of a metal oxide obtained by sintering fine particles of a metal oxide for forming a transparent conductive film in a specific mixed gas atmosphere at a low temperature. The vacancies are filled with indium oxide. As described above, this transparent conductive film is prepared by preparing a dispersion of fine particles of metal oxide for forming a transparent conductive film, and applying this dispersion on a substrate to be processed, for example, spin coating, spray coating, inkjet coating, and immersion. Coating is performed using a known method such as coating, roll coating, screen printing, and the like, and is heated at 150 to 200 ° C. in the atmosphere to form a porous transparent conductive film, and then a gas containing oxygen or ozone and halogen In a mixed gas atmosphere with indium phosphide gas or organic indium gas, the temperature is much lower than the temperature (generally, 500 to 700 ° C.) necessary for sintering the fine particles of a normal transparent conductive film forming material alone. It is obtained by forming a film by sintering at ˜250 ° C.).
[0009]
As the metal oxide for forming a transparent conductive film in the present invention, indium oxide, tin oxide, zinc oxide, cadmium oxide, gallium oxide, In 2 O 3 (ZnO) m , ordinarily used as a material for forming a transparent conductive film, and InGaO 3 (ZnO) m or the like, and those obtained by adding a dopant to these oxides, for example, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), zinc-doped indium oxide (IZO), and aluminum-doped zinc oxide ( AZO) or the like can be used. As a material for forming a transparent conductive film for displays such as LCD and organic EL, ITO, IZO, zinc oxide, SnO 2 and CaWO 4 are particularly preferable.
[0010]
The dispersion in the present invention is obtained by dispersing the metal oxide fine particles in an organic solvent. What is necessary is just to select suitably as an organic solvent to be used with the microparticles to be used, for example, there exist the following. That is, alcohols such as methanol, ethanol, propanol, isopropyl alcohol and butanol, glycols such as ethylene glycol, ketones such as acetone, methyl ethyl ketone and diethyl ketone, esters such as ethyl acetate, butyl acetate and benzyl acetate, methoxy Examples include ether alcohols such as ethanol and ethoxyethanol, ethers such as dioxane and tetrahydrofuran, acid amides such as N, N-dimethylformamide, and aromatic hydrocarbons such as toluene and xylene. Further, in the present invention, the organic solvent includes water.
[0011]
The amount of the organic solvent used may be appropriately selected according to the fine particles to be used so that it can be easily applied in the case of a dispersion and can obtain a desired film thickness. For example, the fine particles are 1 to 10 wt% with respect to the solvent.
Examples of the support as the substrate to be treated on which the dispersion liquid is applied include a glass substrate or a substrate made of an organic resin material, and the shape thereof may be a flat plate, a three-dimensional object, a film, or the like. As the organic resin material, for example, cellulose acetates, polystyrene, polyethylene terephthalate, polystyrenes, polyethers, polyimide, epoxy resin, phenoxy resin, polycarbonate, polyvinylidene fluoride, Teflon, and the like can be used. These may be used alone or in combination as a support. This substrate to be treated is preferably cleaned using pure water, ultrasonic waves or the like before applying the dispersion.
[0012]
Preferable examples of the metal halide gas that is one component of the mixed gas used in the production of the transparent conductive film of the present invention include indium fluoride, indium chloride, indium bromide, and indium iodide gas. The organometallic compound gas may be any gas that reacts with oxygen or ozone, and preferably includes a gas such as trimethylindium or trimethyltin. Further, the gas containing oxygen and ozone may be a gas containing oxygen and ozone in a sufficient amount to react. Further, an inert gas such as argon can be used as a carrier gas for introducing the mixed gas. The component metal of these gases may be the same as or different from the conductive metal of the metal oxide fine particles.
[0013]
Normally, when a heat treatment is performed at a low temperature of about 250 ° C. after applying a metal oxide fine particle dispersion, the metal oxide for forming a transparent conductive film does not sinter sufficiently, and a porous film having small pores is formed. Therefore, a transparent conductive film having a small electric resistance cannot be formed. However, when the heat treatment is performed under the process conditions of the present invention, the vacancies in the produced porous film are filled with, for example, indium oxide produced by the reaction of oxygen or ozone and indium halide gas or organic indium gas. It becomes like this. Therefore, the transparent conductive film is densified and has a small electric resistance. At the same time, since the gap between the metal oxide fine particles and the substrate to be processed is completely filled with this indium oxide, the adhesion between the transparent conductive film and the substrate to be processed is significantly improved compared to the case of the metal oxide alone. To do.
[0014]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
(Example 1)
In 2 O 3 fine particles (ITO: particle size of 1 μm or less) to which 5 wt% of Sn was added were dispersed in n-butyl acetate so as to have a concentration of 5% to prepare a dispersion. This dispersion was applied to a glass substrate by spin coating. This substrate was heated in the atmosphere at 200 ° C. for 5 minutes in the atmosphere to form a porous transparent conductive film having a thickness of about 100 nm. Next, this substrate was further heat-treated. That is, after the substrate 2 is installed on the heater plate 1 as a heating mechanism provided in the stainless steel vacuum vessel shown in FIG. 1 and the inside of the vessel is evacuated, the oxygen gas introduction pipe 3 and the organometallic compound gas introduction pipe 4 are provided. Then, oxygen gas and trimethylindium gas were introduced into the container by a bubbling method using argon gas as a carrier gas. The pressure in the container at this time was 90 kPa or less, and the substrate temperature was 250 ° C. Thus, a transparent conductive film having a thickness of about 150 nm was formed. The transparent conductive film thus obtained is densified and has a low electrical resistance as described below.
[0015]
FIG. 2 shows a schematic cross-sectional structure of the obtained transparent conductive film. As shown in FIG. 2, the transparent conductive film formed on the substrate 11 is composed of metal oxide (ITO) fine particles 12 for forming a conductive film, and the pores in the porous film and the metal oxide fine particles 12 are covered. A gap or the like with the processing substrate 11 is filled with an indium oxide film 13 which is a product of a reaction between oxygen and trimethylindium.
In the above production method, the heating time was 3, 5, and 10 minutes, and the sheet resistance (Ω / □) was measured for the transparent conductive film obtained in each heating time. The results are shown in Table 1.
[0016]
(Table 1)
Figure 0003803592
As is apparent from Table 1, according to the method described in this example, a transparent conductive film having a low sheet resistance is obtained. This sheet resistance was a very low value compared with the sheet resistance (15 to 30 KΩ / □) of a transparent conductive film obtained by sintering ITO fine particles in the atmosphere at 500 ° C. as a control.
When other metal oxide fine particles for forming the transparent conductive film are used, a transparent conductive film having a low sheet resistance can be obtained by low-temperature sintering according to the above method.
[0017]
【The invention's effect】
According to the transparent conductive film of the present invention, since the pores of the porous transparent conductive film and the gap between the substrate to be processed and the metal oxide fine particles are filled with the conductive metal oxide film, the electrical resistance is low, and Also, the adhesion to the substrate to be processed is high.
Moreover, according to the manufacturing method of the low resistance transparent conductive film of this invention, the thin film-like transparent conductive film with small electrical resistance after sintering can be manufactured at low cost with a simple apparatus at low sintering temperature.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram schematically showing the configuration of a film forming apparatus (vacuum container) used in the present invention.
2 is a cross-sectional view schematically showing the structure of a transparent conductive film obtained in Example 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heater plate 2 Substrate 3 Oxygen gas introduction pipe 4 Organometallic compound gas introduction pipe 11 Substrate 12 ITO fine particle 13 Indium oxide film

Claims (6)

透明導電膜形成用金属酸化物の微粒子を酸素又はオゾンを含むガスとハロゲン化金属ガス又は有機金属化合物ガスとの混合ガス雰囲気中で100〜250℃で焼結した、該金属酸化物からなる多孔質透明導電膜中の空孔が酸素又はオゾンとハロゲン化金属又は有機金属化合物との反応により生成された金属酸化物で充填されている構造を有する低抵抗透明導電膜。A porous film made of a metal oxide obtained by sintering fine particles of a metal oxide for forming a transparent conductive film at 100 to 250 ° C. in a mixed gas atmosphere of a gas containing oxygen or ozone and a metal halide gas or an organometallic compound gas. A low-resistance transparent conductive film having a structure in which pores in a porous transparent conductive film are filled with a metal oxide generated by a reaction between oxygen or ozone and a metal halide or an organometallic compound. 前記透明導電膜形成用金属酸化物が、ITO、ATO、IZO、ZnO、SnO、CaWOから選ばれたものであることを特徴とする請求項1記載の低抵抗透明導電膜。The transparent conductive film-forming metal oxide, ITO, ATO, IZO, ZnO , low-resistance transparent conductive film according to claim 1, characterized in that selected from SnO 2, CaWO 4. 前記ハロゲン化金属ガスがハロゲン化インジウムガス、ハロゲン化スズガスであり、前記有機金属化合物ガスがトリメチルインジウムガス、トリメチルスズガスであることを特徴とする請求項1又は2記載の低抵抗透明導電膜。The low resistance transparent conductive film according to claim 1 or 2, wherein the metal halide gas is an indium halide gas or a tin halide gas, and the organometallic compound gas is a trimethylindium gas or a trimethyltin gas. 透明導電膜形成用金属酸化物の微粒子の分散液を被処理基板上に塗布し、大気中で150〜200℃で燒結して多孔質透明導電膜を形成し、次いで、酸素又はオゾンを含むガスとハロゲン化金属ガス又は有機金属化合物ガスとの混合ガス雰囲気中で100〜250℃で加熱して透明導電膜を形成することを特徴とする低抵抗透明導電膜の製造法。A dispersion of metal oxide fine particles for forming a transparent conductive film is applied onto a substrate to be processed, and sintered in the atmosphere at 150 to 200 ° C. to form a porous transparent conductive film, and then a gas containing oxygen or ozone A method for producing a low-resistance transparent conductive film, wherein the transparent conductive film is formed by heating at 100 to 250 ° C. in a mixed gas atmosphere of an oxygen and a metal halide gas or an organometallic compound gas. 前記透明導電膜形成用金属酸化物が、ITO、ATO、IZO、ZnO、SnO、CaWOから選ばれたものであることを特徴とする請求項4記載の低抵抗透明導電膜の製造法。The transparent conductive film-forming metal oxide, ITO, ATO, IZO, ZnO , preparation of a low-resistance transparent conductive film according to claim 4, characterized in that selected from SnO 2, CaWO 4. 前記ハロゲン化金属ガスがハロゲン化インジウムガス、ハロゲン化スズガスであり、前記有機金属化合物ガスがトリメチルインジウムガス、トリメチルスズガスであることを特徴とする請求項4又は5記載の低抵抗導電膜の製造法。6. The low-resistance conductive film according to claim 4, wherein the metal halide gas is an indium halide gas or a tin halide gas, and the organometallic compound gas is a trimethylindium gas or a trimethyltin gas. Law.
JP2002050300A 2002-02-26 2002-02-26 Low resistance transparent conductive film and method for producing the same Expired - Fee Related JP3803592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002050300A JP3803592B2 (en) 2002-02-26 2002-02-26 Low resistance transparent conductive film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002050300A JP3803592B2 (en) 2002-02-26 2002-02-26 Low resistance transparent conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003249125A JP2003249125A (en) 2003-09-05
JP3803592B2 true JP3803592B2 (en) 2006-08-02

Family

ID=28662583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050300A Expired - Fee Related JP3803592B2 (en) 2002-02-26 2002-02-26 Low resistance transparent conductive film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3803592B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635421B2 (en) * 2003-09-02 2011-02-23 Tdk株式会社 Conductive film for transfer and method for forming transparent conductive film using the same
JP4542369B2 (en) * 2004-05-21 2010-09-15 株式会社Adeka Coating liquid for forming transparent conductive film and method for forming transparent conductive film
US20150153478A1 (en) 2007-04-18 2015-06-04 Sumitomo Metal Mining Co., Ltd. Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article
BRPI0514795B1 (en) 2004-08-31 2018-05-08 Sumitomo Metal Mining Co particle-dispersed electrical conductor that transmits visible light, and transparent electroconductive film
EP1701395B1 (en) 2005-03-11 2012-09-12 Novaled AG Transparent light emitting element
JP4738931B2 (en) * 2005-07-29 2011-08-03 富士フイルム株式会社 Nanoparticle dispersion, semiconductor device manufacturing method using the same, and semiconductor device
EP1895608A3 (en) 2006-09-04 2011-01-05 Novaled AG Organic light-emitting component and method for its manufacture
JP5002615B2 (en) * 2009-05-11 2012-08-15 日立造船株式会社 Method for recycling valuable metals
JP6080141B2 (en) * 2012-09-18 2017-02-15 エルジー・ケム・リミテッド Transparent conductive film, method for manufacturing transparent conductive film, electronic device, and thin film transistor
EP4317522A1 (en) 2021-03-22 2024-02-07 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, method for producing transparent conductive film, transparent conductive member, electronic display device, and solar battery

Also Published As

Publication number Publication date
JP2003249125A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
CN102598160B (en) Transparent conductive film and manufacturing method for same, element using same, transparent conductive substrate and device using same
JP4320564B2 (en) Transparent conductive film forming composition, transparent conductive film forming solution, and transparent conductive film forming method
JP3803592B2 (en) Low resistance transparent conductive film and method for producing the same
JPH10261326A (en) Transparent conductive composition, transparent conductive film made of the composition, and manufacture of the film
CN107393810B (en) A kind of preparation method of oxide semiconductor thin-film
JP2001167637A (en) Transparent-film-formed substrate, coating solution for formation of transparent film, and display device
JP2011119273A (en) Method of manufacturing aluminum-added zinc oxide transparent conductive film containing metal nanoparticle
CN105970171A (en) Method adopting magnetron sputtering to prepare flexible rare earth oxide film
CN109872834B (en) Transparent conductive silver grid film and preparation method thereof
JP2009293097A (en) Sputtering composite target, method for producing transparent conductive film using the same and transparent conductive film-fitted base material
JP4170639B2 (en) Low resistance transparent conductive film manufacturing method
KR20170020602A (en) A far infrared ray heating element
JP2011028861A (en) Manufacturing method of transparent conductive film, transparent conductive film, transparent conductive substrate, and device using the same
JPH0778525A (en) Material for transparent conductive film and formation of transparent conductive film using material thereof
JP4217413B2 (en) Low resistance transparent conductive film and method for producing the same
CN106186719B (en) A method of preparing transparent graphene conductive film using high-temperature process
CN113816615A (en) Ultrahigh-transparency conductive ITO film and preparation method thereof
JP5413708B2 (en) Transparent conductive film, transparent conductive substrate, device using the same, and method for producing transparent conductive film
JP2008159581A (en) Conductive film forming material, conductive film and its forming method
JP2006049107A (en) Method of forming transparent conductive film, and transparent conductive film
JP2006164800A (en) Method of forming conductive film, and conductive film
JP3545452B2 (en) Method for manufacturing transparent conductive film
KR100378019B1 (en) A composition for a protective layer of a transparent conductive layer and a method for preparing conductive layer from the composition
JP4365918B2 (en) Coating liquid for forming transparent conductive film and method for forming transparent conductive film using the same
TW201123214A (en) Transparent conductive ZnO thin film doped with group IIIA elements and method for preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3803592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees