JP3802532B2 - Radio wave absorber - Google Patents

Radio wave absorber Download PDF

Info

Publication number
JP3802532B2
JP3802532B2 JP2003559209A JP2003559209A JP3802532B2 JP 3802532 B2 JP3802532 B2 JP 3802532B2 JP 2003559209 A JP2003559209 A JP 2003559209A JP 2003559209 A JP2003559209 A JP 2003559209A JP 3802532 B2 JP3802532 B2 JP 3802532B2
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
fibers
fiber
surface material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003559209A
Other languages
Japanese (ja)
Other versions
JPWO2003059031A1 (en
Inventor
勝宣 細谷
孝禎 三ツ井
敏夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Publication of JPWO2003059031A1 publication Critical patent/JPWO2003059031A1/en
Application granted granted Critical
Publication of JP3802532B2 publication Critical patent/JP3802532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

技術分野
本発明は、電波吸収体に関し、より詳細には、電波吸収特性、特に斜入射電波吸収特性が顕著に改善された電波吸収体に関する。
背景技術
近年、携帯電話やパソコンといった電子情報機器の目覚しい普及や、通信技術の多様化により、不要電波の抑制がますます社会生活上重要な問題となっている。また、それに伴い電子情報機器からの漏洩や不要電波特性を測定するための電波暗室の需要も高まっている。そのため、種々の電波吸収体が開発されている。
また、利用される電波の帯域は拡大傾向にあり、従来では特殊用途でしか利用されていなかったミリ波等の極めて波長の短い電波についても今後は利用増加が見込まれている。特に、現在計画が推進されているITS(高度道路交通システム)の展開によってこの傾向は顕著となると考えられる。従って、電波吸収体においてもこのような波長の短い電波に対する吸収性能に優れたものが望まれている。
また、電波吸収体には、(1)防雨、防汚構造とするため、(2)斜入射角度特性を改善するために、電波の入射を意図する面側に表面材を設けてもよい。
しかしながら、従来の電波吸収体の斜入射電波吸収特性は満足のいくものではなかった。例えば、ITSにおいて使用される周波数5.8GHzの周波数の減衰量が20dB以上となる入射角度は0〜45°であり、電波吸収が良好に実施できる斜入射角度の範囲が狭かった。
本発明は、上記問題を解決するためになされたものであり、その目的は、電波吸収特性、とりわけ斜入射電波吸収特性が顕著に改善された電波吸収体を提供することにある。
発明の開示
本発明者らは、上記課題に対し、鋭意検討した結果、5.8GHz帯での誘電率の実部が3.0〜4.5である高分子材料からなる表面材を電波の入射を意図する面側に設けることによって、電波吸収体の電波吸収特性、とりわけ斜入射電波吸収特性を顕著に改善できることを見出し、本発明を完成するに至った。すなわち、本発明は以下の通りである。
(1)電波の入射を意図する面側に表面材が設けられた電波吸収体であって、
該表面材が、5.8GHz帯での誘電率の実部が3.0〜4.5である高分子材料からなり、該高分子材料がフェノール樹脂系FRPまたは不飽和ポリエステル系FRPであり、かつ該高分子材料にガラス繊維が配合されていることを特徴とする電波吸収体。
(2)5.8GHz帯の円偏波の反射減衰量が、10°〜70°の範囲の入射角度にわたって20dB以上であることを特徴とする上記(1)記載の電波吸収体。
)上記表面材の厚さが0.2mm〜2.0mmであることを特徴とする上記(1)または()記載の電波吸収体
発明を実施するための最良の形態
以下、本発明を詳細に説明する。
本発明の電波吸収体は、電波の入射を意図する面側に表面材が設けられており、該表面材は、5.8GHz帯での誘電率の実部が3.0〜4.5である高分子材料からなることを特徴とする。
誘電率は以下の式で表され、
誘電率(ε)=ε’−jε”
ここで、ε’が誘電率の実部であり、ε”が誘電率の虚部である。
表面材を形成する高分子材料は、5.8GHz帯の電波に対する誘電率の実部が2.5〜4.5のものであれば特に制限はなく、例えば、ポリカーボネート樹脂(誘電率(実部):2.73)、アクリル樹脂(誘電率(実部):2.6)、ポリエチレンテレフタレート樹脂(誘電率(実部):3.2)、その他、ポリ塩化ビニル、フェノール樹脂、不飽和ポリエステル樹脂など、およびそれらの樹脂材料のFRP(繊維強化樹脂)からなる板部材が適用され、板厚が薄くても強度がある点で、上記樹脂材料のFRPが好ましい。特には、電波吸収特性(斜入射特性)を向上させる点で、フェノール樹脂系FRP(誘電率(実部):3.9)、不飽和ポリエステル系FRP(誘電率(実部):3.1)が好ましい。
上記のように、本発明における表面材を形成する高分子材料は、5.8GHz帯の電波に対する誘電率の実部が3.0〜4.5であり、好ましくは3.0〜4.0である。誘電率が3.0未満である場合、また4.5を越える場合には、電波吸収能が低下する傾向にある。なお、上記高分子材料の誘電率(実部)は、従来公知の手法である空洞共振器法により測定することができる。
上記フェノール樹脂は、特に限定されるものではないが、例えば、レゾール樹脂、ノボラック樹脂、キシレノール樹脂、クレゾール樹脂、レゾルシノール樹脂等が挙げられる。上記のような高分子材料からなる表面材を電波の入射を意図する面側に設けることにより、電波吸収体の電波吸収特性、とりわけ斜入射電波吸収特性を顕著に改善することができる。
本発明においては、上記表面材を形成する高分子材料にガラス繊維が配合されているのが好ましい。ガラス繊維としては、ガラス繊維強化プラスチック(FRP)に通常配合されるものを使用することができ、例えば、E−ガラス、C−ガラス、AR−ガラス、D−ガラス、T−ガラスが挙げられ、中でも電気伝導性の観点からE−ガラスが好ましい。ガラス繊維の繊維径は、好ましくは1μm〜50μm、より好ましくは10μm〜20μmであり、長さは、好ましくは10mm〜80mm、より好ましくは50mm〜70mmである。繊維径が1μmよりも細いと、補強効果が得られず、50μmよりも太くても、補強効果が著しく向上しない傾向にある。また、長さが10mmよりも短いと、補強効果が得られず、80mmよりも長いと、高分子材料との混合が困難になる傾向がある。また、ガラス繊維を繊維の形態で用いる代わりに、織布の形態で用いてもよく、すなわち、ガラスクロスを用いてもよい。高分子材料とガラス繊維との配合比は、重量比で、好ましくは100:0〜20:80であり、より好ましくは99:1〜20:80であり、さらにより好ましくは60:40〜20:80である。ガラス繊維の配合比が80よりも多くなると、高分子材料との混合が良好に行えなくなる傾向がある。上記ガラス繊維を高分子材料に配合することにより、表面材に不燃性を付与することができる。
さらに上記高分子材料には、必要に応じて、各種添加剤、例えば、硬化触媒、顔料等を配合してもよい。
本発明において使用される表面材は、その厚さが好ましくは0.2mm〜2.0mm、より好ましくは0.4mm〜1.2mmである。表面材の厚さが0.2mmよりも薄いと、割れ易くなったり、傷つき易くなったりする傾向にあり、2.0mmよりも厚いと、電波吸収特性が低下する傾向にある。
本発明における電波吸収体は、特に限定されるものではなく、自体公知のものと同じであってもよい。例えば、当該電波吸収体は、有機高分子材料の発泡体に導電性カーボンを配合して形成されていてもよい。有機高分子材料としては、例えば、ポリエチレン、ポリスチレン、ポリウレタンなどが挙げられる。また、導電性カーボンとしては、従来公知の導電性カーボンであれば、特に制限なく使用することができ、例えば、黒鉛、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどが挙げられる。導電性カーボンの配合量は、好ましくは、有機高分子材料100重量部に対して5重量部〜100重量部、より好ましくは20重量部〜50重量部である。配合量が5重量部未満であると、充分な電波吸収性能を得ることが困難となる傾向にあり、100重量部より多くても、電波吸収性能の顕著な向上が見られなくなる傾向にあり、また樹脂との均一な混合が困難となる傾向にある。また、このような電波吸収体の製造方法は、特に限定されるものではなく、例えば、上記有機高分子材料に、上記導電性カーボンと化学発泡剤とを配合し、この混合物を有機高分子材料が発泡しない温度で混練し、次いで、この混練物を型枠に入れて加熱発泡させる方法がある。
本発明における電波吸収体はまた、導電性カーボンで被覆された繊維で形成された繊維集合体であり、該繊維集合体が、繊維密度が電波の入射を意図する面側から順に連続的(傾斜的)または断続的(階段的)に高くなるように形成された密度勾配型のものであってもよい。
繊維集合体に用いる繊維としては、無機繊維やポリマー繊維などが挙げられる。無機繊維としては、ガラス繊維やセラミック繊維などが挙げられ、中でも不燃性に優れ、繊維密度の傾斜構造(上記電波の入射を意図する面側から繊維密度が連続的(傾斜的)に高くなる構造)の形成が容易であるという理由から、グラスウールが好ましい。また、ポリマー繊維としては、極性を有する繊維(極性ポリマー繊維)であれば特に制限はない。極性ポリマー繊維は、無機繊維と比較して曲げやすい点(加工しやすい点)、カーボンが付着しやすい点、太さの異なる繊維を得やすい点などにおいて優れている。特に、極性ポリマー繊維の中でも、難燃性に優れ、繊維密度の傾斜構造の形成が容易であるという点から、ポリ塩化ビニリデン繊維、ナイロン繊維、ポリエステル繊維、アクリル繊維が好ましい。
上記態様においては、上記繊維をカーボンにて被覆してなるものが用いられる。ここで、本発明におけるカーボンは、従来公知の導電性カーボンであれば、特に制限なく使用することができる。導電性カーボンとしては、例えば、黒鉛、ケッチェンブラック、ファーネスブラック、アセチレンブラックなどが挙げられる。上記繊維のカーボン被覆は、カーボンおよびバインダーとしてのポリ塩化ビニル、ポリ酢酸ビニルなどの接着剤を、適当な溶媒、例えば、トルエン、キシレンなどの炭化水素やメタノール、エタノールなどのアルコールに溶解または分散させたものを、スプレー塗布などの手段にて塗布することによって行われる。カーボン被覆の厚みは、5μm〜500μmであるのが好ましく、10μm〜300μmであるのがより好ましく、20μm〜100μmであるのが特に好ましい。当該カーボン被覆の厚みが5μm未満であると、充分な電波吸収能を発揮し得ない傾向にあるためであり、またカーボン被覆の厚みが500μmを越えても、顕著には電波吸収能が向上しない傾向にあるためである。
上記態様における繊維集合体は、上記各種繊維を互いに絡ませると共に互いに結合させてマット状に形成すると、電波吸収体の形状保持性に優れるため好ましい。具体的には、各繊維を互いに絡ませた状態でそのままほぐれてしまうことを防止すべく接着剤などで解離しないように結合させ、マット状に形成して電波吸収体とする。接着方法は任意であるが、好適な方法としては、例えば、繊維を絡ませた状態のマット体にスプレー接着剤を噴射し、繊維同士が重なり合う箇所において接着を図る方法などが挙げられる。
なお、広帯域に優れた電波吸収特性を得るためには、電波吸収体に入射する電波を、電波吸収体の電波の入射を意図する面側において反射させないようにする必要がある。一般に、電波が空間を伝搬する場合、急激に導電度が変化する点に遭遇すると電波はその点で反射され易くなる。電波吸収体も導電体であるため、電波を反射する作用も有すると考えられる。よって、繊維密度が一定な電波吸収体であると、電波を反射してしまう度合は大きくなる。そこで、上記態様においては、繊維集合体の繊維密度をその厚み方向に関して連続的(傾斜的)または断続的(階段的)に変化させることにより、広帯域の電波を吸収し得るようにしている。具体的には、マット状に形成した繊維集合体において厚み方向一方側の面の繊維密度を粗として減衰を少なくし、かつ、厚み方向他方側の面を密として減衰を大きくし、上記繊維密度が粗である側を電波の入射を意図する面側とすることにより、電波入射面の導電度を低くして(繊維密度を粗として)、空気との導電度の差を小さくし、電波の入射面における反射を少なくして電波を電波吸収体の内部へ取り込み易くするとともに、その内部において電波が良好に吸収し得るようにしたものである。さらに、電波の入射面とは反対の面側の密度を「密」とすることで電波を反射させ(電波反射面としての役割)、入射してくる電波を相殺させることができる。例えば、電波入射面付近で0.02g/cm3、電波入射面とは反対の面側で0.10g/cm3となるように繊維密度を連続的に変化させれば5.8GHz帯の電波を良好に吸収する。
このように繊維密度が一方側から他方側へ向けて変化する繊維集合体は、例えば、上記多種類の太さの繊維のうち、太さの大きい繊維については繊維密度を粗にしたい側に多目に配合し、太さの小さい繊維については繊維密度を密にしたい側に多目に配合することで、形成することが可能となる。
上記繊維集合体は、繊度が1000デニール(d)〜4000デニール(d)の繊維、繊度が100デニール(d)〜999デニール(d)の繊維、繊度が1デニール(d)〜99デニール(d)の繊維から選ばれる少なくとも2種類(好ましくは3種類以上)の繊維を互いに絡ませると共に互いに結合させたものであるのが、密度勾配をつけやすい点で好ましい。例えば、繊度が1000dの繊維を70重量%、繊度が120dの繊維を15重量%、繊度が50dの繊維を15重量%の割合で含有し、それぞれ導電性カーボンで被覆されているこれらの繊維を互いに絡ませてマット状に形成した繊維集合体が挙げられる。
さらに上記繊維集合体は、カーボンで被覆された多種類の太さの極性ポリマーからなる繊維を、各種繊維が少なくとも5重量%含有されるように互いに絡ませると共に互いに結合させて形成されたマット状繊維集合体であることが好ましい。各種繊維が少なくとも5重量%含有されるように互いに絡ませることで、前述のように電波吸収層に繊維の密度勾配を形成しやすくなるという利点がある。各種繊維の含有量が5重量%よりも少ないと、電波吸収特性が低下する傾向にある。
また、マット状繊維集合体は、多種類の太さの繊維で構成されていると共に、1つの太さの繊維が5重量%以上含有されていることが、当該吸収体の電波吸収帯域を広くし、かつ各帯域における電波吸収率を良好とさせる点で好ましい。言うまでもなく、広帯域の電波を吸収させようとする場合には、繊維の太さの種類を増加せしめて繊維集合体を構成すればよい。
電波吸収体の厚さは、好ましくは1mm〜50mmであり、より好ましくは20mm〜35mmである。電波吸収体の厚さが1mmよりも薄いと、電波を十分に吸収することができず、50mmよりも厚いと、電波吸収特性には影響はないが、電波吸収体自体の重量が重くなり布設が困難となる。
また、本発明の電波吸収体においては、電波の入射を意図する面側とは反対の面側に、電波反射層として金属箔が設けられていてもよい。金属箔は、特に限定されるものではなく、例えば、金、銀、銅、アルミニウム、亜鉛、スズ、鉄などの金属材料にて形成されたフィルム(箔)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)などの樹脂材料にて形成されたフィルム上に上記金属材料が蒸着されたフィルム、等が挙げられる。中でも、汎用性、軽量化、耐食性、電波吸収能の向上という観点から、アルミニウム箔が好ましく、さらには、耐外傷性、耐食性の点で、片面がPETでコーティングされたアルミニウム箔が好ましい。電波反射層を設けることによって、電波吸収体を通過してしまった電波を反射させることで電波吸収能を安定化させることができる。
電波吸収体の電波の入射を意図する面側に表面材を設ける方法としては、例えば、パネル(枠体)を用いて電波吸収体と表面材とを一体化する、接着剤を用いて表面材と電波吸収体とを接着する、等の方法が挙げられる。パネルを用いる場合、その材質としては、不燃対策の点から、金属材料が好ましく、中でも鋼板、特に表面を防食処理した鋼板がより好ましい。防食処理としては、公知の処理を用いればよく、例えば、亜鉛メッキ、アルミ被覆、ペンキの塗布等が適用される。接着剤を用いて接着する場合、形成される接着剤層の厚さは、好ましくは10〜100μmである。接着剤層の厚さが10μmよりも薄いと、良好な接着強度が得られず、100μmよりも厚いと、電波吸収特性が低下する傾向にある。接着剤としては、自体公知のものを使用することができる。
本発明の電波吸収体は、種々の周波数帯域の電波(特に、マイクロ波、ミリ波、サブミリ波等)を吸収する用途に用いることができ、特に、ITS(高度道路交通システム)において好適に用いることができる。
実施例
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
(実施例1〜8、参考例1〜9および比較例1〜12)
電波吸収体、表面材および電波反射層として下記のようなものを用意し、以下の表1に示すように組み合わせて、電波の入射を意図する側からみて表面材、電波吸収体および電波反射層の順で配置された積層構造を有するように、実施例1〜8、参考例1〜9および比較例1〜12の電波吸収体を作製した。
[電波吸収体]
(電波吸収体A)
繊度が1000dのポリ塩化ビニリデン繊維を70重量%、繊度が120dのポリ塩化ビニリデン繊維を15重量%、繊度が50dのポリ塩化ビニリデン繊維を15重量%の割合で含有し、それぞれ導電性カーボン(商品名:ヒタゾル、日立粉末冶金社製)で被覆されているこれらの繊維を互いに絡ませて厚み25mmのマット状に形成した繊維集合体であって、繊維密度が電波の入射を意図する面側から反対の面側に向かって連続的に高くなるように形成されたもの(電波入射面側の繊維密度:0.03g/cm3、反対の面側の繊維密度:0.06g/cm3)を使用した。
(電波吸収体B)
繊度が1000dのガラス繊維を65重量%、繊度が130dのガラス繊維を20重量%、繊度が20dのガラス繊維を15重量%の割合で含有し、それぞれ導電性カーボン(商品名:ヒタゾル、日立粉末冶金社製)で被覆されているこれらの繊維を互いに絡ませて厚み25mmのマット状に形成した繊維集合体であって、繊維密度が電波の入射を意図する面側から反対の面側に向かって連続的に高くなるように形成されたもの(電波入射面側の繊維密度:0.04g/cm3、反対の面側の繊維密度:0.07g/cm3)を使用した。
(電波吸収体C)
繊度が1000dのポリ塩化ビニリデン繊維を80重量%、繊度が120dのポリ塩化ビニリデン繊維を15重量%、繊度が60dのポリ塩化ビニリデン繊維を5重量%の割合で含有し、それぞれ導電性カーボン(商品名:ヒタゾル、日立粉末冶金社製)で被覆されているこれらの繊維を互いに絡ませて厚み10mmのマット状に形成した繊維集合体(繊維密度:0.03g/cm)と、繊度が1000dのポリ塩化ビニリデン繊維を70重量%、繊度が120dのポリ塩化ビニリデン繊維を15重量%、繊度が50dのポリ塩化ビニリデン繊維を15重量%の割合で含有し、それぞれ導電性カーボン(商品名:ヒタゾル、日立粉末冶金社製)で被覆されているこれらの繊維を互いに絡ませて厚み10mmのマット状に形成した繊維集合体(繊維密度:0.05g/cm)と、繊度が1000dのポリ塩化ビニリデン繊維を60重量%、繊度が120dのポリ塩化ビニリデン繊維を10重量%、繊度が60dのポリ塩化ビニリデン繊維を30重量%の割合で含有し、それぞれ導電性カーボン(商品名:ヒタゾル、日立粉末冶金社製)で被覆されているこれらの繊維を互いに絡ませて厚み10mmのマット状に形成した繊維集合体(繊維密度:0.07g/cm)とを、電波の入射を意図する面側から順に積層したものを使用した。
(電波吸収体D)
導電性カーボン(ファーネスブラック、商品名:VULCAN XC−72V、昭和キャボット社製)を配合したポリスチレン発泡体(厚さ:40mm)を使用した。
[表面材]
(表面材A)
ポリカーボネート樹脂:5.8GHz帯での誘電率(実部)は2.73、厚さ:1.0mm
(表面材B)
フェノール樹脂系FRP(日東紡社製、フェノール樹脂:ガラス繊維=55:45(重量比)):5.8GHz帯での誘電率(実部)は3.9、厚さ:0.6mm
(表面材C)
不飽和ポリエステル系FRP(日東紡社製、不飽和ポリエステル樹脂樹脂:ガラス繊維=60:40(重量比)):5.8GHz帯での誘電率(実部)は3.1、厚さ:1.0mm
(表面材D)
アクリル樹脂:5.8GHz帯での誘電率(実部)は2.6、厚さ:1.0mm
(表面材E)
四フッ化樹脂:5.8GHz帯での誘電率(実部)は2.1、厚さ:1.0mm
(表面材F)
ポリイミド6樹脂:5.8GHz帯での誘電率(実部)は4.7、厚さ:0.5mm
(表面材G)
ステンレス鋼板:厚さ:0.2mm
[電波反射層]
アルミ箔の片面にPETが被覆されているものを使用した。なお、この電波反射層のアルミ箔の面を電波吸収体に接着した。
上記実施例1〜8、参考例1〜9および比較例1〜12で得られた電波吸収体を、以下の項目について評価した。
(電波吸収特性(斜入射特性)の評価)
各電波吸収体への入射角度を10°〜70°の範囲で変化させて5.8GHz帯の円偏波を入射させ、アーチ法を用いて反射減衰量を測定した。得られた結果を表1に示す。なお、表1において、反射減衰量が10°〜70°の入射角度の範囲全体にわたって20dB以上であった場合を○で示し、一方、反射減衰量が、10°〜70°の入射角度の範囲全体にわたって、またはある特定の範囲において20dB未満であった場合を×で示す。
さらに、表面材の有無およびその種類による電波吸収特性(斜入射特性)の変化を比較するために、電波吸収体Dに対して、表面材なし(比較例7)、表面材A付与(参考例8)、表面材B付与(実施例)および表面材C付与(実施例)の場合の入射角度と反射減衰量との関係を図1に、また、電波吸収体Aに対して、表面材なし(比較例1)、表面材A付与(参考例1)、表面材B付与(実施例)および表面材C付与(実施例)の場合の入射角度と反射減衰量との関係を図2にそれぞれ示す。
表1

Figure 0003802532
表1から明らかなように、実施例1〜の電波吸収体は、5.8GHz帯での誘電率の実部が3.0〜4.5である高分子材料からなる表面材が電波の入射を意図する面側に設けられているので、5.8GHz帯の円偏波の反射減衰量は10°〜70°の広範囲の入射角度にわたって20dB以上であった。一方、比較例1〜7の電波吸収体は表面材が設けられていないので、比較例8〜11の電波吸収体は表面材の5.8GHz帯での誘電率の実部が3.0〜4.5の範囲外であるので、また、比較例12の電波吸収体は表面材がステンレス鋼板であるので、5.8GHz帯の円偏波の反射減衰量は、10°〜70°の入射角度の範囲全体にわたって、またはある特定の範囲において20dB未満であった。
また、図1および2から、5.8GHz帯での誘電率の実部が3.0〜4.5である高分子材料からなる表面材(表面材B:フェノール樹脂系FRP、表面材C:不飽和ポリエステル系FRP)を電波吸収体の電波の入射を意図する面側に設けることによって、10°〜70°の入射角度の範囲全体にわたって5.8GHz帯の円偏波の反射減衰量が20dB以上に増加し、電波吸収特性、とりわけ斜入射電波吸収特性が顕著に改善されたことが分かる。
産業上の利用分野
本発明によれば、5.8GHz帯での誘電率の実部が3.0〜4.5である高分子材料からなる表面材を電波の入射を意図する面側に設けることによって、電波吸収特性、とりわけ斜入射電波吸収特性が顕著に改善された電波吸収体を提供することができる。
本出願は、日本で出願された特願2001−401244を基礎としておりそれらの内容は本明細書に全て包含される。
【図面の簡単な説明】
図1は、表面材の有無およびその種類による電波吸収体の電波吸収特性(斜入射特性)の変化を比較するための、入射角度と反射減衰量との関係を示す図である。
図2は、表面材の有無およびその種類による電波吸収体の電波吸収特性(斜入射特性)の変化を比較するための、入射角度と反射減衰量との関係を示す図である。TECHNICAL FIELD The present invention relates to a radio wave absorber, and more particularly, to a radio wave absorber having significantly improved radio wave absorption characteristics, particularly oblique incidence radio wave absorption characteristics.
Background Art In recent years, suppression of unnecessary radio waves has become an increasingly important issue in social life due to the remarkable spread of electronic information devices such as mobile phones and personal computers and the diversification of communication technologies. Along with this, there is an increasing demand for an anechoic chamber for measuring leakage from electronic information devices and unnecessary radio wave characteristics. Therefore, various radio wave absorbers have been developed.
In addition, the band of radio waves used is expanding, and the use of radio waves with extremely short wavelengths such as millimeter waves, which has been used only for special purposes in the past, is expected to increase in the future. In particular, it is considered that this tendency becomes remarkable by the development of ITS (Intelligent Transport System) where the current plan is promoted. Accordingly, a radio wave absorber that is excellent in absorption performance for such short-wave radio waves is desired.
Further, the radio wave absorber may be provided with (1) a rainproof and antifouling structure, and (2) a surface material on the surface side where radio waves are intended to be incident in order to improve oblique incident angle characteristics. .
However, the obliquely incident radio wave absorption characteristics of the conventional radio wave absorber are not satisfactory. For example, the incident angle at which the attenuation of the frequency of 5.8 GHz used in ITS is 20 dB or more is 0 to 45 °, and the range of the oblique incident angle in which radio wave absorption can be satisfactorily performed is narrow.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a radio wave absorber in which radio wave absorption characteristics, particularly oblique incidence radio wave absorption characteristics are remarkably improved.
DISCLOSURE OF THE INVENTION As a result of intensive studies on the above problems, the present inventors have developed a surface material made of a polymer material having a real part of dielectric constant of 5.8 GHz band of 3.0 to 4.5. It has been found that by providing on the surface side intended for incidence, the radio wave absorption characteristics of the radio wave absorber, particularly the oblique incidence radio wave absorption characteristics, can be remarkably improved, and the present invention has been completed. That is, the present invention is as follows.
(1) A radio wave absorber in which a surface material is provided on a surface side intended to receive radio waves,
The surface material is made of a polymer material having a real part of a dielectric constant of 5.8 GHz band of 3.0 to 4.5, and the polymer material is a phenol resin FRP or an unsaturated polyester FRP, An electromagnetic wave absorber comprising glass fibers in the polymer material.
(2) The electromagnetic wave absorber according to (1) above, wherein the return loss of circularly polarized waves in the 5.8 GHz band is 20 dB or more over an incident angle in the range of 10 ° to 70 °.
( 3 ) The radio wave absorber according to (1) or ( 2 ), wherein the surface material has a thickness of 0.2 mm to 2.0 mm .
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the radio wave absorber of the present invention, a surface material is provided on the surface side where radio waves are intended to be incident, and the surface material has a real part of a dielectric constant of 3.0 to 4.5 in a 5.8 GHz band. It consists of a certain polymer material.
The dielectric constant is expressed by the following equation:
Dielectric constant (ε) = ε′−jε ″
Here, ε ′ is the real part of the dielectric constant, and ε ″ is the imaginary part of the dielectric constant.
The polymer material forming the surface material is not particularly limited as long as the real part of the dielectric constant for a radio wave of 5.8 GHz band is 2.5 to 4.5. For example, polycarbonate resin (dielectric constant (real part) ): 2.73), acrylic resin (dielectric constant (real part): 2.6), polyethylene terephthalate resin (dielectric constant (real part): 3.2), polyvinyl chloride, phenolic resin, unsaturated polyester A plate member made of resin or the like and a FRP (fiber reinforced resin) of the resin material is applied, and the FRP of the resin material is preferable in terms of strength even when the plate thickness is thin. In particular, phenol resin-based FRP (dielectric constant (real part): 3.9), unsaturated polyester-based FRP (dielectric constant (real part): 3.1) in terms of improving radio wave absorption characteristics (oblique incidence characteristics). ) Is preferred.
As described above, in the polymer material forming the surface material in the present invention, the real part of the dielectric constant for the radio wave of 5.8 GHz band is 3.0 to 4.5, preferably 3.0 to 4.0. It is. When the dielectric constant is less than 3.0 or more than 4.5, the radio wave absorptivity tends to decrease. The dielectric constant (real part) of the polymer material can be measured by a cavity resonator method which is a conventionally known method.
Although the said phenol resin is not specifically limited, For example, a resole resin, a novolak resin, a xylenol resin, a cresol resin, a resorcinol resin etc. are mentioned. By providing a surface material made of a polymer material as described above on the side where radio waves are intended to be incident, the radio wave absorption characteristics of the radio wave absorber, particularly the oblique incidence radio wave absorption characteristics, can be significantly improved.
In the present invention, it is preferable that glass fibers are blended in the polymer material forming the surface material. As a glass fiber, what is normally mix | blended with a glass fiber reinforced plastic (FRP) can be used, For example, E-glass, C-glass, AR-glass, D-glass, T-glass is mentioned, Among these, E-glass is preferable from the viewpoint of electrical conductivity. The fiber diameter of the glass fiber is preferably 1 μm to 50 μm, more preferably 10 μm to 20 μm, and the length is preferably 10 mm to 80 mm, more preferably 50 mm to 70 mm. When the fiber diameter is thinner than 1 μm, the reinforcing effect cannot be obtained, and even when the fiber diameter is thicker than 50 μm, the reinforcing effect tends not to be remarkably improved. If the length is shorter than 10 mm, the reinforcing effect cannot be obtained, and if it is longer than 80 mm, mixing with the polymer material tends to be difficult. Further, instead of using glass fibers in the form of fibers, they may be used in the form of woven fabric, that is, glass cloth may be used. The compounding ratio of the polymer material and the glass fiber is preferably 100: 0 to 20:80, more preferably 99: 1 to 20:80, and still more preferably 60:40 to 20 in weight ratio. : 80. When the blending ratio of the glass fibers is more than 80, there is a tendency that the mixing with the polymer material cannot be performed well. By blending the glass fiber with the polymer material, nonflammability can be imparted to the surface material.
Furthermore, you may mix | blend various additives, for example, a curing catalyst, a pigment, etc. with the said polymeric material as needed.
The thickness of the surface material used in the present invention is preferably 0.2 mm to 2.0 mm, more preferably 0.4 mm to 1.2 mm. When the thickness of the surface material is less than 0.2 mm, the surface material tends to be easily broken or damaged, and when the surface material is thicker than 2.0 mm, the radio wave absorption property tends to be deteriorated.
The radio wave absorber in the present invention is not particularly limited, and may be the same as that known per se. For example, the radio wave absorber may be formed by blending conductive carbon with a foam of an organic polymer material. Examples of the organic polymer material include polyethylene, polystyrene, and polyurethane. Further, as the conductive carbon, any conventionally known conductive carbon can be used without particular limitation, and examples thereof include graphite, acetylene black, ketjen black, and furnace black. The compounding amount of the conductive carbon is preferably 5 to 100 parts by weight, more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the organic polymer material. If the blending amount is less than 5 parts by weight, it tends to be difficult to obtain sufficient radio wave absorption performance, and if it is more than 100 parts by weight, there is a tendency that no significant improvement in radio wave absorption performance is observed. Further, uniform mixing with the resin tends to be difficult. In addition, the method for producing such a radio wave absorber is not particularly limited. For example, the conductive carbon and the chemical foaming agent are blended with the organic polymer material, and the mixture is mixed with the organic polymer material. There is a method in which the mixture is kneaded at a temperature at which foaming does not occur, and then the kneaded product is placed in a mold and heated to foam.
The radio wave absorber in the present invention is also a fiber aggregate formed of fibers coated with conductive carbon, and the fiber aggregate is continuous (inclined) in order from the surface side where the fiber density is intended for incidence of radio waves. Or a density gradient type formed so as to increase intermittently (stepwise).
Examples of fibers used for the fiber assembly include inorganic fibers and polymer fibers. Examples of inorganic fibers include glass fibers and ceramic fibers. Among them, they are excellent in nonflammability, and have an inclined fiber density structure (a structure in which the fiber density increases continuously (inclined) from the side on which the radio waves are intended to be incident). Glass wool is preferred because it is easy to form. Moreover, as a polymer fiber, if it is a fiber (polar polymer fiber) which has polarity, there will be no restriction | limiting in particular. Polar polymer fibers are superior to inorganic fibers in that they are easy to bend (easy to process), easily adhere to carbon, and easily obtain fibers having different thicknesses. In particular, among polar polymer fibers, polyvinylidene chloride fibers, nylon fibers, polyester fibers, and acrylic fibers are preferable because they are excellent in flame retardancy and can easily form a gradient structure of fiber density.
In the said aspect, what coat | covers the said fiber with carbon is used. Here, the carbon in the present invention can be used without particular limitation as long as it is a conventionally known conductive carbon. Examples of the conductive carbon include graphite, ketjen black, furnace black, and acetylene black. The carbon coating of the above fiber is made by dissolving or dispersing carbon and an adhesive such as polyvinyl chloride or polyvinyl acetate as a binder in an appropriate solvent, for example, a hydrocarbon such as toluene or xylene, or an alcohol such as methanol or ethanol. This is done by applying the coating by means such as spray coating. The thickness of the carbon coating is preferably 5 μm to 500 μm, more preferably 10 μm to 300 μm, and particularly preferably 20 μm to 100 μm. This is because if the thickness of the carbon coating is less than 5 μm, there is a tendency that sufficient radio wave absorption capability cannot be exhibited, and even if the thickness of the carbon coating exceeds 500 μm, the radio wave absorption capability is not significantly improved. It is because it is in a tendency.
The fiber assembly in the above aspect is preferably formed by mating the above-mentioned various fibers and bonding them together to form a mat, since the shape-retaining property of the radio wave absorber is excellent. Specifically, in order to prevent the fibers from being unwound as they are entangled with each other, they are bonded so as not to dissociate with an adhesive or the like, and are formed into a mat shape to form a radio wave absorber. The bonding method is arbitrary, but a preferable method includes, for example, a method in which a spray adhesive is sprayed onto a mat body in which fibers are entangled to bond the fibers at a portion where the fibers overlap each other.
In order to obtain a radio wave absorption characteristic excellent in a wide band, it is necessary to prevent the radio wave incident on the radio wave absorber from being reflected on the surface side where the radio wave absorber is intended to be incident. In general, when a radio wave propagates through space, if it encounters a point where the conductivity changes abruptly, the radio wave is likely to be reflected at that point. Since the radio wave absorber is also a conductor, it is considered to have an action of reflecting radio waves. Therefore, if the wave absorber has a constant fiber density, the degree of reflection of radio waves increases. In view of this, in the above aspect, the fiber density of the fiber assembly is changed continuously (inclined) or intermittently (stepwise) with respect to the thickness direction so that broadband radio waves can be absorbed. Specifically, in the fiber aggregate formed in a mat shape, the fiber density on one side in the thickness direction is roughened to reduce attenuation, and the other side in the thickness direction is dense to increase attenuation, thereby increasing the fiber density. By making the rough side the surface side where radio waves are intended to be incident, the conductivity of the radio wave incidence surface is lowered (the fiber density is rough), the difference in conductivity with air is reduced, and The reflection on the incident surface is reduced so that the radio wave can be easily taken into the radio wave absorber, and the radio wave can be satisfactorily absorbed therein. Furthermore, by setting the density on the side opposite to the incident surface of the radio wave to “dense”, the radio wave can be reflected (role as a radio wave reflecting surface), and the incident radio wave can be offset. For example, if the fiber density is continuously changed to 0.02 g / cm 3 near the radio wave incident surface and 0.10 g / cm 3 on the side opposite to the radio wave incident surface, the radio wave in the 5.8 GHz band Absorbs well.
As described above, the fiber assembly in which the fiber density changes from one side to the other side is, for example, a large number of fibers having a large thickness among the above-mentioned various types of fibers. It is possible to form fibers that are blended in the eyes and have a small thickness by blending them on the side where the fiber density is desired to be dense.
The fiber assembly has a fineness of 1000 denier (d) to 4000 denier (d), a fineness of 100 denier (d) to 999 denier (d), and a fineness of 1 denier (d) to 99 denier (d). It is preferable that at least two types (preferably three or more types) of fibers selected from the above-mentioned fibers are entangled with each other and bonded to each other in terms of easy density gradient. For example, 70% by weight of fibers having a fineness of 1000d, 15% by weight of fibers having a fineness of 120d, and 15% by weight of fibers having a fineness of 50d, each of which is coated with conductive carbon. Examples thereof include a fiber assembly formed in a mat shape by being entangled with each other.
Further, the above-mentioned fiber assembly is a mat-like shape formed by entwining and bonding fibers made of various kinds of polar polymers coated with carbon so that various fibers are contained at least 5% by weight. A fiber assembly is preferred. By entwining each other so that various fibers are contained at least 5% by weight, there is an advantage that it is easy to form a density gradient of the fibers in the radio wave absorption layer as described above. When the content of various fibers is less than 5% by weight, the radio wave absorption characteristics tend to be lowered.
In addition, the mat-like fiber assembly is composed of fibers of various types and has a thickness of 5% by weight or more, thereby widening the radio wave absorption band of the absorber. In addition, it is preferable in terms of improving the radio wave absorption rate in each band. Needless to say, when a broadband radio wave is to be absorbed, the fiber aggregate may be configured by increasing the types of fiber thickness.
The thickness of the radio wave absorber is preferably 1 mm to 50 mm, more preferably 20 mm to 35 mm. If the thickness of the radio wave absorber is less than 1 mm, the radio wave cannot be sufficiently absorbed. If the thickness is greater than 50 mm, the radio wave absorption characteristics are not affected, but the weight of the radio wave absorber itself is increased and installed. It becomes difficult.
In the radio wave absorber of the present invention, a metal foil may be provided as a radio wave reflection layer on the side opposite to the side on which the radio wave is intended to be incident. The metal foil is not particularly limited. For example, a film (foil) formed of a metal material such as gold, silver, copper, aluminum, zinc, tin, iron, polyethylene (PE), polyethylene terephthalate (PET) ), A film formed by depositing the metal material on a film formed of a resin material such as polyvinyl chloride (PVC), and the like. Among these, aluminum foil is preferable from the viewpoints of versatility, weight reduction, corrosion resistance, and radio wave absorption ability, and further, aluminum foil coated on one side with PET is preferable in terms of trauma resistance and corrosion resistance. By providing the radio wave reflection layer, the radio wave absorption ability can be stabilized by reflecting the radio wave that has passed through the radio wave absorber.
As a method of providing a surface material on the side of the radio wave absorber intended to receive radio waves, for example, a surface material using an adhesive that integrates the radio wave absorber and the surface material using a panel (frame body) is used. And a radio wave absorber. In the case of using a panel, the material is preferably a metal material from the viewpoint of non-combustibility, and more preferably a steel plate, particularly a steel plate whose surface is subjected to anticorrosion treatment. As the anticorrosion treatment, a known treatment may be used. For example, galvanizing, aluminum coating, paint coating, etc. are applied. When bonding using an adhesive, the thickness of the formed adhesive layer is preferably 10 to 100 μm. When the thickness of the adhesive layer is thinner than 10 μm, good adhesive strength cannot be obtained, and when it is thicker than 100 μm, the radio wave absorption characteristics tend to be lowered. As the adhesive, those known per se can be used.
The radio wave absorber of the present invention can be used for applications that absorb radio waves in various frequency bands (in particular, microwaves, millimeter waves, submillimeter waves, etc.), and is particularly preferably used in ITS (Intelligent Road Traffic System). be able to.
Examples Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
(Examples 1-8, Reference Examples 1-9 and Comparative Examples 1-12)
The following are prepared as a radio wave absorber, a surface material, and a radio wave reflection layer, and are combined as shown in Table 1 below, so that the surface material, the radio wave absorber, and the radio wave reflection layer are viewed from the side where radio waves are intended to be incident. The electromagnetic wave absorbers of Examples 1 to 8, Reference Examples 1 to 9, and Comparative Examples 1 to 12 were produced so as to have a laminated structure arranged in this order.
[Radio wave absorber]
(Radio wave absorber A)
It contains 70% by weight of polyvinylidene chloride fiber having a fineness of 1000d, 15% by weight of polyvinylidene chloride fiber having a fineness of 120d, and 15% by weight of polyvinylidene chloride fiber having a fineness of 50d. (Name: Hitachi, manufactured by Hitachi Powdered Metals Co., Ltd.) These fibers are entangled with each other to form a mat with a thickness of 25 mm. The fiber density is opposite from the side where the radio waves are intended to be incident. (The fiber density on the radio wave incident surface side: 0.03 g / cm 3 , the fiber density on the opposite surface side: 0.06 g / cm 3 ) is used. did.
(Radio wave absorber B)
It contains 65% by weight of glass fiber with a fineness of 1000d, 20% by weight of glass fiber with a fineness of 130d, and 15% by weight of glass fiber with a fineness of 20d, each of which is made of conductive carbon (trade names: Hitachi, Hitachi powder) A fiber assembly formed by entanglement of these fibers covered by Metallurgical Co., Ltd. into a mat shape having a thickness of 25 mm, and the fiber density is directed from the surface side intended for incidence of radio waves to the opposite surface side. The one formed so as to be continuously high (fiber density on the radio wave incident surface side: 0.04 g / cm 3 , fiber density on the opposite surface side: 0.07 g / cm 3 ) was used.
(Radio wave absorber C)
It contains 80% by weight of polyvinylidene chloride fiber having a fineness of 1000d, 15% by weight of polyvinylidene chloride fiber having a fineness of 120d, and 5% by weight of polyvinylidene chloride fiber having a fineness of 60d. (Name: Hitachi, manufactured by Hitachi Powdered Metals Co., Ltd.) A fiber assembly (fiber density: 0.03 g / cm 3 ) in which these fibers coated with each other are entangled with each other to form a mat shape having a fineness of 1000d It contains 70% by weight of polyvinylidene chloride fiber, 15% by weight of polyvinylidene chloride fiber having a fineness of 120d, and 15% by weight of polyvinylidene chloride fiber having a fineness of 50d, each of which is made of conductive carbon (trade name: HITAZOL, A collection of fibers formed by mating these fibers covered by Hitachi Powder Metallurgy Co., Ltd. into a mat with a thickness of 10 mm (Fiber density: 0.05g / cm 3) and having a fineness of 60% by weight of polyvinylidene chloride fibers 1000d, fineness 10% by weight of polyvinylidene chloride fibers 120d, 30 weight fineness polyvinylidene chloride fibers 60d %, Each of which is covered with conductive carbon (trade name: HITAZOL, manufactured by Hitachi Powdered Metals Co., Ltd.) and entangled with each other to form a 10 mm thick mat (fiber density: And 0.07 g / cm 3 ) stacked in order from the side of the surface on which radio waves are intended to be used.
(Radio wave absorber D)
A polystyrene foam (thickness: 40 mm) containing conductive carbon (furnace black, trade name: VULCAN XC-72V, Showa Cabot) was used.
[Surface material]
(Surface material A)
Polycarbonate resin: Dielectric constant (real part) in the 5.8 GHz band is 2.73, thickness: 1.0 mm
(Surface material B)
Phenol resin FRP (manufactured by Nittobo Co., Ltd., phenol resin: glass fiber = 55: 45 (weight ratio)): dielectric constant (real part) in the 5.8 GHz band is 3.9, thickness: 0.6 mm
(Surface material C)
Unsaturated polyester FRP (manufactured by Nittobo, unsaturated polyester resin resin: glass fiber = 60: 40 (weight ratio)): dielectric constant (real part) at 5.8 GHz band is 3.1, thickness: 1 .0mm
(Surface material D)
Acrylic resin: Dielectric constant (real part) at 5.8 GHz band is 2.6, thickness: 1.0 mm
(Surface material E)
Tetrafluoride resin: Dielectric constant (real part) in 5.8 GHz band is 2.1, thickness: 1.0 mm
(Surface material F)
Polyimide 6 resin: Dielectric constant (real part) in the 5.8 GHz band is 4.7, thickness: 0.5 mm
(Surface material G)
Stainless steel plate: Thickness: 0.2mm
[Radio wave reflection layer]
An aluminum foil having one surface coated with PET was used. The aluminum foil surface of the radio wave reflection layer was bonded to the radio wave absorber.
The following items were evaluated for the radio wave absorbers obtained in Examples 1 to 8, Reference Examples 1 to 9, and Comparative Examples 1 to 12.
(Evaluation of radio wave absorption characteristics (oblique incidence characteristics))
The incident angle to each electromagnetic wave absorber was changed in the range of 10 ° to 70 °, circularly polarized waves in the 5.8 GHz band were incident, and the return loss was measured using the arch method. The obtained results are shown in Table 1. In Table 1, the case where the return loss is 20 dB or more over the entire range of the incident angle of 10 ° to 70 ° is indicated by ◯, while the return loss is in the range of the incident angle of 10 ° to 70 °. The case of less than 20 dB throughout or in a certain range is indicated by x.
Further, in order to compare the change in the radio wave absorption characteristics (oblique incidence characteristics) depending on the presence or absence of the surface material and the type of the surface material, no surface material (Comparative Example 7) and surface material A applied ( Reference Example ) to the radio wave absorber D 8 ), FIG. 1 shows the relationship between the incident angle and the return loss when the surface material B is applied (Example 7 ) and the surface material C is applied (Example 8 ). The relationship between the incident angle and the return loss in the case of no material (Comparative Example 1), surface material A application ( Reference Example 1), surface material B application (Example 1 ) and surface material C application (Example 2 ) Each is shown in FIG.
Table 1
Figure 0003802532
As is apparent from Table 1, the radio wave absorbers of Examples 1 to 8 have a surface material made of a polymer material whose real part of the dielectric constant in the 5.8 GHz band is 3.0 to 4.5. Since it is provided on the side intended to be incident, the return loss of circularly polarized waves in the 5.8 GHz band was 20 dB or more over a wide range of incident angles from 10 ° to 70 °. On the other hand, since the radio wave absorbers of Comparative Examples 1 to 7 are not provided with a surface material, the radio wave absorbers of Comparative Examples 8 to 11 have a real part of the dielectric constant in the 5.8 GHz band of the surface material of 3.0 to. Since it is outside the range of 4.5 and the surface of the radio wave absorber of Comparative Example 12 is a stainless steel plate, the return loss of the circularly polarized wave in the 5.8 GHz band is 10 ° to 70 °. Less than 20 dB over the entire range of angles or in certain ranges.
Further, FIGS. 1 and 2, surface material made of a polymer material the real part of the dielectric constant at 5.8GHz band is from 3.0 to 4.5 (the front surface member B: phenolic resin FRP, surface material C : Unsaturated polyester FRP) is provided on the side of the radio wave absorber on which the radio wave is intended to be incident. It can be seen that the radio wave absorption characteristics, particularly the oblique incident radio wave absorption characteristics, are significantly improved.
INDUSTRIAL APPLICATION FIELD According to the present invention, a surface material made of a polymer material having a real part of dielectric constant of 5.8 GHz band of 3.0 to 4.5 is provided on a surface side intended for incidence of radio waves. Thus, it is possible to provide a radio wave absorber in which radio wave absorption characteristics, particularly oblique incidence radio wave absorption characteristics are significantly improved.
This application is based on Japanese Patent Application No. 2001-401244 filed in Japan, the contents of which are incorporated in full herein.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between an incident angle and a return loss amount for comparing a change in radio wave absorption characteristics (oblique incidence characteristic) of a radio wave absorber depending on the presence and type of a surface material.
FIG. 2 is a diagram showing the relationship between the incident angle and the return loss for comparing the change in the radio wave absorption characteristic (oblique incidence characteristic) of the radio wave absorber according to the presence / absence of the surface material and the type thereof.

Claims (3)

電波の入射を意図する面側に表面材が設けられた電波吸収体であって、
該表面材が、5.8GHz帯での誘電率の実部が3.0〜4.5である高分子材料からなり、該高分子材料がフェノール樹脂系FRPまたは不飽和ポリエステル系FRPであり、かつ該高分子材料にガラス繊維が配合されていることを特徴とする電波吸収体。
A radio wave absorber in which a surface material is provided on a surface side intended to receive radio waves,
The surface material is made of a polymer material having a real part of a dielectric constant of 5.8 GHz band of 3.0 to 4.5, and the polymer material is a phenol resin FRP or an unsaturated polyester FRP, and wave absorber characterized in that the glass fiber is blended into the polymer material.
5.8GHz帯の円偏波の反射減衰量が、10°〜70°の範囲の入射角度にわたって20dB以上であることを特徴とする請求の範囲1記載の電波吸収体。The electromagnetic wave absorber according to claim 1, wherein the return loss of circularly polarized wave in the 5.8 GHz band is 20 dB or more over an incident angle in a range of 10 ° to 70 °. 上記表面材の厚さが0.2mm〜2.0mmであることを特徴とする請求の範囲1または2記載の電波吸収体。The radio wave absorber according to claim 1 or 2, wherein the surface material has a thickness of 0.2 mm to 2.0 mm.
JP2003559209A 2001-12-28 2002-12-27 Radio wave absorber Expired - Lifetime JP3802532B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001401244 2001-12-28
JP2001401244 2001-12-28
PCT/JP2002/013755 WO2003059031A1 (en) 2001-12-28 2002-12-27 Radio wave absorber

Publications (2)

Publication Number Publication Date
JPWO2003059031A1 JPWO2003059031A1 (en) 2005-05-19
JP3802532B2 true JP3802532B2 (en) 2006-07-26

Family

ID=19189747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003559209A Expired - Lifetime JP3802532B2 (en) 2001-12-28 2002-12-27 Radio wave absorber

Country Status (2)

Country Link
JP (1) JP3802532B2 (en)
WO (1) WO2003059031A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146351A (en) * 2014-01-31 2015-08-13 王子ホールディングス株式会社 Electromagnetic wave absorber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438687B2 (en) * 2014-06-17 2018-12-19 三菱電線工業株式会社 Radio wave absorber and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632417B2 (en) * 1988-09-29 1994-04-27 三菱電線工業株式会社 Radio wave absorber
JP2001220198A (en) * 2000-02-02 2001-08-14 Konoshima Chemical Co Ltd Electromagnetic wave-absorbable fireproof wall material
JP3288999B2 (en) * 2000-02-04 2002-06-04 ティーディーケイ株式会社 Radio wave absorption panel for automatic toll collection system and unnecessary radio wave suppression method
JP2002185179A (en) * 2000-12-14 2002-06-28 Takechi Kogyo Gomu Co Ltd Electric wave absorbing tool
JP2002245499A (en) * 2001-02-20 2002-08-30 Hitachi Metals Ltd Etc system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146351A (en) * 2014-01-31 2015-08-13 王子ホールディングス株式会社 Electromagnetic wave absorber

Also Published As

Publication number Publication date
WO2003059031A1 (en) 2003-07-17
JPWO2003059031A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EP2088170B1 (en) Resin composition
US5399295A (en) EMI shielding composites
Tang et al. A carbon-fabric/polycarbonate sandwiched film with high tensile and EMI shielding comprehensive properties: An experimental study
WO2006035912A1 (en) Electromagnetic wave absorber
Jagatheesan et al. Fabrics and their composites for electromagnetic shielding applications
JP2008021990A (en) Electromagnetic interference suppressor and method of suppressing electromagnetic fault
KR20160072189A (en) Noise-absorbing sheet
JP4108677B2 (en) Electromagnetic wave absorber
JP3647447B2 (en) Electromagnetic wave absorber
CN106042564B (en) A kind of lightweight sandwich absorbing material and preparation method thereof
JP2003198179A (en) Electromagnetic wave absorber
TW200908871A (en) Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
JP3802532B2 (en) Radio wave absorber
US20070210973A1 (en) Microstrip Antenna and Clothed Attached with the Same
JP2001156487A (en) Electromagnetic wave absorber and its manufacturing method
JP2000244167A (en) Electromagnetic-wave-disturbance preventive material
Anaele Opara et al. Progress in Polymer-based Composites as Efficient Materials for Electromagnetic Interference Shielding Applications: A Review
JPH0883994A (en) Wideband electromagnetic-wave-absorbing material
JPS6312198A (en) Electric wave absorbing electromagnetic shielding member
JPH0783197B2 (en) Electromagnetic shield material
KR100675514B1 (en) Electromagnetic wave shield material
JP4303388B2 (en) Electromagnetic wave absorber and method for producing the same
JPH0245359B2 (en)
JP2005158960A (en) Radio wave absorber
JPH1027986A (en) Radio wave absorber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050825

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R150 Certificate of patent or registration of utility model

Ref document number: 3802532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term