JP3801783B2 - Control device for idle cylinder engine - Google Patents

Control device for idle cylinder engine Download PDF

Info

Publication number
JP3801783B2
JP3801783B2 JP20232598A JP20232598A JP3801783B2 JP 3801783 B2 JP3801783 B2 JP 3801783B2 JP 20232598 A JP20232598 A JP 20232598A JP 20232598 A JP20232598 A JP 20232598A JP 3801783 B2 JP3801783 B2 JP 3801783B2
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
engine
oil
idle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20232598A
Other languages
Japanese (ja)
Other versions
JP2000034941A (en
Inventor
龍治 河野
敏之 鈴木
英哲 秋山
守男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP20232598A priority Critical patent/JP3801783B2/en
Publication of JP2000034941A publication Critical patent/JP2000034941A/en
Application granted granted Critical
Publication of JP3801783B2 publication Critical patent/JP3801783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、全ての気筒を稼働する全筒運転と一部の気筒を休止する休筒運転とに切換自在とした休筒式エンジンの制御装置に関する。
【0002】
【従来の技術】
従来、この種の休筒式エンジンは、一部の気筒の吸排気バルブを駆動状態と駆動停止状態とに切換えるバルブ切換手段を備え、一部の気筒の吸排気バルブの駆動停止で該一部の気筒を休止するようにしている。(特開平8−74545号公報参照)
【0003】
【発明が解決しようとする課題】
休筒運転時は、全筒運転時の吸気行程や爆発行程に相当する行程で休止気筒の燃焼室内圧力とクランクケース内圧力との差圧が大きくなり、クランク室内のオイルが燃焼室に吸い込まれる、所謂、オイル上りを生ずる。そして、休筒運転の継続で休止気筒の燃焼室内のオイル量が増加し、休筒運転から全筒運転に復帰した際に、燃焼室内のオイルが排出されて、排気エミッションが悪化する。
【0004】
本発明は、以上の点に鑑み、休止気筒でのオイル上りによる全筒運転復帰時の排気エミッションの悪化を防止できるようにした制御装置を提供することを課題としている。
【0005】
【課題を解決するための手段】
上記課題を解決すべく、本発明は、全ての気筒を稼働する全筒運転と、一部の気筒の吸排気バルブの駆動を停止して該一部の気筒を休止する休筒運転とに切換自在とした休筒式エンジンの制御装置において、休筒運転時に前記一部の気筒の燃焼室にオイル上りによって蓄積されたオイル量を予測する予測手段と、予測手段による予測量が所定値に達したところで一時的に全筒運転に復帰させる一時復帰手段と、前記所定値を、エンジン温度が低温になるほど休止気筒のオイル上がりが増加するのを防止するために低く設定する所定値設定手段とを備えている。
【0006】
本発明によれば、オイル上りで休止気筒の燃焼室に蓄積されるオイル量が所定値に達したところで休筒運転から全筒運転に一時的に復帰される。ここで、休止気筒へのオイル上りで燃焼室内に蓄積されるオイル量が微少量であって、オイルを良好に燃焼できるうちに全筒運転に一時復帰されるように前記所定値を設定しておけば、一時的な全筒運転時に排気エミッションが悪化することはない。特に、一時的な全筒運転時に、休止気筒たる前記一部の気筒への吸入混合気の空燃比を他の気筒への吸入混合気の空燃比よりもリーンにすれば、オイルの燃焼性が良くなり、排気エミッションの悪化を一層効果的に防止できる。このように、休筒運転中に、休止気筒の燃焼室内のオイルを随時燃焼させることができるため、休筒運転領域から全筒運転領域への移行で全筒運転に復帰させる際に、休止気筒の燃焼室からのオイルの排出で排気エミッションが悪化することはない。また、休筒運転中に一時的に全筒運転に復帰させると、その間はオイル上りを生じず、休筒運転を継続する場合に比しオイル上りによるオイル消費が減少する。
【0007】
前記予測手段として、休筒運転時の経過時間を計時するタイマを用い、経過時間が前記所定値たる設定時間に達したところで全筒運転への一時復帰を行うことも可能であるが、オイル上りによる蓄積オイル量はエンジンの回転回数にほぼ比例するから、休筒運転時にエンジンが何回転したかをカウントするカウント手段で予測手段を構成し、カウント手段によるカウント数で蓄積オイル量を予測した方が予測精度が高くなる。この場合、カウント手段によるカウント数が所定値に達したところで全筒運転への一時復帰を行う。尚、タイマを用いる場合は、エンジンの運転状態に応じて設定時間を変更することが望ましい。
【0008】
ところで、エンジン温度が低くなると、気筒の内壁面とピストンとのクリアランスが大きくなり、オイル上りを生じ易くなる。ここで、前記所定値を、エンジン温度に応じ低温になる程低く設定すれば、低温時は早めに全筒運転に一時復帰され、低温時に休止気筒の燃焼室内のオイル量が増加することを防止でき、有利である。
【0009】
尚、後記する実施形態において、前記カウント手段に相当するのは図2のS5,S6のステップにおける処理であり、前記一時復帰手段に相当するのは、図2のS7,S8のステップにおける処理であり、CT1が前記カウント数に相当し、CTNMLが前記所定値に相当する。
【0010】
【発明の実施の形態】
図1は、第1と第2の1対のバンク11,12に夫々3個の気筒2を設けたV型6気筒エンジンを示しており、両バンク11,12に共通の吸気マニホルド3と、第1バンク11用と第2バンク12用の各別の排気マニホルド41,42とを設け、吸気マニホルド3の上流部にスロットルバルブ5を介設すると共に、吸気マニホルド3の下流の各気筒2に連なる各分岐部に燃料噴射弁6を設け、各燃料噴射弁6から各気筒2に燃料を供給するようにしている。
【0011】
第1バンク11には、第1バンク11の気筒2の吸排気バルブを駆動状態と駆動停止状態とに切換えるバルブ切換手段(図示せず)が設けられており、コントローラ7によりバルブ切換手段を制御して第1バンク11の気筒2の吸排気バルブの駆動を停止すると共に、第1バンク11側の燃料噴射弁6からの燃料噴射を停止することで、両バンク11,12の気筒2を全て稼働する全筒運転から第1バンク11の気筒2を休止する休筒運転に切換えるようにしている。
【0012】
図2は休筒運転時にコントローラ7で実行する制御プログラムを示している。この制御プログラムは、一定時間間隔で実行されるもので、先ず、S1のステップで休筒条件成立フラグFSTが1にセットされているか否かを判別する。第1バンク11の気筒2を休止できるのは、第2バンク12の気筒2のみの稼働でも安定した運転が維持できるとき、具体的には、エンジン回転速度NEが低中速域(例えば1500rpm<NE<3500rpm)、車速Vが発進完了速度以上(例えばV>15km/h)、スロットル開度THが低開度(例えば0.5°<TH<20°)という3条件が成立したときであり、バックグランド処理により上記3条件が成立したときにFSTが1にセットされる。尚、図示しないメインルーチンでの処理により、FST=1のときに休筒運転、FST=0のときに全筒運転が行われる。
【0013】
FST≠1であれば、S2のステップで一時復帰フラグFNMLと休筒時回転カウンタ値CT1と全筒時回転カウンタ値CT2とを夫々0にリセットし、1回の処理を終了する。
【0014】
FST=1であれば、S3のステップでFNMLが1にセットされているか否かを判別する。休筒運転への切換当初は、FNML=0であるため、S3のステップからS4のステップに進み、エンジン温度、例えば、エンジンの冷却水温TWに応じた全筒復帰判定値CTNMLをテーブル検索する。CTNMLは、TWが低温になる程低くなるように設定される。
【0015】
次に、S5のステップに進み、制御プログラムの実行時間間隔内でのエンジンの回転回数#CTをエンジン回転速度NEをパラメータとして表わすテーブルを検索し、現時点でのNEに基づいて制御プログラムの前回の実行時から今までに回転したエンジンの回転回数#CTを求める。次に、S6のステップでCT1を前回値に#CTを加算した値とする。かくて、CT1は休筒運転を開始してからのエンジンのトータルの回転回数を表わすことになる。
【0016】
次に、S7のステップでCT1がCTNMLに達したか否かを判別し、CT1≧CTNMLになったときS8のステップに進み、第1バンクの気筒2の吸排気バルブの駆動を再開する全筒運転への復帰制御を行う。次に、S9のステップで復帰制御が完了したか否かを判別し、完了したときにS10のステップに進み、第1バンク11の気筒2への燃料供給を、第1バンク11の気筒2への吸入混合気の空燃比が第2バンク12の気筒2への吸入混合気の空燃比よりもリーンになるようにして再開し、更に、S11のステップでFNMLを1にセットすると共にCT1を0にリセットする。
【0017】
次回はS3のステップでFNML=1と判別されてS12のステップに進み、現時点でのエンジン回転速度NEに基づいて制御プログラムの前回の実行時から今までに回転したエンジンの回転回数#CTをテーブル検索し、S13のステップでCT2を前回値に#CTを加算した値とする。かくて、CT2は全筒運転に復帰してからのエンジンのトータルの回転回数を表わすことになる。次に、S14のステップでCT2が所定の休筒再開判定値CTSTに達したか否かを判別し、CT2≧CTSTになったときS15のステップに進み、第1バンク1の気筒2の吸排気バルブの駆動を停止すると共に該気筒2への燃料供給を停止する休止制御を実行する。次に、S16のステップで休止制御が完了したか否かを判別し、完了したときにS17のステップでFNMLを0にリセットすると共にCT2を0にリセットする。
【0018】
かくて、休筒運転時は、エンジンがCTNMLと同じ数だけ回転する度に、CTSTと同じ数だけ回転する間全筒運転に一時的に復帰する。ここで、CTNMLは、休筒運転中のオイル上りにより第1バンク11の気筒2燃焼室に蓄積されるオイル量が、オイルを良好に燃焼できる範囲に収まるような値(例えば2000〜4000回転)に設定されるもので、全筒運転への復帰によりそれまでに第1バンク11の気筒2燃焼室に蓄積されたオイルは良好に燃焼される。而も、本実施形態では、一時的な全筒運転時、第1バンク11の気筒2に吸入される混合気をリーンにしているため、燃焼室内のオイルで空燃比が過濃になることはなく、燃焼性が良好に維持され、排気エミッションの悪化が確実に防止される。また、エンジン温度が低くなると、気筒内壁とピストンとの間のクリアランスが大きくなってオイル上りを生じ易くなるが、本実施形態では、CTNMLを低温になる程低くなるように設定しているため、低温時でも燃焼室内のオイル量が適正範囲を越える前に全筒運転に一時復帰させることができ、排気エミッションの悪化は生じない。このように、休筒運転中に随時オイルを燃焼させるため、FSTが0にリセットされて休筒運転から全筒運転に切換えられたときに、第1バンク1の気筒2から多量のオイルが排出されて排気エミッションが悪化するようなことはない。尚、CTSTは、第1バンク11の全ての気筒2の燃焼室のオイルを燃焼させるのに必要十分な値(例えば5〜10回転)に設定される。
【0019】
以上、V型6気筒エンジンについて説明したが、直列多気筒エンジンにおいてその一部の気筒を休止する場合にも同様に本発明を適用できる。
【0020】
【発明の効果】
以上の説明から明らかなように、本発明によれば、休止気筒でのオイル上りによる全筒運転復帰時の排気エミッションの悪化を防止でき、更に、オイル上りによるオイル消費の低減にも寄与する。
【図面の簡単な説明】
【図1】本発明を適用するエンジンの一例を示す図
【図2】休筒運転時の制御プログラムを示すフローチャート
【符号の説明】
1 第1バンク(休筒側バンク) 12 第2バンク
2 気筒 7 コントローラ CT1 休筒時回転カウンタ値(カウント数)
CTNML 全筒復帰判定値(所定値)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a cylinderless engine that can be switched between an all-cylinder operation in which all cylinders are operated and a cylinder-inactive operation in which some cylinders are deactivated.
[0002]
[Prior art]
Conventionally, this kind of cylinder-less engine has valve switching means for switching the intake / exhaust valves of some cylinders between a drive state and a drive stop state. The cylinders are deactivated. (See JP-A-8-74545)
[0003]
[Problems to be solved by the invention]
During idle cylinder operation, the pressure difference between the combustion chamber pressure of the idle cylinder and the crankcase pressure increases during the stroke corresponding to the intake stroke and explosion stroke during all cylinder operation, and oil in the crank chamber is sucked into the combustion chamber. In other words, so-called oil rising occurs. Then, the amount of oil in the combustion chamber of the deactivated cylinder increases with the continuation of the idle cylinder operation, and when the cylinder is restored from the idle cylinder operation to the all cylinder operation, the oil in the combustion chamber is discharged and exhaust emission deteriorates.
[0004]
In view of the above, it is an object of the present invention to provide a control device that can prevent deterioration of exhaust emission when all cylinders are returned to operation due to oil rising in a deactivated cylinder.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention switches between all-cylinder operation in which all cylinders are operated and cylinder-inactive operation in which driving of intake and exhaust valves of some cylinders is stopped and some cylinders are deactivated. In a control system for a closed cylinder engine, a predicting unit that predicts the amount of oil accumulated in the combustion chambers of some of the cylinders during the idle cylinder operation, and a predicted amount by the prediction unit reaches a predetermined value. Then, temporary return means for temporarily returning to all-cylinder operation, and predetermined value setting means for setting the predetermined value low in order to prevent an increase in oil in the deactivated cylinder as the engine temperature decreases. I have.
[0006]
According to the present invention, when the amount of oil accumulated in the combustion chamber of the idle cylinder reaches a predetermined value after the oil has risen, the idle cylinder operation is temporarily returned to the all cylinder operation. Here, the predetermined amount is set so that the amount of oil accumulated in the combustion chamber when the oil reaches the idle cylinder is very small and can be temporarily returned to the all-cylinder operation while the oil can be burned well. If this is the case, exhaust emissions will not deteriorate during temporary all-cylinder operation. In particular, during the temporary all-cylinder operation, if the air-fuel ratio of the intake air mixture to the some cylinders that are the idle cylinders is made leaner than the air-fuel ratio of the intake air mixture to the other cylinders, the oil combustibility is improved. The exhaust emission can be effectively prevented from deteriorating. In this way, since the oil in the combustion chamber of the idle cylinder can be burned at any time during the idle cylinder operation, when returning to the all cylinder operation by the transition from the idle cylinder operation area to the all cylinder operation area, Exhaust emissions will not deteriorate due to oil discharge from the combustion chamber. Further, if the cylinder is temporarily returned to the full cylinder operation during the idle cylinder operation, the oil rise does not occur during that period, and the oil consumption due to the oil rise decreases compared to the case where the idle cylinder operation is continued.
[0007]
As the predicting means, it is possible to use a timer for measuring the elapsed time during the cylinder resting operation, and to temporarily return to the all cylinder operation when the elapsed time reaches the set time which is the predetermined value. The amount of oil accumulated by the engine is almost proportional to the number of engine revolutions. Therefore, the counting means that counts how many times the engine has rotated during idle cylinder operation constitutes a prediction means, and the accumulated oil amount is predicted by the count number of the counting means. However, the prediction accuracy is high. In this case, temporary return to all-cylinder operation is performed when the count by the counting means reaches a predetermined value. When using a timer, it is desirable to change the set time according to the operating state of the engine.
[0008]
By the way, when the engine temperature is lowered, the clearance between the inner wall surface of the cylinder and the piston is increased, and the oil rises easily. Here, if the predetermined value is set lower as the temperature becomes lower in accordance with the engine temperature, the operation is temporarily returned to the all-cylinder operation at an early time when the temperature is low, and the amount of oil in the combustion chamber of the idle cylinder is prevented from increasing at a low temperature. Can be advantageous.
[0009]
In the embodiment described later, the processing corresponding to the counting means is processing in steps S5 and S6 in FIG. 2, and the temporary returning means is processing in steps S7 and S8 in FIG. Yes, CT1 corresponds to the count number, and CTNML corresponds to the predetermined value.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1, first and shows a V-type 6-cylinder engine provided with respective three cylinders 2 Bank 1 1, 1 2 of the second pair, the common intake in both the banks 1 1, 1 2 A manifold 3 and separate exhaust manifolds 4 1 and 4 2 for the first bank 1 1 and the second bank 1 2 are provided, a throttle valve 5 is provided upstream of the intake manifold 3, and an intake manifold is provided. A fuel injection valve 6 is provided at each branch portion connected to each cylinder 2 downstream of the cylinder 3 so that fuel is supplied from each fuel injection valve 6 to each cylinder 2.
[0011]
The first bank 1 1, the valve switching means for switching the intake and exhaust valves of the first bank 1 1 of the cylinder 2 to the drive stopped state and the driving state (not shown) is provided, the valve switching means by the controller 7 stops the driving of the intake and exhaust valves controlled by the first bank 1 1 cylinder 2, by stopping the fuel injection from the first bank 1 1 of the fuel injection valves 6, both the banks 1 1, 1 the second cylinder 2 from all cylinders operation to run all have to switch to cylinder deactivation operation to pause the first bank 1 1 of cylinder 2.
[0012]
FIG. 2 shows a control program executed by the controller 7 when the cylinder is closed. This control program is executed at regular time intervals. First, in step S1, it is determined whether or not the idle cylinder satisfaction flag FST is set to 1. Can pause the first bank 1 1 of the cylinder 2, when stable operation in the operation of only the cylinders 2 of the second bank 1 2 can be maintained, specifically, the engine rotational speed NE is low and medium speed region (e.g. When three conditions are satisfied: 1500 rpm <NE <3500 rpm), vehicle speed V is equal to or higher than the start completion speed (eg, V> 15 km / h), and throttle opening TH is low (eg, 0.5 ° <TH <20 °). And FST is set to 1 when the above three conditions are satisfied by the background processing. Note that by a process in a main routine (not shown), the cylinder resting operation is performed when FST = 1, and the all cylinder operation is performed when FST = 0.
[0013]
If FST ≠ 1, the temporary return flag FNML, the cylinder rest rotation counter value CT1, and the all cylinder rotation counter value CT2 are each reset to 0 in step S2, and one process is completed.
[0014]
If FST = 1, it is determined whether or not FNML is set to 1 in step S3. Since FNML = 0 at the beginning of switching to the idle cylinder operation, the process proceeds from step S3 to step S4, and a table search is performed for an all-cylinder return determination value CTNML corresponding to the engine temperature, for example, the engine coolant temperature TW. CTNML is set so as to decrease as TW becomes lower in temperature.
[0015]
Next, the process proceeds to step S5, where a table representing the number of engine revolutions #CT within the execution time interval of the control program as a parameter of the engine speed NE is retrieved, and the previous time of the control program based on the current NE is searched. The number of rotations #CT of the engine that has rotated from the time of execution until now is obtained. Next, in step S6, CT1 is set to a value obtained by adding #CT to the previous value. Thus, CT1 represents the total number of revolutions of the engine since the start of cylinder resting operation.
[0016]
Next, in step S7, it is determined whether or not CT1 has reached CTNML. When CT1 ≧ CTNML, the process proceeds to step S8, and all cylinders that resume driving the intake and exhaust valves of the cylinder 2 of the first bank are resumed. Perform return control to operation. Next, it is determined whether the return control in step S9 has been completed, the process proceeds to step S10 when completed, the fuel supply to the first bank 1 1 of the cylinder 2, the first bank 1 1 cylinder 2 so that the air-fuel ratio of the intake mixture to the cylinder 2 becomes leaner than the air-fuel ratio of the intake mixture to the cylinder 2 of the second bank 12, and FNML is set to 1 in step S 11. Reset CT1 to zero.
[0017]
Next time, it is determined that FNML = 1 in step S3, and the process proceeds to step S12. Based on the current engine speed NE, the number of rotations #CT of the engine that has rotated from the previous execution of the control program to the present is tabled. Search is performed, and CT2 is set to a value obtained by adding #CT to the previous value in step S13. Thus, CT2 represents the total number of rotations of the engine after returning to the all-cylinder operation. Next, in step S14, it is determined whether or not CT2 has reached a predetermined cylinder deactivation resumption determination value CTST. When CT2 ≧ CTST, the process proceeds to step S15, and the intake and exhaust of the cylinder 2 in the first bank 1 is performed. Pause control for stopping the valve drive and stopping the fuel supply to the cylinder 2 is executed. Next, it is determined in step S16 whether or not the suspension control is completed. When the control is completed, FNML is reset to 0 and CT2 is reset to 0 in step S17.
[0018]
Thus, during cylinder resting operation, every time the engine rotates the same number as CTNML, it temporarily returns to all cylinder operation while it rotates the same number as CTST. Here, CTNML, the oil amount accumulated in the first bank 1 1 of the cylinder 2 a combustion chamber by the oil up in the cylinder deactivation operation is, values such as within the range that can be favorably burned oil (e.g. 2000-4000 rotation ) intended to be set in, it until the accumulated oil in the first bank 1 1 of the cylinder 2 a combustion chamber by the return to the full-cylinder operation is well burned. Thus also in this embodiment, when a temporary full-cylinder operation, since the air-fuel mixture sucked into the cylinder 2 of the first bank 1 1 is lean, the air-fuel ratio becomes rich in the combustion chamber of the oil However, the combustibility is maintained well, and the exhaust emission is reliably prevented from deteriorating. Further, when the engine temperature is lowered, the clearance between the cylinder inner wall and the piston is increased, and the oil rises easily. However, in this embodiment, CTNML is set to become lower as the temperature becomes lower. Even at low temperatures, the entire cylinder operation can be temporarily restored before the amount of oil in the combustion chamber exceeds the appropriate range, and exhaust emission does not deteriorate. In this way, in order to burn oil at any time during the idle cylinder operation, a large amount of oil is discharged from the cylinder 2 of the first bank 1 when the FST is reset to 0 and switched from the idle cylinder operation to the all cylinder operation. As a result, exhaust emissions do not deteriorate. Incidentally, CTST is set to required value sufficient to burn the first bank 1 1 of all the cylinders 2 of the combustion chamber of the oil (e.g., 5 to 10 rotations).
[0019]
Although the V-type six-cylinder engine has been described above, the present invention can be similarly applied to a case where some of the cylinders are deactivated in an in-line multi-cylinder engine.
[0020]
【The invention's effect】
As apparent from the above description, according to the present invention, it is possible to prevent the exhaust emission from deteriorating when all cylinders are returned to operation due to the oil rising in the idle cylinder, and further contribute to the reduction of oil consumption due to the oil rising.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an engine to which the present invention is applied. FIG. 2 is a flowchart showing a control program during cylinder idle operation.
1 1 1st bank (bankless side bank) 1 2 2nd bank 2 cylinder 7 controller CT1 Resting cylinder rotation counter value (count)
CTNML All cylinder return judgment value (predetermined value)

Claims (2)

全ての気筒を稼働する全筒運転と、一部の気筒の吸排気バルブの駆動を停止して該一部の気筒を休止する休筒運転とに切換自在とした休筒式エンジンの制御装置において、
休筒運転時に前記一部の気筒の燃焼室にオイル上りによって蓄積されたオイル量を予測する予測手段と、
予測手段による予測量が所定値に達したところで一時的に全筒運転に復帰させる一時復帰手段と、
前記所定値を、エンジン温度が低温になるほど休止気筒のオイル上がりが増加するのを防止するために低く設定する所定値設定手段と、
を備えることを特徴とする休筒式エンジンの制御装置。
In a control apparatus for a cylinder-cylinder engine that can be switched between all-cylinder operation for operating all cylinders and cylinder-cylinder operation for stopping drive of intake and exhaust valves of some cylinders to deactivate some cylinders. ,
Predicting means for predicting the amount of oil accumulated in the combustion chambers of some of the cylinders during the idle cylinder operation,
Temporary return means for temporarily returning to all-cylinder operation when the predicted amount by the prediction means reaches a predetermined value;
A predetermined value setting means for setting the predetermined value low in order to prevent an increase in oil in the idle cylinder as the engine temperature becomes lower;
A control device for a cylinderless engine, comprising:
前記一時的な全筒運転時に、前記一部の気筒への吸入混合気の空燃比を他の気筒への吸入混合気の空燃比よりもリーンにすることを特徴とする請求項1に記載の休筒式エンジンの制御装置。When said temporary full-cylinder operation, according to claim 1, characterized in that the lean of the air-fuel ratio of the intake mixture of an air-fuel ratio of the intake mixture of the to part of the cylinders to other cylinders Control device for idle cylinder engine.
JP20232598A 1998-07-16 1998-07-16 Control device for idle cylinder engine Expired - Fee Related JP3801783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20232598A JP3801783B2 (en) 1998-07-16 1998-07-16 Control device for idle cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20232598A JP3801783B2 (en) 1998-07-16 1998-07-16 Control device for idle cylinder engine

Publications (2)

Publication Number Publication Date
JP2000034941A JP2000034941A (en) 2000-02-02
JP3801783B2 true JP3801783B2 (en) 2006-07-26

Family

ID=16455690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20232598A Expired - Fee Related JP3801783B2 (en) 1998-07-16 1998-07-16 Control device for idle cylinder engine

Country Status (1)

Country Link
JP (1) JP3801783B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8560210B2 (en) 2010-01-20 2013-10-15 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
EP2543854B1 (en) 2010-03-02 2014-04-30 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
EP2549082B1 (en) 2010-03-19 2018-06-13 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine and control device for vehicle provided with said internal combustion engine
JP5528886B2 (en) * 2010-03-31 2014-06-25 本田技研工業株式会社 Multi-cylinder internal combustion engine with cylinder deactivation mechanism
JP5563867B2 (en) * 2010-03-31 2014-07-30 本田技研工業株式会社 Multi-cylinder internal combustion engine with cylinder deactivation mechanism
JP6156224B2 (en) * 2014-03-31 2017-07-05 マツダ株式会社 Engine control device
JP6347775B2 (en) 2015-12-28 2018-06-27 日東電工株式会社 Spiral membrane element
WO2021195093A1 (en) * 2020-03-27 2021-09-30 Cummins Inc. Systems and methods for skip-fire operation control
US11946423B2 (en) * 2020-08-27 2024-04-02 Tula Technology, Inc. Recharging management for skipping cylinders

Also Published As

Publication number Publication date
JP2000034941A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
JP4253613B2 (en) Fuel injection control device for internal combustion engine
JP3835142B2 (en) Control device for self-ignition / spark ignition internal combustion engine
US8156923B2 (en) Method and system for pre-ignition control
JP3815006B2 (en) Control device for internal combustion engine
JP3699035B2 (en) Non-cylinder control device for multi-cylinder engine
JP2001263110A (en) Control device for variable valve engine
JP5229006B2 (en) Control device for internal combustion engine
JP3801783B2 (en) Control device for idle cylinder engine
JP5240370B2 (en) Control device for internal combustion engine
US5836288A (en) Method and apparatus for controlling fuel injection in a multicylinder internal combustion engine
JP3216456B2 (en) Fuel injection control device
JP3648864B2 (en) Lean combustion internal combustion engine
JPH0217704B2 (en)
JP3284597B2 (en) Internal combustion engine output control method
JP2673492B2 (en) Air-fuel ratio control device for internal combustion engine
JP4058784B2 (en) Idle air-fuel ratio control device for internal combustion engine
JP2004324491A (en) Fuel injection device of internal combustion engine
JPH1113493A (en) Intake-air controller for engine
JP3036351B2 (en) Method of detecting rotation fluctuation of internal combustion engine
JP3269350B2 (en) In-cylinder spark ignition internal combustion engine
JPH1061482A (en) Knock control device for inner-cylinder fuel injection type internal combustion engine
JPH10266886A (en) Fuel cut control device of internal combustion engine
JPH10103206A (en) Ignition timing control device for lean-burn engine
JPH089387Y2 (en) Cylinder control internal combustion engine
JP3691092B2 (en) Engine air-fuel ratio control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees