JP3801457B2 - Sewage treatment equipment - Google Patents

Sewage treatment equipment Download PDF

Info

Publication number
JP3801457B2
JP3801457B2 JP2001093022A JP2001093022A JP3801457B2 JP 3801457 B2 JP3801457 B2 JP 3801457B2 JP 2001093022 A JP2001093022 A JP 2001093022A JP 2001093022 A JP2001093022 A JP 2001093022A JP 3801457 B2 JP3801457 B2 JP 3801457B2
Authority
JP
Japan
Prior art keywords
sludge
tank
sewage
facility
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001093022A
Other languages
Japanese (ja)
Other versions
JP2002282884A (en
Inventor
東郎 船戸
Original Assignee
東郎 船戸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東郎 船戸 filed Critical 東郎 船戸
Priority to JP2001093022A priority Critical patent/JP3801457B2/en
Publication of JP2002282884A publication Critical patent/JP2002282884A/en
Application granted granted Critical
Publication of JP3801457B2 publication Critical patent/JP3801457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、活性汚泥を利用した曝気槽を備えた汚水処理装置に関するものである。
【0002】
【従来の技術】
図4に示す従来の汚水処理システムSは、活性汚泥を利用した曝気槽1と、この曝気槽1に入るまでの汚水を処理する汚水流入設備2と、この曝気槽1から出た混合液が直接的にまたは間接的に入る最終沈澱槽3と、この最終沈澱槽3により処理された沈澱汚泥が入る汚泥処理設備4と、この最終沈澱槽3により処理された処理水が入る処理水流出設備5とを備えている。
【0003】
【発明が解決しようとする課題】
従来の汚水処理システムSにおいては、前記汚水流入設備2からの流入汚水6を前記曝気槽1でのみ曝気処理するので、単位時間あたりの曝気能力(活性能力)が低下して汚泥の発生を抑制することが困難になるとともに、脱臭効果も不十分であり、曝気槽1や最終沈澱槽3や汚泥処理設備4を大型化しなければならない。
【0004】
本発明は、上記問題点を解決して汚水処理装置を簡略化することを目的にしている。
【0005】
【課題を解決するための手段及び発明の効果】
後記実施形態の図面(図2に示す第二実施形態)の符号を援用して本発明を説明する。
なお、図1に示す第一実施形態や図3(a)(c)に示す第三実施形態や図3(b)(c)に示す第四実施形態については、本発明と直接的に関連しない。
【0010】
請求項1の発明にかかる汚水処理装置は、活性汚泥を利用した曝気槽(1)と、この曝気槽(1)に入るまでの汚水を処理する汚水流入設備(2)と、この曝気槽(1)から出た混合液が直接的にまたは間接的に入る沈澱槽(3)と、この沈澱槽(3)により処理された沈澱汚泥が入る汚泥処理設備(4)と、この沈澱槽(3)により処理された処理水が入る処理水流出設備(5)とを備えている。前記曝気槽(1)に空気を送る送風機(31)を設けている。前記汚水流入設備(2)では流入汚水(6)がポンプ井(8)に入った後に曝気槽(1)に供給される。前記汚泥処理設備(4)では沈澱汚泥が汚泥分配槽(10)により汚泥貯溜槽(11)と濃縮槽(25)とに分配される。前記沈澱槽(3)から出た沈澱汚泥を抑制汚泥として前記汚泥処理設備(4)の汚泥分配槽(10)から濃縮槽(25)を通って前記汚水流入設備(2)のポンプ井(8)に戻す循環通路(23)を設けている。
【0011】
請求項1の発明では、流入汚水(6)のペーハー(例えばpH8.0〜8.3)よりも、汚水流入設備(2)でペーハー(例えばpH7.0〜6.8)が下がり、曝気槽(1)内でペーハー(例えばpH6.2〜6.3)は曝気槽(1)への送風等によりさらに下がる。汚水流入設備(2)から曝気槽(1)にわたりペーハー(pH)が次第に下がってアルカリ性から中性を経て酸性になると、酸化による脱窒等により曝気能力(活性能力)を高めて汚泥の発生を抑制するとともに脱臭効果も高めることができる。また、活性化された沈澱汚泥が汚水流入設備(2)に戻るので、流入汚水(6)が曝気槽(1)に至る前処理段階である汚水流入設備(2)でも、この活性化沈澱汚泥により流入汚水(6)に対する曝気作用を生じ、汚水流入設備(2)での予備的曝気処理と曝気槽(1)での本来的曝気処理とを行う。そのため、活性化沈澱汚泥を循環させるだけの簡単な設備により、単位時間あたりの曝気能力(活性能力)を高めて汚泥の発生を抑制することができる。従って、汚泥処理負担を軽減して、汚水処理装置を簡略化することができる。
【0012】
請求項2の発明においては、請求項1の発明にかかる汚水処理装置にあって、曝気槽(1)内のペーハー(pH)を検出するペーハセンサ(32)を設け、このペーハセンサ(32)によるペーハー(pH)の検出値(α)に基づき、前記送風機(31)を駆動制御する駆動制御手段(36)を設けている。請求項2の発明では、曝気槽(1)内のペーハー(pH)を確実に管理して、請求項1の発明の効果をより一層確実に発揮させることができる。
【0013】
請求項3の発明においては、請求項1または請求項2の発明にかかる汚水処理装置にあって、汚水流入設備(2)にはポンプ井(8)から汚水を曝気槽(1)へ直接的にまたは間接的に送るポンプ(33)と、このポンプ井(8)の水位を検知する水位センサ(34,35)とを設けるとともに、このポンプ(8)の駆動時間を設定するタイマ(37)を設け、この水位センサ(34,35)からの検知信号、またはこのタイマ(37)からの指令信号に基づき、前記ポンプ(33)を駆動制御する駆動制御手段(36)を設けている。請求項3の発明では、水位センサ(34,35)とタイマ(37)とを適宜利用して、汚水流入設備(2)のポンプ井(8)から曝気槽(1)へ送る汚水の量を調節し易くなる。従って、曝気槽(1)を適性に管理して曝気能力(活性能力)をより一層高めることができる。
【0015】
【発明の実施の形態】
〔第一実施形態及び第二実施形態〕
まず、本発明の第一実施形態と第二実施形態とを図面を参照して説明する。
【0016】
図1に示す第一実施形態及び図2に示す第二実施形態にかかる最終汚水処理システムSは、いずれも、活性汚泥を利用した曝気槽1と、この曝気槽1に入るまでの汚水を処理する汚水流入設備2と、この曝気槽1から出た混合液が直接的にまたは間接的に入る最終沈澱槽3と、この最終沈澱槽3により処理された活性化沈澱汚泥が入る汚泥処理設備4と、この最終沈澱槽3により処理された浄化処理水が入る処理水流出設備5とを備えている。なお、槽と池とは、設備の大小の相違はあるが、単なる表現上の差異であり、同一概念のものと解釈する。
【0017】
前記曝気槽1は、いずれの実施形態も同様であり、微生物等の作用を利用した活性汚泥法により汚水を処理し、汚水中にある沈澱しにくい汚泥や溶解性物質を沈澱汚泥に変える機能を有する。この曝気槽1は、このような曝気処理前に、汚水から微細な砂等を沈澱除去する初沈処理も含む場合もある。
【0018】
図1に示す第一実施形態の汚水流入設備2では、流入汚水6がマンホール7を通ってポンプ井8に入り、その後、汚水分配槽9で分配されて複数の曝気槽1に供給される。図2に示す第二実施形態の汚水流入設備2では、流入汚水6がポンプ井8に入り、その後、曝気槽1に供給される。
【0019】
前記最終沈澱槽3は、いずれの実施形態も同様である。この最終沈澱槽3には前記曝気槽1から出た混合液が直接的または間接的に入る。この混合液は最終沈澱槽3で沈澱汚泥と処理水とに分離される。
【0020】
図1に示す第一実施形態及び図2に示す第二実施形態の汚泥処理設備4では、前記最終沈澱槽3から出た沈澱汚泥が汚泥分配槽10で分配されて複数の汚泥貯溜槽11に供給され、その後、この各汚泥貯溜槽11から出た貯溜汚泥が汚泥処理12(例えば脱水処理)を経て瀘液13と脱水ケーキ14とに分けられる。この瀘液13は例えば液体肥料に利用され、この脱水ケーキ14は例えば固体肥料に利用される。また、前記最終沈澱槽3から出た沈澱汚泥は、汚泥分配槽10を通さずに直接、各汚泥貯溜槽11に供給されるとともに、前記汚水流入設備2の汚水分配槽9または前記曝気槽1に返送汚泥として戻される。その場合、この返送汚泥の量と、汚泥分配槽10に供給される沈澱汚泥の量と、汚泥貯溜槽11に供給される沈澱汚泥の量とは、適宜調節される。
【0021】
前記処理水流出設備5では、いずれの実施形態でも、前記最終沈澱槽3から出た処理水が、放流水路15で消毒等された後、河川等に放流水16として排出される。
【0022】
前記最終沈澱槽3により処理された処理水が分岐通路17から流入するハーブ水路18を備えている。このハーブ水路18は、ハーブを植生させた流水溝であって、河川に近い構造になっており、汚水処理場で適宜距離だけ延設されている。このハーブとしては、日本ハッカとも言う和種ハッカを植生させ、そのほか洋種ハッカ(ペパーミントやスペアミントやキャットミントなど)を植生させてもよい。また、図示しないが、植生したハーブ以外に、ある程度加工したハーブを網に入れてこれをハーブ水路18に浸してもよい。このハーブ水路18を処理水が緩やかに流れてハーブと接触し、この処理水はハーブの成分を吸収してハーブ含有水に変化する。このハーブ水路18から出たハーブ含有水は、循環通路19により前記最終沈澱槽3に戻されるか、循環通路20により前記放流水路15に戻されるか、または通路21により清掃水等の散水22として利用される。なお、最終沈澱槽3から放流水路15に供給される処理水の量と、最終沈澱槽3からハーブ水路18に供給される処理水の量と、ハーブ水路18から最終沈澱槽3に戻されるハーブ含有水の量と、ハーブ水路18から放流水路15に戻されるハーブ含有水の量とは、適宜調節される。
【0023】
図1では、前記最終沈澱槽3から出た沈澱汚泥が、循環通路23により、前記汚泥処理設備4の汚泥分配槽10から前記汚水流入設備2のマンホール7に抑制汚泥として戻されているとともに、循環通路24により、前記汚泥処理設備4を通らずに前記汚水流入設備2のマンホール7に抑制汚泥として戻されている。図2では、前記最終沈澱槽3から出た沈澱汚泥が、循環通路23により、前記汚泥処理設備4の汚泥分配槽10から濃縮槽25を通って前記汚水流入設備2のポンプ井8に抑制汚泥として戻されているとともに、循環通路24により、前記汚泥処理設備4を通らずに前記汚水流入設備2のポンプ井8に抑制汚泥として戻されている。なお、最終沈澱槽3から循環通路24に供給される沈澱汚泥の量は、汚泥分配槽10及び汚泥貯溜槽11に供給される沈澱汚泥の量や、曝気槽1に戻される返送汚泥の量とともに、適宜調節される。
【0024】
図1では、前記汚泥貯溜槽11内の貯溜汚泥が、循環通路26により、この汚泥貯溜槽11から前記汚水流入設備2のマンホール7に減量汚泥として戻されている。図2では、前記汚泥貯溜槽11内の貯溜汚泥が、循環通路26により、この汚泥貯溜槽11から前記汚水流入設備2のポンプ井8に減量汚泥として戻されている。この汚泥貯溜槽11内には圧縮空気27が強制導入されている。
【0025】
図1に示す汚水流入設備2にあっては、曝気槽1に入る前で、且つ汚水曝気前処理部としてのポンプ井8とこの曝気槽1との間にある汚水分配槽9に、廃棄物投入口28が設けられている。図1及び図2に示す汚泥処理設備4にあっては、最終沈澱槽3から出た沈澱汚泥を貯溜する汚泥貯溜槽11とこの最終沈澱槽3との間で、汚泥分配槽10に廃棄物投入口29が設けられているとともに、汚泥貯溜槽11に廃棄物投入口30が設けられている。前記汚水分配槽9の廃棄物投入口28と、前記汚泥分配槽10の廃棄物投入口29と、前記汚泥貯溜槽11の廃棄物投入口30とには、いずれも、紙類などの廃棄物をある程度細かくして投入する。前記汚泥貯溜槽11の廃棄物投入口30には、乾燥させた生ごみなどの廃棄物をある程度細かくして投入する。
【0026】
前記曝気槽1には一または複数の送風機31が取り付けられ、この曝気槽1の内部に空気を送るようになっている。この曝気槽1内には一または複数のペーハセンサ32が取り付けられ、曝気槽1内のペーハー(pH)を検出するようになっている。前記汚水流入設備2においてポンプ井8内にはポンプ33が取り付けられ、このポンプ井8から汚水を曝気槽1に送るようになっている。このポンプ井8内には、上限水位センサ34が取り付けられてこのポンプ井8内の上限水位を検知するとともに、下限水位センサ35が取り付けられてこのポンプ井8内の下限水位を検知するようになっている。コントローラ36(駆動制御手段)は、前記ペーハセンサ32からの検出信号に基づき、前記送風機31を駆動制御する。なお、複数の送風機31と複数のペーハセンサ32とがある場合、所定ペーハセンサ32と所定送風機31とを互いに対応させて一組とし、それぞれの組で別々に駆動制御して所定ペーハセンサ32の付近に所定送風機31から送風する。また、コントローラ36(駆動制御手段)は、前記上限水位センサ34及び下限水位センサ35からの検知信号、または前記ポンプ33の駆動時間を設定するタイマ37からの指令信号に基づき、前記ポンプ33を駆動制御する。
【0027】
前記コントローラ36は、上限水位センサ34がポンプ井8の上限水位を検知した場合におけるその上限水位検知信号、または作業者が設定したタイマ37からの駆動指令信号に基づき、前記ポンプ33を駆動させる。また、前記コントローラ36は、下限水位センサ35がポンプ井8の下限水位を検知した場合におけるその下限水位検知信号、または作業者が設定したタイマ37からの停止指令信号に基づき、前記ポンプ33を停止させる。
【0028】
前記コントローラ36は、ペーハー(pH)の検出値αがペーハー(pH)の設定値βよりも大きい場合(α>β)、前記送風機31から前記曝気槽1へ空気を送る。また、前記コントローラ36は、ペーハー(pH)の検出値αがペーハー(pH)の設定値βよりも小さい場合(α<β)と、ペーハー(pH)の検出値αがペーハー(pH)の設定値βに達した場合(α=β)とにおいて、前記送風機31から前記曝気槽1への送風を停止する。なお、このような駆動停止制御ばかりでなく、α=βの付近で送風量を小さくするように調節してもよい。前記送風機31から前記曝気槽1への送風量が多くなるとこの曝気槽1内のペーハー(pH)が下がり、この送風量が少なくなるとこのペーハー(pH)が上がる。
【0029】
〔第三実施形態及び第四実施形態〕
次に、本発明の第三実施形態と第四実施形態とを図3を参照して説明する。
図3(a)に示す第三実施形態では、家庭や工場などの汚水発生源から出た汚水が入る汚水ます内に図3(c)に示す簡易汚水処理装置38が設置され、汚水はこの簡易汚水処理装置38を経て最終汚水処理システムSに送られる。図3(b)に示す第四実施形態では、家庭や工場などの汚水発生源から出た汚水が汚水ます39を通りさらに中継マンホール40または中継ポンプ場40を経て最終汚水処理システムSに送られ、図3(c)に示す簡易汚水処理装置がこの中継マンホール40内または中継ポンプ場40内に設置されている。図3(c)に示す簡易汚水処理装置において、1は曝気槽、2は汚水流入設備、3は最終沈澱槽、8はポンプ井、24は循環通路、31は送風機、32はペーハセンサ、33はポンプ、34は上限水位センサ、35は下限水位センサ、36はコントローラ、37はタイマであって、それぞれ前記第一実施形態及び前記第二実施形態の対応番号のものに該当する。この簡易汚水処理装置から出た沈澱汚泥及び処理水は最終汚水処理システムSに送られる。
【図面の簡単な説明】
【図1】 第一実施形態に係る汚水処理システムを示すブロック図である。
【図2】 第二実施形態に係る汚水処理システムを示すブロック図である。
【図3】 (a)は第三実施形態に係る汚水処理システムを示すブロック図であり、(b)は第四実施形態に係る汚水処理システムを示すブロック図であり、(c)は第三実施形態に係る簡易汚水処理装置または第四実施形態に係る中継マンホール若しくは中継ポンプ場を示すブロック図である。
【図4】 従来の汚水処理システムを示すブロック図である。
【符号の説明】
1…曝気槽、2…汚水流入設備、3…最終沈澱槽、8…ポンプ井、23,24…循環通路、31…送風機、32…ペーハセンサ、33…ポンプ、34,35…水位センサ、36…コントローラ(駆動制御手段)、37…タイマ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to wastewater treatment equipment provided with a aeration tank using activated sludge.
[0002]
[Prior art]
The conventional sewage treatment system S shown in FIG. 4 includes an aeration tank 1 that uses activated sludge, a sewage inflow facility 2 that treats sewage until it enters the aeration tank 1, and a mixed liquid that has come out of the aeration tank 1. A final sedimentation tank 3 that enters directly or indirectly, a sludge treatment facility 4 into which the sedimented sludge treated by the final sedimentation tank 3 enters, and a treated water outflow facility into which the treated water treated by the final sedimentation tank 3 enters And 5.
[0003]
[Problems to be solved by the invention]
In the conventional sewage treatment system S, since the inflow sewage 6 from the sewage inflow facility 2 is aerated only in the aeration tank 1, the aeration capacity (activity capacity) per unit time is reduced and the generation of sludge is suppressed. The deodorizing effect is insufficient, and the aeration tank 1, final sedimentation tank 3, and sludge treatment facility 4 must be enlarged.
[0004]
An object of the present invention is to solve the above problems and simplify a sewage treatment apparatus.
[0005]
[Means for Solving the Problems and Effects of the Invention]
The present invention will be described with reference to the reference numerals of the drawings (second embodiment shown in FIG. 2) of the embodiments described later.
The first embodiment shown in FIG. 1, the third embodiment shown in FIGS. 3A and 3C, and the fourth embodiment shown in FIGS. 3B and 3C are directly related to the present invention. do not do.
[0010]
The sewage treatment apparatus according to the invention of claim 1 includes an aeration tank (1) using activated sludge, a sewage inflow facility (2) for treating sewage before entering the aeration tank (1), and the aeration tank ( 1) a sedimentation tank (3) into which the mixed solution discharged from 1) enters directly or indirectly, a sludge treatment facility (4) into which sedimentation sludge treated by this precipitation tank (3) enters, and this sedimentation tank (3 And a treated water outflow facility (5) into which the treated water treated by (1) enters. A blower (31) for sending air to the aeration tank (1) is provided. In the sewage inflow facility (2), the inflow sewage (6) is supplied to the aeration tank (1) after entering the pump well (8). In the sludge treatment facility (4), the precipitated sludge is distributed to the sludge storage tank (11) and the concentration tank (25) by the sludge distribution tank (10). Pump sludge (8) of the sewage inflow facility (2) through the concentration tank (25) from the sludge distribution tank (10) of the sludge treatment facility (4) as the control sludge as the precipitated sludge from the settling tank (3) Is provided with a circulation passage (23).
[0011]
In the invention of claim 1, the pH (for example, pH 7.0 to 6.8) is lowered in the sewage inflow facility (2), compared to the pH of the influent sewage (6) (for example, pH 8.0 to 8.3), and the aeration tank Within (1), the pH (for example, pH 6.2 to 6.3) is further lowered by blowing air to the aeration tank (1). When the pH (pH) gradually decreases from alkaline to neutral through the sewage inflow facility (2) to the aeration tank (1), the aeration ability (activation ability) is increased by denitrification due to oxidation, etc. to generate sludge. It is possible to suppress and enhance the deodorizing effect. Moreover, since the activated sedimentation sludge returns to the sewage inflow facility (2), the activated sedimentation sludge is also used in the sewage inflow facility (2), which is a pretreatment stage where the inflow sewage (6) reaches the aeration tank (1). Causes an aeration action on the inflow sewage (6), and a preliminary aeration process in the sewage inflow facility (2) and an original aeration process in the aeration tank (1) are performed. Therefore, with simple equipment that only circulates activated sedimentation sludge, it is possible to increase the aeration capacity (activation capacity) per unit time and suppress the generation of sludge. Therefore, the sludge treatment burden can be reduced and the sewage treatment apparatus can be simplified.
[0012]
According to a second aspect of the present invention , in the sewage treatment apparatus according to the first aspect of the present invention , a pH sensor (32) for detecting the pH (pH) in the aeration tank (1) is provided, and the pH by the pH sensor (32) is provided. Drive control means (36) for driving and controlling the blower (31) is provided based on the detected value (α) of (pH). In invention of Claim 2 , the pH (pH) in an aeration tank (1) can be managed reliably, and the effect of invention of Claim 1 can be exhibited still more reliably.
[0013]
According to a third aspect of the present invention , in the sewage treatment apparatus according to the first or second aspect of the present invention , sewage is directly fed from the pump well (8) to the aeration tank (1) in the sewage inflow facility (2). And a pump (33) for sending the pump (8) and a water level sensor (34, 35) for detecting the water level of the pump well (8), and a timer (37) for setting the driving time of the pump (8) And a drive control means (36) for driving and controlling the pump (33) based on a detection signal from the water level sensors (34, 35) or a command signal from the timer (37). In the invention of claim 3, the amount of sewage sent from the pump well (8) of the sewage inflow facility (2) to the aeration tank (1) by appropriately using the water level sensors (34, 35) and the timer (37). Easy to adjust. Therefore, the aeration tank (1) can be appropriately managed to further increase the aeration ability (activity ability).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[First embodiment and second embodiment]
First, a first embodiment and a second embodiment of the present invention will be described with reference to the drawings.
[0016]
The first sewage treatment system S according to the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. 2 both treats the aeration tank 1 using activated sludge and the sewage until it enters the aeration tank 1. Sewage inflow facility 2, a final sedimentation tank 3 into which the mixed solution discharged from the aeration tank 1 enters directly or indirectly, and a sludge treatment facility 4 into which activated sedimentation sludge treated by the final sedimentation tank 3 enters. And a treated water outflow facility 5 for receiving purified treated water treated by the final sedimentation tank 3. Although tanks and ponds are different in size, they are merely differences in expression and are interpreted as having the same concept.
[0017]
The aeration tank 1 is the same in all embodiments, and has a function of treating sludge by an activated sludge method utilizing the action of microorganisms and the like, and converting sludge that is difficult to settle and soluble substances in the sludge into precipitated sludge. Have. The aeration tank 1 may include an initial settling process for precipitating and removing fine sand and the like from the sewage before such aeration process.
[0018]
In the sewage inflow facility 2 of the first embodiment shown in FIG. 1, the inflow sewage 6 enters the pump well 8 through the manhole 7 and is then distributed in the sewage distribution tank 9 and supplied to the plurality of aeration tanks 1. In the sewage inflow facility 2 of the second embodiment shown in FIG. 2, the inflow sewage 6 enters the pump well 8 and is then supplied to the aeration tank 1.
[0019]
The final sedimentation tank 3 is the same in all the embodiments. The final settling tank 3 is directly or indirectly supplied with the mixed solution from the aeration tank 1. This mixed solution is separated into precipitated sludge and treated water in the final settling tank 3.
[0020]
In the sludge treatment facility 4 of the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. 2, the precipitated sludge from the final sedimentation tank 3 is distributed in the sludge distribution tank 10 and is divided into a plurality of sludge storage tanks 11. Thereafter, the stored sludge from each of the sludge storage tanks 11 is divided into a sludge solution 13 and a dehydrated cake 14 through a sludge treatment 12 (for example, a dehydration treatment). The liquid smoke 13 is used for liquid fertilizer, for example, and the dehydrated cake 14 is used for solid fertilizer, for example. Further, the precipitated sludge from the final sedimentation tank 3 is supplied directly to each sludge storage tank 11 without passing through the sludge distribution tank 10, and the sewage distribution tank 9 or the aeration tank 1 of the sewage inflow facility 2 is supplied. Returned as sludge. In this case, the amount of the returned sludge, the amount of the precipitated sludge supplied to the sludge distribution tank 10 and the amount of the precipitated sludge supplied to the sludge storage tank 11 are adjusted as appropriate.
[0021]
In any of the embodiments of the treated water outflow facility 5, the treated water discharged from the final sedimentation tank 3 is sterilized in the discharge water channel 15 and then discharged as discharge water 16 into a river or the like.
[0022]
A herb water channel 18 through which the treated water treated by the final sedimentation tank 3 flows from the branch passage 17 is provided. The herb water channel 18 is a water channel in which herbs are vegetated, has a structure close to a river, and is extended at an appropriate distance in a sewage treatment plant. As this herb, Japanese mint, also called Japanese mint, may be vegetated, and Western mint (such as peppermint, spearmint, and catmint) may also be vegetated. Further, although not shown, other than the vegetated herb, a herb that has been processed to some extent may be put in a net and immersed in the herb water channel 18. The treated water gently flows through the herb water channel 18 and comes into contact with the herb, and this treated water absorbs herb components and changes to herb-containing water. The herb-containing water discharged from the herb water channel 18 is returned to the final sedimentation tank 3 by the circulation passage 19, returned to the discharge water channel 15 by the circulation passage 20, or as sprinkling water 22 such as cleaning water by the passage 21. Used. The amount of treated water supplied from the final sedimentation tank 3 to the discharge water channel 15, the amount of treated water supplied from the final sedimentation tank 3 to the herb water channel 18, and the herb returned from the herb water channel 18 to the final sedimentation tank 3. The amount of contained water and the amount of herb-containing water returned from the herb water channel 18 to the discharge water channel 15 are adjusted as appropriate.
[0023]
In FIG. 1, the precipitated sludge that has come out of the final sedimentation tank 3 is returned as a suppressed sludge from the sludge distribution tank 10 of the sludge treatment facility 4 to the manhole 7 of the sewage inflow facility 2 by the circulation passage 23. The circulation passage 24 returns the sludge to the manhole 7 of the sewage inflow facility 2 without passing through the sludge treatment facility 4 as suppressed sludge. In FIG. 2, the precipitated sludge from the final sedimentation tank 3 passes through the sludge distribution tank 10 of the sludge treatment facility 4 from the sludge distribution tank 10 through the concentrating tank 25 to the pump well 8 of the sewage inflow facility 2 by the circulation passage 23. And is returned as a control sludge to the pump well 8 of the sewage inflow facility 2 through the circulation passage 24 without passing through the sludge treatment facility 4. The amount of the precipitated sludge supplied from the final settling tank 3 to the circulation passage 24 is equal to the amount of the precipitated sludge supplied to the sludge distribution tank 10 and the sludge storage tank 11 and the amount of returned sludge returned to the aeration tank 1. , Adjusted as appropriate.
[0024]
In FIG. 1, the stored sludge in the sludge storage tank 11 is returned as reduced weight sludge from the sludge storage tank 11 to the manhole 7 of the sewage inflow facility 2 through the circulation passage 26. In FIG. 2, the stored sludge in the sludge storage tank 11 is returned from the sludge storage tank 11 to the pump well 8 of the sewage inflow facility 2 as a reduced sludge by the circulation passage 26. Compressed air 27 is forcibly introduced into the sludge storage tank 11.
[0025]
In the sewage inflow facility 2 shown in FIG. 1, before entering the aeration tank 1, the waste water is disposed in the sewage distribution tank 9 between the pump well 8 as the sewage aeration pretreatment section and the aeration tank 1. An input port 28 is provided. In the sludge treatment facility 4 shown in FIG. 1 and FIG. 2, waste is disposed in the sludge distribution tank 10 between the sludge storage tank 11 for storing the precipitated sludge from the final sedimentation tank 3 and the final sedimentation tank 3. An input port 29 is provided, and a waste input port 30 is provided in the sludge storage tank 11. The waste input port 28 of the sludge distribution tank 9, the waste input port 29 of the sludge distribution tank 10, and the waste input port 30 of the sludge storage tank 11 are all wastes such as paper. To a certain degree of detail. The waste inlet 30 of the sludge storage tank 11 is charged with a certain amount of waste such as dried garbage.
[0026]
One or a plurality of blowers 31 are attached to the aeration tank 1, and air is sent into the aeration tank 1. In the aeration tank 1, one or a plurality of pH sensors 32 are attached to detect the pH (pH) in the aeration tank 1. In the sewage inflow facility 2, a pump 33 is installed in the pump well 8, and sewage is sent from the pump well 8 to the aeration tank 1. An upper limit water level sensor 34 is attached in the pump well 8 to detect the upper limit water level in the pump well 8, and a lower limit water level sensor 35 is attached to detect the lower limit water level in the pump well 8. It has become. The controller 36 (drive control means) drives and controls the blower 31 based on the detection signal from the pH sensor 32. In addition, when there are a plurality of blowers 31 and a plurality of pH sensors 32, the predetermined pH sensors 32 and the predetermined blowers 31 are made to correspond to each other, and each group is separately driven and controlled, and a predetermined value is set near the predetermined pH sensor 32. Air is blown from the blower 31. The controller 36 (drive control means) drives the pump 33 based on detection signals from the upper limit water level sensor 34 and lower limit water level sensor 35 or a command signal from a timer 37 for setting the drive time of the pump 33. Control.
[0027]
The controller 36 drives the pump 33 based on the upper limit water level detection signal when the upper limit water level sensor 34 detects the upper limit water level of the pump well 8 or a drive command signal from the timer 37 set by the operator. The controller 36 stops the pump 33 based on the lower limit water level detection signal when the lower limit water level sensor 35 detects the lower limit water level of the pump well 8 or a stop command signal from the timer 37 set by the operator. Let
[0028]
When the detected value α of the pH (pH) is larger than the set value β of the pH (pH) (α> β), the controller 36 sends air from the blower 31 to the aeration tank 1. Further, the controller 36 sets the pH (pH) when the detected value α of the pH is smaller than the set value β of the pH (pH) (α <β). When the value β is reached (α = β), the air blowing from the blower 31 to the aeration tank 1 is stopped. In addition to such drive stop control, adjustment may be made to reduce the air flow rate in the vicinity of α = β. When the amount of air blown from the blower 31 to the aeration tank 1 increases, the pH (pH) in the aeration tank 1 decreases, and when the amount of air flow decreases, the pH (pH) increases.
[0029]
[Third embodiment and fourth embodiment]
Next, a third embodiment and a fourth embodiment of the present invention will be described with reference to FIG.
In the third embodiment shown in FIG. 3 (a), a simple sewage treatment device 38 shown in FIG. 3 (c) is installed in a sewage basin where sewage from a sewage generation source such as a home or a factory enters. It is sent to the final sewage treatment system S through the simple sewage treatment device 38. In the fourth embodiment shown in FIG. 3B, sewage from a sewage generation source such as a home or a factory passes through the sewage 39 and is further sent to the final sewage treatment system S via the relay manhole 40 or the relay pump station 40. A simple sewage treatment apparatus shown in FIG. 3C is installed in the relay manhole 40 or in the relay pump station 40. In the simplified sewage treatment apparatus shown in FIG. 3C, 1 is an aeration tank, 2 is a sewage inflow facility, 3 is a final sedimentation tank, 8 is a pump well, 24 is a circulation passage, 31 is a blower, 32 is a pH sensor, and 33 is A pump, 34 is an upper limit water level sensor, 35 is a lower limit water level sensor, 36 is a controller, and 37 is a timer, which correspond to the corresponding numbers in the first embodiment and the second embodiment, respectively. Precipitated sludge and treated water discharged from the simple sewage treatment apparatus are sent to the final sewage treatment system S.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a sewage treatment system according to a first embodiment.
FIG. 2 is a block diagram showing a sewage treatment system according to a second embodiment.
3A is a block diagram showing a sewage treatment system according to a third embodiment, FIG. 3B is a block diagram showing a sewage treatment system according to a fourth embodiment, and FIG. It is a block diagram which shows the simple sewage treatment apparatus which concerns on embodiment, the relay manhole which concerns on 4th embodiment, or a relay pump station.
FIG. 4 is a block diagram showing a conventional sewage treatment system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Aeration tank, 2 ... Sewage inflow equipment, 3 ... Final sedimentation tank, 8 ... Pump well, 23, 24 ... Circulation path, 31 ... Blower, 32 ... pH sensor, 33 ... Pump, 34, 35 ... Water level sensor, 36 ... Controller (drive control means), 37... Timer.

Claims (3)

活性汚泥を利用した曝気槽と、この曝気槽に入るまでの汚水を処理する汚水流入設備と、この曝気槽から出た混合液が直接的にまたは間接的に入る沈澱槽と、この沈澱槽により処理された沈澱汚泥が入る汚泥処理設備と、この沈澱槽により処理された処理水が入る処理水流出設備とを備えた汚水処理装置おいて、前記曝気槽に空気を送る送風機を設け、前記汚水流入設備では流入汚水がポンプ井に入った後に曝気槽に供給され、前記汚泥処理設備では沈澱汚泥が汚泥分配槽により汚泥貯溜槽と濃縮槽とに分配され、前記沈澱槽から出た沈澱汚泥を抑制汚泥として前記汚泥処理設備の汚泥分配槽から濃縮槽を通って前記汚水流入設備のポンプ井に戻す循環通路を設けたことを特徴とする汚水処理装置。An aeration tank using activated sludge, a sewage inflow facility for treating the sewage before entering the aeration tank, a precipitation tank into which the mixed liquid discharged from the aeration tank directly or indirectly enters , and this precipitation tank In a sewage treatment apparatus comprising a sludge treatment facility containing treated sediment sludge and a treated water outflow facility containing treated water treated by the settling tank , a blower for sending air to the aeration tank is provided, and the sewage in the inflow facility is supplied to the aeration tank after entering the inflow wastewater Gapo pump wells, wherein a sludge treatment facility precipitation sludge is distributed to the concentration tank and sludge reservoir by the sludge distributing tank, sedimentation sludge exiting from the settling tank A sewage treatment apparatus, comprising a circulation passage as a control sludge that returns from a sludge distribution tank of the sludge treatment facility to a pump well of the sewage inflow facility through a concentration tank . 前記曝気槽内のペーハーを検出するペーハセンサを設け、このペーハセンサによるペーハーの検出値に基づき、前記送風機を駆動制御する駆動制御手段を設けたことを特徴とする請求項1に記載の汚水処理装置。2. The sewage treatment apparatus according to claim 1, further comprising a pH sensor for detecting pH in the aeration tank, and driving control means for driving and controlling the blower based on a detected value of the pH by the pH sensor. 前記汚水流入設備にはポンプ井から汚水を曝気槽へ直接的にまたは間接的に送るポンプと、このポンプ井の水位を検知する水位センサとを設けるとともに、このポンプの駆動時間を設定するタイマを設け、この水位センサからの検知信号、またはこのタイマからの指令信号に基づき、前記ポンプを駆動制御する駆動制御手段を設けたことを特徴とする請求項1または請求項2に記載の汚水処理装置。The sewage inflow facility is provided with a pump for sending sewage directly or indirectly from the pump well to the aeration tank, a water level sensor for detecting the water level of the pump well, and a timer for setting the driving time of the pump. 3. A sewage treatment apparatus according to claim 1, further comprising drive control means for drivingly controlling the pump based on a detection signal from the water level sensor or a command signal from the timer. .
JP2001093022A 2001-03-28 2001-03-28 Sewage treatment equipment Expired - Fee Related JP3801457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001093022A JP3801457B2 (en) 2001-03-28 2001-03-28 Sewage treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001093022A JP3801457B2 (en) 2001-03-28 2001-03-28 Sewage treatment equipment

Publications (2)

Publication Number Publication Date
JP2002282884A JP2002282884A (en) 2002-10-02
JP3801457B2 true JP3801457B2 (en) 2006-07-26

Family

ID=18947405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001093022A Expired - Fee Related JP3801457B2 (en) 2001-03-28 2001-03-28 Sewage treatment equipment

Country Status (1)

Country Link
JP (1) JP3801457B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875159B (en) * 2020-07-20 2022-06-21 蜡笔小新(福建)食品工业有限公司 Sewage treatment system and treatment process thereof

Also Published As

Publication number Publication date
JP2002282884A (en) 2002-10-02

Similar Documents

Publication Publication Date Title
US4036754A (en) Sewage treatment apparatus
JP3491122B2 (en) Water treatment equipment
JP3801457B2 (en) Sewage treatment equipment
KR101646590B1 (en) Method for treating recycle water of wastewater treatment
JP3491125B2 (en) Water treatment equipment
CN1896017A (en) Efficient integrated treater for living sewage
JP2000084578A (en) Contact aeration tank
JP3972406B2 (en) 厨 芥 Processing device
JPH06237B2 (en) Wastewater treatment method and apparatus
JP3066738B2 (en) Water treatment method and apparatus
JPH1157708A (en) Treatment of soil and organic matter-containing water
JP2003010897A (en) Excretion treatment apparatus and method
JPH05277475A (en) Treatment method for water containing organic substance
JPH11207393A (en) Treatment of organic sewage
JP2912960B2 (en) Pretreatment of sewage
JPH091157A (en) Method for oxidation ferrous ion contained in underground water
JP2755507B2 (en) Sewage treatment equipment
JP3257946B2 (en) Sewage treatment method and sewage treatment apparatus
JPH105762A (en) Activated sludge process and device therefor
KR20050030084A (en) Small sewage terminal treatment device and method
JPH06304554A (en) Scum removing device for oxidation ditch
JP2525124Y2 (en) Sewage septic tank
JPH04244294A (en) Sewage treatment apparatus
JP3587685B2 (en) Advanced sewage treatment method
JP2663809B2 (en) Wastewater treatment equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees