JP3587685B2 - Advanced sewage treatment method - Google Patents
Advanced sewage treatment method Download PDFInfo
- Publication number
- JP3587685B2 JP3587685B2 JP15046798A JP15046798A JP3587685B2 JP 3587685 B2 JP3587685 B2 JP 3587685B2 JP 15046798 A JP15046798 A JP 15046798A JP 15046798 A JP15046798 A JP 15046798A JP 3587685 B2 JP3587685 B2 JP 3587685B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- treated water
- ozone
- water
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Biological Treatment Of Waste Water (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は下水の高度処理方法に関する。
【0002】
【従来の技術】
通常の下水処理工程では、下水は、沈砂池等で粗い固形物を取り除かれた後、一次処理(微細な浮遊物の除去)、二次処理(微生物によるコロイド状の固形物や有機物の除去)を経て、滅菌・放流される。
【0003】
したがって、適切な処理が行われた二次処理水中に残留する有機物は、そのほとんどが生物では分解されにくい難分解性有機物であり、このような有機物等をさらに除去するための技術として高度処理がある。
【0004】
高度処理水は、工業用水、親水用水、修景用水、渇水期における河川水など、様々な用途に用いられており、要求される水質は利用目的によって様々であるが、より高品位な処理水質が要求される場合等はオゾン処理+活性炭処理が行われている。
【0005】
オゾン処理は、オゾンの強力な酸化力を利用して水中の難分解性有機物や色度、臭気等を除去する技術であり、浄水分野では、オゾン処理後に活性炭処理を行うことになっている。
【0006】
活性炭処理では、自然発生的に生物が付着した生物活性炭と呼ばれる活性炭によって処理しており、オゾン処理水中に残存する易分解性有機物を付着生物によって生物分解し、難分解性有機物を表面に吸着させるようにしている。
【0007】
したがって、下水の二次処理水をオゾン+生物活性炭処理した場合には、処理水質は非常に良好なものとなる。
【0008】
【発明が解決しようとする課題】
しかしながら、オゾン+生物活性炭処理水の水質は二次処理水の水質の影響を強く受ける。処理水質を表す指標としてCODMnを用いて説明すると、二次処理水のCODMnが上昇すれば、一定条件ではオゾン+生物活性炭処理水のCODMnも上昇してしまい、安定した処理水質の確保が困難である。
【0009】
このため、オゾン注入率を上げることで安定した処理水質の確保を図っているのが現状であるが、それによる効果にも限界があり、単純にオゾン注入率を上げるにはより大きなオゾン発生器が必要である。
【0010】
また、オゾン、活性炭とも非常にコストが高いものであるため、イニシャルコストおよびランニングコストの低減が課題となっている。二次処理水中に含まれているSS(浮遊物質)はオゾンを浪費するので、コストの低減の観点からも、オゾン処理の前段に何らかのろ過工程を設けてSSを除去することが必要である。活性炭については、吸着した有機物の一部を付着生物が分解除去し、結果的に活性炭の寿命が長くなることが知られており、寿命が長いほどコストが低廉になるため、活性炭上での生物増殖が不可欠であるが、一方で、生物活性炭上で発生した生物が漏出する恐れがあるため、生物活性炭処理の後段に消毒設備の設置が必要である。
【0011】
つまり、オゾン+生物活性炭処理には、ろ過+オゾン+活性炭+消毒の4プロセスが必要であり、それぞれのプロセスについて設備が必要であるため、十分な敷地面積が確保できない処理場等では、よりコンパクトな設備構成が求められている。
【0012】
本発明は上記問題を解決するもので、コンパクトな設備構成でありながら、安定した処理水質を確保できる下水の高度処理方法を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
上記問題を解決するために、本発明の下水の高度処理方法は、下水の二次処理水を生物活性炭層を有する活性炭槽へ導き、その後にオゾン反応槽へ導入するとともに、オゾン反応槽から流出するオゾン処理水の一部を活性炭槽の流入部へ循環することにより、活性炭槽で生物活性炭層によりSS分の除去と有機物の吸着および生物分解を行い、オゾン反応槽へSS成分を除去した生物活性炭処理水を導入し、オゾン反応槽でオゾンにより有機物の酸化・分解を行い、かつ生物活性炭処理水を滅菌し、オゾン反応槽から流出する残りのオゾン処理水を高度処理水として導出することを特徴とする。
【0014】
オゾン反応槽から活性炭槽へ循環する水量の制御は、活性炭槽から流出する生物活性炭処理水、またはオゾン反応槽から流出するオゾン処理水の紫外線260nmの吸光度に基いて行うことを特徴とする。
【0015】
一般に、二次処理水中に含まれる溶解性有機物の多くは難分解性有機物であり、またSS成分も比較的多く含まれている。
上記した構成によれば、二次処理水を活性炭槽→オゾン反応槽の順序で循環させることにより、生物活性炭層において、SS成分を除去するとともに易分解性有機物を生物分解し、またオゾンの強力な酸化力によって、難分解性有機物を分解除去あるいは易分解性有機物へと変換する、という処理を繰り返し行なうことになり、オゾン処理水は高度処理水に価する非常に高い処理水質を有するようになる。
【0016】
このとき、オゾン反応槽には、SS成分を除去した生物活性炭処理水を導入するので、オゾンの浪費を抑制することができ、オゾン注入率を低減しても効果的にオゾン処理できる。
【0017】
また、生物活性炭処理水中に漏出した微生物や細菌類はオゾン処理で滅菌できるので、別途の消毒工程は不要となる。
ただし、活性炭槽では、二次処理水が直接導入されるため、活性炭が吸着飽和に達するまでの時間は短く、したがって、吸着による有機物除去よりも、生物分解による有機物除去が主体となる。
【0018】
一方、日間および年間を通じての二次処理水の水質変動に対しては、オゾン注入率は一定のまま、循環水量を変化させることで対応できる。処理水質を表わす指標として化学的酸素要求量(CODMn)が用いられることが多いが、図4に示したように、二次処理水の紫外線260nmの吸光度(E260)は、化学的酸素要求量(CODMn)に比例している。したがって、E260をモニターすることによって、二次処理水中のおおよその有機物濃度を推測することができ、目標処理水質に対応した循環水量を設定することができる。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照しながら説明する。
図1は、下水の高度処理を行う高度処理設備を示し、この高度処理設備は活性炭槽1とオゾン反応槽2と貯水槽3とを有している。
【0020】
活性炭槽1には、生物が自然発生的に付着した活性炭からなる生物活性炭層4が槽内の下部に形成されており、前工程からの二次処理水を導く二次処理水供給管5が槽上部に開口し、生物活性炭層4の下方に連通して、生物活性炭層4を通過した生物活性炭処理水を導出する生物活性炭処理水導出管6が設けられている。
【0021】
オゾン反応槽2には、槽外のオゾン発生器7より供給されるオゾンを噴出するオゾン散気装置8が槽内の下部に設置されており、上記した生物活性炭処理水導出管6が槽上部に開口し、槽下部に連通して、槽内でオゾン処理されたオゾン処理水を貯水槽3へ導出するオゾン処理水導出管9が設けられている。
【0022】
貯水槽3には、循環ポンプ10を介装して、槽内に貯留されたオゾン処理水の一部を二次処理水供給管5の管路途中に循環返送する循環管11の基端部が開口するとともに、残りのオゾン処理水を系外へ排出する排出路12が設けられている。
【0023】
生物活性炭処理水導出管9の管路途中には、紫外線吸光度計13が設けられており、この紫外線吸光度計13と循環ポンプ10とに電気的に接続して、紫外線吸光度計13から送信される電気信号に基いて循環ポンプ10をインバータ制御する制御装置14が設置されている。15は定流量弁である。
【0024】
上記した構成における作用を説明する。
通常の処理時には、二次処理水供給管5を通じて二次処理水が供給されるとともに、循環管11を通じてオゾン処理水の一部が循環返送され、これらが混合した被処理水W0が活性炭槽1の内部に流入して生物活性炭層4を下向きに通過する。これにより、被処理水W0中に含まれるSS分は生物活性炭層4において捕捉され、生物易分解性有機物は活性炭粒子に付着した微生物によって生物分解され、一部の生物難分解性有機物およびその他の汚濁物質は活性炭粒子に吸着し、これらが除去された生物活性炭処理水W1が生物活性炭処理水導出管6を通じてオゾン反応槽2に送られる。
【0025】
活性炭槽1から送られた生物活性炭処理水W1は、オゾン反応槽2内の上部に流入して下降し、SS分が除去されていることもあって、オゾン散気装置8より噴出するオゾンOと効率よく接触し、オゾンOの強力な酸化力によって、難分解性有機物の一部が分解除去されるとともに、残りの難分解性有機物が易分解性有機物に変換され、易分解性有機物を含んだオゾン処理水W2がオゾン処理水導出管9を通じて貯水槽3に送られる。
【0026】
オゾン反応槽2から送られたオゾン処理水W2は貯水槽3の内部に流入し、その一部は上記したように循環管11を通じて二次処理水供給管5の管路途中に循環返送され、残りは高度処理水として排出路12を通じて系外へ排出される。
【0027】
このとき、紫外線吸光度計13によって、活性炭槽1からオゾン反応槽2へ送られる生物活性炭処理水W1の紫外線260nmの吸光度(E260)がモニターされ、その吸光度データが電気信号として制御装置14へ送信される。そして、制御装置14において、送信された吸光度データに基いて、予め記憶された吸光度と有機物濃度との関係より、生物活性炭処理水W1中の有機物濃度が推測され、推測された有機物濃度に基いて、生物活性炭処理水W1を目標有機物濃度に近づけ得る予め設定された循環水量が選択され、選択された循環水量に対応する回転数に循環ポンプ10がインバータ制御され、選択された循環水量のオゾン処理水W2が二次処理水供給管5の管路途中に循環返送される。
【0028】
上記した高度処理方法における循環の効果を評価するために、二次処理水、流入水(二次処理水+循環されたオゾン処理水)、生物活性炭処理水、オゾン処理水のぞれぞれについて、オゾン注入量を一定にし、循環水量を変化させた時のCODMn濃度の変化を調べた。結果は図2に示した通りである。図中、循環なしは循環を行わない一過式、0.5Q循環は流入水量の0.5倍、1Q循環は1倍、2Q循環は2倍量循環したことを意味し、この図2より、循環水量を上げるに伴って処理水質がよくなることがわかる。
【0029】
また、従来のように二次処理水を砂ろ過+オゾン+生物活性炭処理した時のCODMn濃度の経日変化と、上記したようにして二次処理水を生物活性炭+オゾン循環処理した時のCODMn濃度の経日変化とを調べた。結果はそれぞれ図3(a),図3(b)に示した通りである。各図において、黒丸は二次処理水のCODMn濃度、黒四角は系外へ導出される処理水のCODMn濃度を示す。図3(a),(b)からわかるように、従来の方法では、処理水水質は原水たる二次処理水水質の影響を強く受け、二次処理水水質に追随する傾向があるが、上記した方法では、処理水水質は二次処理水水質の影響をほとんど受けず、ほぼ一定であり、安定した処理水質を確保できた。
【0030】
これらの結果から、生物活性炭+オゾン循環によって、低CODMnの良好な処理水が得られるだけでなく、生物活性炭処理水の水質(E260)に基いて循環水量を制御することによって、安定した処理水質を維持できることがわかる。
【0031】
オゾン処理水のE260に基いて循環水量を制御しても、同様に安定した処理水質を維持できる。ただし、オゾン処理水のE260は非常に小さいので、生物活性炭処理水のE260に基いた循環水量制御の方が容易である。
【0032】
なお、貯水槽3より高度処理水として排出路12を通じて排出されるオゾン処理水W2中に、微量の生物が含まれていることがあるが、オゾン処理で殺菌されているので、別途の消毒工程は不要である。
【0033】
【発明の効果】
以上のように、本発明によれば、下水の二次処理水を生物活性炭層+オゾン循環処理するようにしたことにより、従来のろ過+オゾン+生物活性炭一過式の処理水質と同等かそれ以上の処理水質を確保できるとともに、生物活性炭より漏出した生物はオゾンで殺滅することができ、従来必要とされたろ過工程および殺菌工程が不要な分、コンパクトな装置構成を実現できる。
【0034】
また、生物活性炭処理水の吸光度E260に基いて循環水量を制御するようにしたことにより、原水たる二次処理水水質が変動しても、安定した処理水質を確保できる。
【図面の簡単な説明】
【図1】本発明の一実施形態における下水の高度処理方法が行われる高度処理設備の概略全体構成を示した説明図である。
【図2】本発明の下水の高度処理方法における循環の効果を循環水量とCODMn濃度との関係で示したグラフである。
【図3】本発明の下水の高度処理方法における原水たる二次処理水と高度処理された処理水とのCODMn濃度の経日変化を、従来の下水の高度処理方法における経日変化と対比して示したグラフである。
【図4】従来より知られているCODMn濃度と紫外線260nmの吸光度(E260)との関係を示したグラフである。
【符号の説明】
1 活性炭槽
2 オゾン反応槽
4 生物活性炭層
5 二次処理水供給管
6 生物活性炭処理水導出管
9 オゾン処理水導出管
11 循環管
13 紫外線吸光度計
14 制御装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an advanced sewage treatment method.
[0002]
[Prior art]
In the usual sewage treatment process, sewage is subjected to primary treatment (removal of fine suspended matter) and secondary treatment (removal of colloidal solid matter and organic matter by microorganisms) after removing coarse solid matter in a sand basin or the like. After that, it is sterilized and released.
[0003]
Therefore, most of the organic matter remaining in the secondary treated water that has undergone appropriate treatment is hardly decomposable organic matter that is hardly decomposed by living organisms, and advanced treatment is required as a technique for further removing such organic matter. is there.
[0004]
Highly treated water is used for various purposes, such as industrial water, hydrophilic water, landscape water, and river water during the drought period.The required water quality varies depending on the purpose of use, but higher quality treated water quality is required. Is required, ozone treatment and activated carbon treatment are performed.
[0005]
Ozone treatment is a technique for removing hard-to-decompose organic substances, chromaticity, odor, and the like in water using the strong oxidizing power of ozone. In the water purification field, activated carbon treatment is performed after ozone treatment.
[0006]
In the activated carbon treatment, treatment is carried out with activated carbon called biological activated carbon to which organisms have spontaneously attached, and easily decomposable organic substances remaining in the ozonized water are biodegraded by the attached organisms, and the hardly decomposable organic substances are adsorbed on the surface. Like that.
[0007]
Therefore, when the sewage secondary treatment water is treated with ozone and biological activated carbon, the quality of the treated water is very good.
[0008]
[Problems to be solved by the invention]
However, the quality of the ozone + biological activated carbon treated water is strongly affected by the quality of the secondary treated water. To explain using CODMn as an index indicating the quality of treated water, if CODMn of secondary treated water rises, CODMn of ozone + biological activated carbon treated water also rises under certain conditions, making it difficult to secure stable treated water quality. is there.
[0009]
For this reason, the current situation is to ensure stable treated water quality by increasing the ozone injection rate, but the effect of this is also limited, and simply increasing the ozone injection rate requires a larger ozone generator. is necessary.
[0010]
In addition, since both ozone and activated carbon are very expensive, reduction of initial cost and running cost has been an issue. Since SS (suspended matter) contained in the secondary treatment water wastes ozone, it is necessary to provide some sort of filtration step before ozone treatment to remove SS from the viewpoint of cost reduction. As for activated carbon, it is known that attached organisms decompose and remove some of the adsorbed organic matter, resulting in a longer life of the activated carbon.The longer the life, the lower the cost and the lower the cost of the activated carbon. Proliferation is indispensable, but on the other hand, organisms generated on the biological activated carbon may leak, so it is necessary to install a disinfection facility after the biological activated carbon treatment.
[0011]
In other words, ozone + biological activated carbon treatment requires four processes of filtration + ozone + activated carbon + disinfection, and equipment is required for each process. There is a demand for a simple equipment configuration.
[0012]
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide an advanced sewage treatment method capable of securing stable treated water quality with a compact facility configuration.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the advanced sewage treatment method of the present invention introduces secondary treatment water of sewage into an activated carbon tank having a biological activated carbon layer, and thereafter introduces the treated water into an ozone reaction tank and flows out of the ozone reaction tank. A part of the ozone-treated water is circulated to the inflow section of the activated carbon tank to remove the SS component , adsorb organic matter and biodegrade with the biological activated carbon layer in the activated carbon tank, and remove the SS component to the ozone reaction tank. Introduce activated carbon treated water, oxidize and decompose organic matter with ozone in an ozone reaction tank, sterilize biological activated carbon treated water , and derive the remaining ozonated water flowing out of the ozone reaction tank as highly treated water. Features.
[0014]
The control of the amount of water circulating from the ozone reaction tank to the activated carbon tank is performed based on the absorbance at 260 nm of ultraviolet light of the biological activated carbon treated water flowing out of the activated carbon tank or the ozone treated water flowing out of the ozone reaction tank.
[0015]
In general, most of the soluble organic substances contained in the secondary treatment water are hardly decomposable organic substances, and also contain a relatively large amount of SS components.
According to the above-described configuration, the secondary treatment water is circulated in the order of the activated carbon tank and the ozone reaction tank, thereby removing the SS component and biodegrading the easily decomposable organic matter in the biological activated carbon layer, and further increasing the strength of ozone. By the oxidizing power, the process of decomposing and removing hardly decomposable organic matter or converting it to easily decomposable organic matter will be repeatedly performed, so that the ozonized water has a very high treated water quality equivalent to highly treated water. Become.
[0016]
At this time, since the biologically activated carbon-treated water from which the SS component has been removed is introduced into the ozone reaction tank, waste of ozone can be suppressed, and ozone treatment can be performed effectively even if the ozone injection rate is reduced.
[0017]
In addition, since microorganisms and bacteria leaked into the biological activated carbon treated water can be sterilized by ozone treatment, a separate disinfection step is not required.
However, in the activated carbon tank, since the secondary treatment water is directly introduced, the time required for the activated carbon to reach the adsorption saturation is short. Therefore, the removal of organic substances by biodegradation is mainly performed rather than the removal of organic substances by adsorption.
[0018]
On the other hand, fluctuations in the quality of the secondary treated water throughout the day and throughout the year can be dealt with by changing the circulating water amount while keeping the ozone injection rate constant. Although the chemical oxygen demand (CODMn) is often used as an index indicating the quality of the treated water, as shown in FIG. 4, the absorbance (E260) of the secondary treated water at an ultraviolet ray of 260 nm is equal to the chemical oxygen demand (CO260). CODMn). Therefore, by monitoring E260, it is possible to estimate an approximate organic matter concentration in the secondary treated water, and to set a circulating water amount corresponding to the target treated water quality.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an advanced treatment facility for performing advanced treatment of sewage. The advanced treatment facility has an activated carbon tank 1, an
[0020]
In the activated carbon tank 1, a biological activated
[0021]
The
[0022]
In the
[0023]
An
[0024]
The operation of the above configuration will be described.
During normal treatment, the secondary treatment water is supplied through the secondary treatment
[0025]
The biologically activated carbon treated water W1 sent from the activated carbon tank 1 flows into the upper part of the
[0026]
The ozonized water W2 sent from the
[0027]
At this time, the ultraviolet absorbance (E260) of the ultraviolet ray 260 nm of the biological activated carbon treated water W1 sent from the activated carbon tank 1 to the
[0028]
In order to evaluate the effect of circulation in the advanced treatment method described above, each of secondary treatment water, influent water (secondary treatment water + circulated ozonated water), biological activated carbon treated water, and ozone treated water The change in CODMn concentration when the amount of circulating water was changed while the amount of injected ozone was kept constant was examined. The results are as shown in FIG. In the figure, no circulation means a one-pass type in which no circulation is performed, 0.5Q circulation means 0.5 times the amount of inflow water, 1Q circulation means 1 time, and 2Q circulation means 2 times the amount of inflow water. It can be seen that the quality of the treated water improves as the amount of circulating water increases.
[0029]
In addition, the daily change of the CODMn concentration when the secondary treatment water is subjected to sand filtration + ozone + biological activated carbon treatment as in the past, and the CODMn when the secondary treatment water is subjected to biological activation carbon + ozone circulation treatment as described above. The change over time in the concentration was examined. The results are as shown in FIGS. 3A and 3B, respectively. In each figure, a black circle indicates the CODMn concentration of the secondary treatment water, and a black square indicates the CODMn concentration of the treatment water led out of the system. As can be seen from FIGS. 3A and 3B, in the conventional method, the quality of the treated water is strongly influenced by the quality of the secondary treated water, which is the raw water, and tends to follow the quality of the secondary treated water. In this method, the quality of the treated water was hardly affected by the quality of the secondary treated water, was almost constant, and a stable treated water quality could be secured.
[0030]
From these results, not only good treated water with low CODMn can be obtained by the biological activated carbon + ozone circulation, but also stable treated water quality by controlling the amount of circulating water based on the quality of the biologically activated carbon treated water (E260). It can be seen that can be maintained.
[0031]
Even if the amount of circulating water is controlled on the basis of the ozone-treated water E260, a similarly stable treated water quality can be maintained. However, since the E260 of the ozonized water is very small, it is easier to control the amount of circulating water based on the E260 of the biologically activated carbon treated water.
[0032]
A small amount of living organisms may be contained in the ozone-treated water W2 discharged from the
[0033]
【The invention's effect】
As described above, according to the present invention, the secondary treatment water of sewage is subjected to the biological activated carbon layer + ozone circulation treatment, so that the quality of the treated water is equal to or higher than that of the conventional filtration + ozone + biological activated carbon one-time treatment water. While the above treated water quality can be ensured, organisms leaked from the biological activated carbon can be killed by ozone, and a compact apparatus configuration can be realized because the conventionally required filtration step and sterilization step are unnecessary.
[0034]
In addition, by controlling the amount of circulating water based on the absorbance E260 of the biological activated carbon treated water, a stable treated water quality can be secured even if the quality of the secondary treated water as raw water fluctuates.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic entire configuration of an advanced treatment facility in which an advanced sewage treatment method according to an embodiment of the present invention is performed.
FIG. 2 is a graph showing the effect of circulation in the advanced sewage treatment method of the present invention in relation to the amount of circulating water and the CODMn concentration.
FIG. 3 compares the daily change of the CODMn concentration of the secondary treated water as the raw water and the highly treated treated water in the advanced sewage treatment method of the present invention with the daily change in the conventional advanced sewage treatment method. FIG.
FIG. 4 is a graph showing a relationship between a conventionally known CODMn concentration and an absorbance (E260) at an ultraviolet ray of 260 nm.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15046798A JP3587685B2 (en) | 1998-06-01 | 1998-06-01 | Advanced sewage treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15046798A JP3587685B2 (en) | 1998-06-01 | 1998-06-01 | Advanced sewage treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11342398A JPH11342398A (en) | 1999-12-14 |
JP3587685B2 true JP3587685B2 (en) | 2004-11-10 |
Family
ID=15497563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15046798A Expired - Fee Related JP3587685B2 (en) | 1998-06-01 | 1998-06-01 | Advanced sewage treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3587685B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108017181A (en) * | 2016-11-02 | 2018-05-11 | 天津天控科技有限公司 | A kind of environmental protection equipment of sewage disposal |
-
1998
- 1998-06-01 JP JP15046798A patent/JP3587685B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11342398A (en) | 1999-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20140047334A (en) | Device for treating sewage and waste water or source water | |
KR20090131516A (en) | Purifying apparatus for removing fe and mn in water and purifying method thereof | |
KR101890361B1 (en) | An off ozone gas recirculation type UV disinfection system | |
KR100278516B1 (en) | Water Purifier | |
JPH09314156A (en) | Ozone treatment apparatus in which biological filter device is incorporated | |
JP3587685B2 (en) | Advanced sewage treatment method | |
JPH11226587A (en) | Water treatment apparatus | |
JP4129631B2 (en) | Membrane treatment system for virus isolation | |
JPH10305287A (en) | Ozone catalytic reactor | |
KR100619094B1 (en) | A waste water disposal plant | |
JP4834366B2 (en) | Water treatment method | |
KR102589312B1 (en) | Recirulating aquaculture system and method thereof treating raw water | |
JP3771684B2 (en) | Ultrapure water production method | |
JPH11221584A (en) | Pressurized ozone treating system and device | |
JP2000202481A (en) | Toc component removing device at ultrapure water production device | |
JP2874126B2 (en) | How to remove dioxins from sewage | |
JP2000350997A (en) | Method and apparatus for treating sewage | |
JP4144394B2 (en) | Membrane cleaning device for membrane filter | |
KR100830216B1 (en) | Purification device for lake | |
JP2004181409A (en) | Method and apparatus for water sterilization and cleaning | |
JPH11207393A (en) | Treatment of organic sewage | |
KR20220040570A (en) | Water circulation purification facility for lake purification | |
JPH0645030B2 (en) | Ozone water treatment equipment | |
JP3565083B2 (en) | Method and apparatus for treating human wastewater | |
CN214829563U (en) | Vehicle-mounted movable integrated sewage treatment equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040810 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |