JP3801229B2 - Underground bending member and its construction method - Google Patents

Underground bending member and its construction method Download PDF

Info

Publication number
JP3801229B2
JP3801229B2 JP5050395A JP5050395A JP3801229B2 JP 3801229 B2 JP3801229 B2 JP 3801229B2 JP 5050395 A JP5050395 A JP 5050395A JP 5050395 A JP5050395 A JP 5050395A JP 3801229 B2 JP3801229 B2 JP 3801229B2
Authority
JP
Japan
Prior art keywords
curved
pipe
filling
underground
bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5050395A
Other languages
Japanese (ja)
Other versions
JPH08218770A (en
Inventor
山 忠 小
笠 原 正 一 小
谷 太 郎 粕
下 正 行 山
Original Assignee
鉄建建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鉄建建設株式会社 filed Critical 鉄建建設株式会社
Priority to JP5050395A priority Critical patent/JP3801229B2/en
Publication of JPH08218770A publication Critical patent/JPH08218770A/en
Application granted granted Critical
Publication of JP3801229B2 publication Critical patent/JP3801229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、種々な形状の構造物や支持基盤の防護に応じられ、その防護能力を向上できるとともに、その工費の低減を図れる地中湾曲部材およびその築造方法に関する。
【0002】
【従来の技術】
シールド工法において地山安定処理工法は、一般にシールド工事の安全や能率向上を目的に採用される。
例えば、特開平4ー281990号では、曲線ボーリング装置を使用してシールドトンネルの内部から拡幅部を掘削し、この掘削孔に曲管を埋設後、該曲管から内管を引き抜き、代わりに地盤改良用注入管を挿入して、該注入管に凍結剤やセメントミルクを注入し、当該拡幅部分の地盤を改良後、拡幅工事を行うようにしている。
【0003】
しかし、この従来の方法は、凍結剤を駆使した場合、工費が非常に高価になるとともに、該工法の採否が地山の含水比に左右され、また地盤改良用注入管にセメントミルクを注入する場合、セメントミルクの填充や管内空気の除去に特別な配慮を要し、在来の鉛直管に対する注入法では対応できない。
更に、上記方法は拡幅部を曲管で支持しているため、所定の支持強度を得られる反面、多数の曲管を要して工費が嵩む、という問題がある。
【0004】
ところで、従来より地山安定処理工法ないし周辺構造物の防護工法として縁切り工法が採用され、該工法のなかには柱列式連続地中壁方式や壁式連続地中壁方式があり、これらは柱列杭や連続壁を遮断壁として施工し、地山の緩みや地盤沈下の影響が構造物に及ばないようにしていた。
【0005】
しかし、上記柱列杭や連続壁は直杆状ないし平板状で、これらを鉛直に築造しているため、施工条件が限られ、その施工範囲が限られるうえに、異形の構造物や支持基盤に応じた配置に限界があって、十分な防護能力を得られなかった。
【0006】
【発明が解決しようとする課題】
本発明はこのような問題を解決し、種々な形状の構造物や支持基盤の防護に応じられ、その防護能力を向上できるとともに、その工費の低減を図れる地中湾曲部材およびその築造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、請求項1の発明は、填充部材の外周面を填充袋で被覆した湾曲柱を地山に複数敷設した地中湾曲部材において、前記湾曲柱を、湾曲掘削孔の長さの全域に亘って配置し、相隣接する前記湾曲柱をその横断面径以下に近接配置して、地中構造物や支持基盤の種々な形状に応じて精密かつきめ細かに防護でき、かつその支持強度を強化するようにしている。
請求項2の発明は、相隣接する前記湾曲柱を互いの断面を一部重複して配置し連結し、地中構造物や支持基盤の種々な形状に応じて精密、かつきめ細かに防護できるとともに、隣接する湾曲柱の連結強度を強化し、かつその支持強度を強化できる、連続湾曲壁状の地中湾曲部材を提供している。
請求項3の発明は、セメントを貧配合した填充部材を填充した湾曲柱と、セメントを富配合した填充部材を填充した湾曲柱とを、交互に配置し、強度と工費を合理的に設計した地中湾曲部材を提供している。
請求項4の発明は、横断面を略数珠形状に形成し、地山との接触面積を増加させて、湾曲柱を地山に強固に固定し得るようにしている。
請求項5の発明は、地山に複数の湾曲掘削孔を掘削し、前記湾曲掘削孔の長さの全域に亘って曲管を敷設し、該曲管に填充袋を挿入後、前記曲管を引き抜くとともに、前記填充袋に填充部材を填充して湾曲柱を形成する地中湾曲部材の築造方法において、相隣接する曲管を、その横断面径以下に近接配置し、前記曲管の長さの全域に亘って填充袋を挿入後、該填充袋に填充部材を填充し、かつ該填充部材の硬化後、前記曲管を引き抜き、曲線ボ−リング装置等の掘削機の移動距離を短縮し、掘削作業の能率向上を図るとともに、掘削孔の煩雑な閉塞作業の解消と工費の低減を図り、また填充部材のクラックの発生や土圧等による変形、圧潰を未然に防止し、湾曲柱を地山に安全かつ確実に敷設するとともに、曲管を引き抜いて填充袋に填充部材を填充する方法に比べ、湾曲柱を確実かつ安全に、しかも精密に形成するようにしている。
請求項6の発明は、地山に敷設した前記湾曲柱の間に、該湾曲柱の断面を一部切除して曲線状の掘削孔を掘削し、該掘削孔に曲管を敷設して、曲管の切削を回避し、掘削孔の掘削を安全かつ容易に行なうようにしている。
請求項7の発明は、前記曲管に填充袋を挿入し、該填充袋に填充部材を填充し、該填充部材の硬化後、前記曲管を引き抜き、相隣接する湾曲柱を互いの断面を一部重複して配置し連結し、填充部材に所定の強度を確保した後、曲管を引き抜くことによって、填充部材のクラックの発生や土圧等による変形、圧潰を未然に防止し、湾曲柱を地山に安全かつ確実に敷設するとともに、相隣接する湾曲柱の連結強度を強化するようにしている。
請求項8の発明は、前記掘削孔に注入部材を供給可能な空洞填充パイプを外周部に取り付けた曲管を敷設し、空洞填充パイプと曲管を同時に敷設することによって、それらの敷設を合理的に施工するようにしている。
請求項9の発明は、前記填充袋の外径は、前記曲管の内径より若干小径で、填充袋に填充部材を充填した際、前記曲管と填充袋の間に微小な間隙を形成し、曲管を円滑かつ能率良く引き抜けるようにしている。
請求項10の発明は、前記曲管の引き抜き時、前記空洞填充パイプを介して、曲管の外側の掘削孔に注入部材を充填し、注入部材の充填を合理的に行なうようにしている。
請求項11の発明は、前記曲管の内部に弾性を有する離管材を挿入し、曲管の引き抜きを促すようにしている。
請求項12の発明は、前記填充袋の内面に脱気管を配置し、該管の一端を大気に開放し、填充袋内に滞留する空気を確実に外部に排出し得るようにしている。
請求項13の発明は、前記湾曲柱の間を湾曲柱に沿って掘削し、該掘削穴にコンクリ−トまたはモルタル等の連結部材を打設して湾曲柱を連結し、湾曲柱の連結を容易に施工できるようにしている。
【0008】
【作用】
請求項1の発明は、填充部材の外周面を填充袋で被覆した湾曲柱を地山に複数敷設した地中湾曲部材において、前記湾曲柱を、湾曲掘削孔の長さの全域に亘って配置し、相隣接する前記湾曲柱をその横断面径以下に近接配置して、地中構造物や支持基盤の種々な形状に応じて精密かつきめ細かに防護でき、かつその支持強度を強化する。
請求項2の発明は、相隣接する前記湾曲柱を互いの断面を一部重複して配置し連結し、地中構造物や支持基盤の種々な形状に応じて精密、かつきめ細かに防護できるとともに、隣接する湾曲柱の連結強度を強化し、かつその支持強度を強化できる、連続湾曲壁状の地中湾曲部材を提供する。
請求項3の発明は、セメントを貧配合した填充部材を填充した湾曲柱と、セメントを富配合した填充部材を填充した湾曲柱とを、交互に配置し、強度と工費を合理的に設計した地中湾曲部材を提供する。
請求項4の発明は、横断面を略数珠形状に形成し、地山との接触面積を増加させて、湾曲柱を地山に強固に固定する。
請求項5の発明は、地山に複数の湾曲掘削孔を掘削し、前記湾曲掘削孔の長さの全域に亘って曲管を敷設し、該曲管に填充袋を挿入後、前記曲管を引き抜くとともに、前記填充袋に填充部材を填充して湾曲柱を形成する地中湾曲部材の築造方法において、相隣接する曲管を、その横断面径以下に近接配置し、前記曲管の長さの全域に亘って填充袋を挿入後、該填充袋に填充部材を填充し、かつ該填充部材の硬化後、前記曲管を引き抜き、曲線ボ−リング装置等の掘削機の移動距離を短縮し、掘削作業の能率向上を図るとともに、掘削孔の煩雑な閉塞作業の解消と工費の低減を図り、また填充部材のクラックの発生や土圧等による変形、圧潰を未然に防止し、湾曲柱を地山に安全かつ確実に敷設するとともに、曲管を引き抜いて填充袋に填充部材を填充する方法に比べ、湾曲柱を確実かつ安全に、しかも精密に形成する。
請求項6の発明は、地山に敷設した前記湾曲柱の間に、該湾曲柱の断面を一部切除して曲線状の掘削孔を掘削し、該掘削孔に曲管を敷設して、曲管の切削を回避し、掘削孔の掘削を容易に行なうとともに、隣接する湾曲柱の連結強度を強化する。
請求項7の発明は、前記曲管に填充袋を挿入し、該填充袋に填充部材を填充し、該填充部材の硬化後、前記曲管を引き抜き、相隣接する湾曲柱を互いの断面を一部重複して配置し連結し、填充部材に所定の強度を確保した後、曲管を引き抜くことによって、填充部材のクラックの発生や土圧等による変形、圧潰を未然に防止し、湾曲柱を地山に安全かつ確実に敷設するとともに、相隣接する湾曲柱の連結強度を強化する。
請求項8の発明は、前記掘削孔に注入部材を供給可能な空洞填充パイプを外周部に取り付けた曲管を敷設し、空洞填充パイプと曲管を同時に敷設することによって、それらの敷設を合理的に施工する。
請求項9の発明は、前記填充袋の外径は、前記曲管の内径より若干小径で、填充袋に填充部材を充填した際、前記曲管と填充袋の間に微小な間隙を形成し、曲管を円滑かつ能率良く引き抜ける。
請求項10の発明は、前記曲管の引き抜き時、前記空洞填充パイプを介して、曲管の外側の掘削孔に注入部材を充填し、注入部材の充填を合理的に行なう。
請求項11の発明は、前記曲管の内部に弾性を有する離管材を挿入し、曲管の引き抜きを促す。
請求項12の発明は、前記填充袋の内面に脱気管を配置し、該管の一端を大気に開放し、填充袋内に滞留する空気を確実に外部に排出し得る。
請求項13の発明は、前記湾曲柱の間を湾曲柱に沿って掘削し、該掘削穴にコンクリ−トまたはモルタル等の連結部材を打設して湾曲柱を連結し、湾曲柱の連結を容易に施工できる。
【0009】
【実施例】
以下、本発明をシールドトンネルの拡幅に適用した図示実施例について説明すると、図1乃至図10において1,2は、地山3に離間して築造したトンネルで、それらの掘削穴の内面に覆工壁であるセグメント4,5が構築され、該セグメント4,5の内面に周壁6,7が設けられている。
周壁6,7の水平な下部にはレール8,9が敷設され、該レール8,9の近接位置に、構内駅10を構成するプラットフォーム11,12が設けられている。
【0010】
構内駅10は、トンネル1,2の間の拡幅部13に設置され、該拡幅部13の上下は湾曲壁14,15で区画されている。
湾曲壁14,15は上下方向に湾曲形成され、これらは実施例の場合、同形に構成されていて、図2のように多数の湾曲柱16,17を連続的かつ一部を重複して配置し、略数珠状の断面形状をしている。この場合、湾曲柱16,17は、それらを接続する連結部材としても機能する。
【0011】
湾曲柱16,17は実施例の場合、同径の円柱を同様な曲率に湾曲して構成され、それらを交互に配置し、これらをモルタルまたはコンクリート等の填充部材18、または該填充部材18と鋼管若しくは鉄筋または型鋼等の補強部材19とで構成しており、該部材19は湾曲柱17と同長に形成されている。
このうち、湾曲柱16は少量のセメントを配合した貧配合の填充部材18で構成され、また湾曲柱17は湾曲柱16に比べて多量のセメントを配合した富配合の填充部材18と、該部材18に埋設した補強部材19とで構成している。
【0012】
湾曲柱16の周面には、空気を透過し水漏れを阻止可能な柔軟な填充袋20が被覆され、該袋20は湾曲柱16よりも長尺に構成され、その外径は後述する曲管の内径よりも若干小径に形成されて、上記袋20内に滞留する空気の排出を可能にしており、該袋20と地山3との間の湾曲掘削孔21にセメントミルク等の注入部材22が填充されている。
この場合、湾曲掘削孔21は余掘分を含み、図3のように略楕円形に形成されている。
【0013】
また、湾曲柱17の周面と、補強部材19内の填充部材18の周面とには、空気を透過し水漏れを阻止可能な柔軟な填充袋23,24が被覆され、該袋23,24は湾曲柱17および補強部材19よりも長尺に構成されている。
このうち、填充袋23の外径は後述する曲管の内径よりも若干小径に形成されて、上記袋23内に滞留する空気の排出を可能にしており、該袋23と地山3との間の湾曲掘削孔25に、セメントミルク等の注入部材26が填充されている。この場合、湾曲掘削孔25は余掘分を含み、図3のように略楕円形に形成されている。
【0014】
図中、27は湾曲柱16の外周側に埋設した柔軟な填充管で、その先端は填充袋20の先端部に開口し、基端部は填充袋20から突出し、当該部に填充部材供給管(図示略)が接続される。
なお、填充管27は填充袋20の内面に適宜手段で取り付けることが望ましく、そのようにすることで填充袋20と填充管27とを一体化し、後述する曲管への挿入を容易に行える。
【0015】
28は湾曲柱16の外周側に埋設した柔軟な長尺の填充管で、その先端は填充袋23の先端部に開口し、基端部は填充袋23から突出し、当該部に填充部材供給管(図示略)が接続される。
なお、填充管28は填充袋23の内面に適宜手段で取り付けることが望ましく、そのようにすることで填充袋23と填充管28とを一体化し、後述する曲管への挿入を容易に行える。
【0016】
29は補強部材19内の填充部材18の外周側に埋設した柔軟な長尺の填充管で、その一端を填充袋24の先端部に開口し、他端を填充袋24から突出し、当該部に填充部材供給管(図示略)が接続される。
なお、填充管29は填充袋24の内面に適宜手段で取り付けることが望ましく、そのようにすることで填充袋24と填充管29とを一体化し、後述する曲管への挿入を容易に行える。
【0017】
図中、30,31は同径の曲管で、湾曲柱16,17と略同長に構成され、これらを曲線ボーリング装置32により地山3の所定位置に前後して埋め込み、それらの内部に填充部材18または該部材18と補強部材19とを填充後、引き抜き可能にされている。
曲線ボーリング装置32は図4のように、何れか一方のトンネル2内に設置した長尺の架枠33に据え付けられ、該枠33に推進装置34を取付けている。
【0018】
推進装置34は、曲管フィード用シリンダ35と内管フィード用シリンダ36とを備え、このうち曲管フィード用シリンダ35は、元押しケース37を介して曲管30,31に連結され、そのシリンダロッド38を伸長させて、前記曲管30,31を矢視方向へ送り出すようにしている。
【0019】
また、内管フィード用シリンダ36はケース39を介して内管40に連結され、そのシリンダロッド41を伸長させて、上記内管40を矢視方向へ送り出し、曲管30,31内に挿入可能にしている。
なお、上記曲管30,31と内管40とは、多数の曲状短管で構成され、それらをピン連結して所定の曲率を形成しており、掘削時には曲管30,31と内管40との間隙を利用して、掘削土砂をトンネル2側に排出可能にしている。
【0020】
曲管30,31の先端部には、筒状のシュー42と掘削装置43とが設けられ、このうちシュー42は曲管30,31の先端部に揺動可能に連結され、また掘削装置43はオイルモータ(図示略)を備え、該モータの回転駆動力をカッタービット44へ伝達可能にしている。
【0021】
図中、45はセグメント5の開口部に取付けた口元管で、その下端に止水バルブ46と止水装置47とが設けられている。
48,49は曲管30,31の周面に配管した空洞填充パイプで、実施例では小湾曲側周面に小径の鋼管を溶接しており、該管48の一端を曲管30,31の先端部に開口し、他端をセメントミルク等の空洞填充部材供給管(図示略)に接続している。
【0022】
図11乃至図14は本発明の他の実施例を示し、前述の実施例と対応する構成部分には同一の符号を用いている。
このうち、図11に示す第2実施例は、湾曲柱16,17を連続かつ重複して湾曲壁14,15を築造する代わりに、湾曲柱17を前述の方法で所定距離離間して設置し、それらの間を湾曲柱17,17に沿って特殊掘削機で掘削し、この掘削穴50にコンクリート、モルタル等の連結部材51を打ち込んで、湾曲壁14,15を築造している。
【0023】
このようにすることで、湾曲柱17,17間の複数の湾曲柱16,17の築造を割愛し、その分工費と工期の低減を図れるとともに、湾曲壁14,15の断面形状を数珠状から板状に形成し、一定厚の湾曲壁14,15を得られる。
この場合、湾曲壁14,15の強度に応じて、湾曲柱17の代わりに湾曲柱16を採用すれば、補強部材19の設置と該部材19の省略分、工費と工期の低減を増進できる。
【0024】
図12および図13に示す第3および第4実施例は、湾曲壁14,15の代わりに、複数の湾曲柱16または17を前述の方法で離間して柱列状に配置し、地山3の安定を図っている。この場合、第4実施例の方が補強部材19の填充分、湾曲柱の強度が強化され、地山3が安定する。
このように、本発明の湾曲柱16,17は湾曲柱状に形成されているから、縁切り工法で採用される従来の直杆状の柱列式連続地中壁に比べて、地中構造物や支持基盤の形状に応じて、その周囲を精密かつきめ細かく防護することができるまた、本発明の湾曲壁14,15は、地山3に対し種々の角度で築造できるから、専ら鉛直に築造される従来の壁式連続地中壁に比べて、その広範な利用を図れる。
そして、このような湾曲柱16,17の柱列は、湾曲壁14,15に比べて容易かつ安価に地山3の安定を得られる。
【0025】
この場合、上記柱列は、地下構造物の防護手段として従来より採用されるパイプルーフ工法に比べ、各湾曲柱16,17が地下構造物の周囲に配置されるから、該構造物を木目細かく防護でき、また湾曲柱16,17が略アーチ状をしているから、水平または斜状に配置する直管状のパイプに比べて支持強度が強化され、地下構造物の防護能力を向上できる。
【0026】
図14に示す第5実施例は、曲管30,31の内部に発泡スチロール、ゴム等の弾性を有する離管材52,53を挿入して、曲管30,31の引き抜きを促すようにしており、また離管材52,53の大湾曲側内面、つまり天端側と補強部材19の同様な位置に脱気管54,55を配管し、その一端を大気に開放して、填充袋20,23,24内に滞留する空気の確実な排出を可能にしている。
【0027】
このように構成した地中湾曲壁等の構築方法によってトンネル1,2を拡幅する場合は、トンネル1,2を掘削し、その掘削穴内面にセグメント4,5を築造後、一方のトンネル2内で掘削孔21のボーリング開始位置に架枠33を架設し、該枠33に曲線ボーリング装置32の推進装置34を上向きに据え付ける。
この場合、架枠33は図示のような固定式の代わりに、トンネル2の軸方向に沿って移動でき、周囲に複数のジャッキを装備していて、ボーリング時に推進装置34を支持できるものが望ましく、そのようにすることで推進装置34の移動を容易に行なえる。
【0028】
そして、推進装置34の曲管フィードシリンダ35に、元押しケース37を介して曲管30を連結し、該管30を構成する曲状短管を図4上矢視方向に順次送り出し、これを口元管45に挿入するとともに、内管フィードシリンダ36にケース39を介して内管40を連結し、該管40を構成する曲状短管を曲管30と同方向に順次送り出す。
【0029】
曲管30および内管40が送り出され、その先端が地山3に挿入されると、掘削装置43が駆動し、地山3を図4のように略円弧状に掘削し、その掘削土砂を曲管30と内管40との間隙に移動させ、これをトンネル2内に排出する。
こうして、掘削装置43が地山3を掘削し、曲管30と内管40とが順次送り出され、その先端がトンネル1のセグメント4に到達したところで、掘削装置43を停止し、該装置43と内管40とを曲管30から引き抜く。
【0030】
この後、推進装置34をトンネル2の軸方向に所定距離移動して架枠33に据え付け、前述のように曲管フィードシリンダ35に、元押しケース37を介して曲管30を連結し、該管30を構成する曲状短管を図4上矢視方向に順次送り出し、これを口元管45に挿入する。
また、内管フィードシリンダ36にケース39を介して内管40を連結し、該管40を構成する曲状短管を曲管30と同方向に順次送り出す。
【0031】
そして、掘削装置43を駆動して地山3を略円弧状に掘削し、また曲管30と内管40とを順次送り出し、その先端がトンネル1のセグメント4に到達したところで、掘削装置43を停止し、該装置43と内管40とを曲管30から引き抜く。
以下、これらの作業を繰り返し、地山3内に複数の曲管30を埋設する。
この状況は図5(a)のようで、各管30の小湾曲側、つまり下部周面に空洞填充パイプ48が配置される。
【0032】
この後、内部に填充管27を取付けた填充袋20を用意し、その先端を緊縛または結束等適宜手段で閉塞20aし、これを填充管27を利用して曲管30内に挿入する。
この状況は図5(b)および図6のようで、上記閉塞部20aはトンネル1側の曲管30の先端部に位置し、当該内部に填充管27の一端が開口し、その他端が填充袋20から突出していて、該突出部に填充部材供給管(図示略)を接続し、該管に少量のセメントを用いた貧配合の填充部材18を供給する。
【0033】
このようにすると、填充部材18が填充管27の先端から填充袋20内に吐き出され、これが填充袋20を先端側から填充し、該袋20が図5(c)のように曲管30と略同断面に膨れる。
その際、填充袋20内の空気と填充部材18に混入した空気は、填充部材18よって填充袋20の基端側に押し出され、またその一部は填充袋20を透過し、該袋20と曲管30との間隙に押し出されて、該間隙を移動して外部に排出される。したがって、填充袋20内に填充部材18が円滑かつ緻密に填充され、硬化後の強度に信頼性を得られる。
【0034】
こうして、填充袋20および填充管27を挿入し、填充部材18を曲管30の全域に填充したところで、隣接の曲管30にも填充袋20と填充管27とを挿入し、これに填充部材18を填充する。以下、上記作業を順次他の曲管30に実行し、すべての曲管30に填充部材18を填充する。この場合、填充管27は填充部材18に埋設する。
【0035】
填充部材18の硬化後、曲管30の引き抜き開始位置に架枠33を架設し、該枠33に曲線ボーリング装置32の推進装置34を再度設置し、該装置34の曲管フィードシリンダ35に、元押しケース37を介して曲管30を連結し、該管30を順次引き抜く。
【0036】
この場合、曲管30と填充部材18との間には填充袋20が介在し、また填充袋20の外径は曲管30の内径よりも若干小径で、それらの間に微小な間隙が形成されているから、曲管30を円滑かつ能率良く引き抜ける。
また、填充部材18の硬化後、曲管30を引き抜いているから、曲管30に所定の強度を得られ、これが硬化する前に引き抜く場合のクラックの発生や、土圧等による変形、圧潰を未然に防止できる。
【0037】
その際、空洞填充パイプ48の基端部に空洞填充部材供給管(図示略)を接続し、該管に填充部材を供給する。
このようにすると、上記パイプ48の先端からセメントミルク等の空洞填充部材22が吐出され、これが引き抜かれた曲管30の空スペースと、湾曲掘削孔21とを填充する。この状況は図5(d)のようである。
【0038】
こうして、空洞填充部材22が曲管30の先端側から順次填充され、該管30が全て引き抜かれると、それらの周囲の全域に空洞填充部材22が填充される。
したがって、この後空洞填充部材22が硬化すると、該部材22を介して湾曲柱16が地山3に強固に固定される。この状況は図7のようである。
【0039】
この後、隣接の曲管30を引き抜き、当該空スペースおよび湾曲掘削孔21に注入部材22を填充したところで、口元管45を撤去する。以下、上記作業を順次他の曲管30に実行し、すべての曲管30を引き抜き、注入部材22を填充する。
【0040】
次に掘削孔25のボーリング開始位置に架枠33を架設し、該枠33に曲線ボーリング装置32の推進装置34を上向きに据え付ける。
そして、推進装置34の曲管フィードシリンダ35に、元押しケース37を介して曲管31を連結し、該管31を構成する曲状短管を図4上矢視方向に順次送り出し、これを口元管45に挿入するとともに、内管フィードシリンダ36にケース39を介して内管40を連結し、該管40を構成する曲状短管を曲管31と同方向に順次送り出す。
【0041】
曲管31および内管40が送り出され、その先端が地山3に挿入されると、掘削装置43が駆動し、湾曲柱16,16の間の地山3と、湾曲柱16,16の隣接部を掘削し、当該部に掘削孔21と略同形断面の掘削孔25を掘削する。
この場合、掘削装置43は湾曲柱16,16の一部を削り取るが、それらの填充部材18はセメントを貧配合しているため、これが富配合のものに比べて硬度や強度が低く、掘削の負担が軽減する。
掘削装置43は上記掘削孔25を図4のように略円弧状に掘削し、その掘削土砂を曲管31と内管40との間隙に移動させ、これをトンネル2内に排出する。
【0042】
こうして、掘削装置43が地山3を掘削し、曲管31と内管40とが順次送り出され、その先端がトンネル1のセグメント4に到達したところで、掘削装置43を停止し、該装置43と内管40とを曲管31から引き抜く。
【0043】
この後、推進装置34をトンネル2の軸方向に所定距離移動して架枠33に据え付け、前述のように曲管フィードシリンダ35に、元押しケース37を介して曲管31を連結し、該管31を構成する曲状短管を図4上矢視方向に順次送り出し、これを口元管45に挿入する。
また、内管フィードシリンダ36にケース39を介して内管40を連結し、該管40を構成する曲状短管を曲管31と同方向に順次送り出す。
【0044】
そして、掘削装置43を駆動して地山3を略円弧状に掘削し、また曲管31と内管40とを順次送り出し、その先端がトンネル1のセグメント4に到達したところで、掘削装置43を停止し、該装置43と内管40とを曲管31から引き抜く。
以下、これらの作業を繰り返し、地山3内に複数の曲管31を埋設する。
この状況は図8(a)のようで、各管31の小湾曲側、つまり下部周面に空洞填充パイプ49が配置される。
【0045】
この後、内部に填充管28を取付けた填充袋23を用意し、その先端を緊縛または結束等適宜手段で閉塞23aし、これを填充管28を利用して曲管31に挿入する。
上記填充袋23内には補強部材19が収容され、該部材19の内部に填充管29を内面に取付けた填充袋24が収容され、その先端を緊縛または結束等適宜手段で閉塞24aしている。
【0046】
この場合、最初に填充袋23と填充管28とを曲管31に挿入し、次に填充袋24と填充管29を収容した補強部材19を挿入してもよいが、そのように前後二工程に分けると手間が掛かり、また補強部材19の挿入時に填充袋23の破損や損傷を招き易いので、これらを一緒に挿入することが望ましい。
【0047】
この状況は図8(b)および図9のようで、上記閉塞部23aはトンネル1側の曲管31の先端部に位置し、当該内部に填充管28の一端が開口し、その他端が填充袋23から突出している。
また、閉塞部24aはトンネル1側の補強部材19の先端部に位置し、当該内部に填充管29の一端が開口し、その他端が填充袋24から突出している。
【0048】
そして、填充管28,29の他端に填充部材供給管(図示略)を接続し、該管に湾曲柱16の補強部材18に比べて多量のセメントを配合した富配合の填充部材18を同時に供給する。
【0049】
このようにすると、填充部材18が填充管28の先端から填充袋23内に吐き出され、これが填充袋23を先端側から填充し、該袋23が図8(c)のように曲管31と略同断面に膨れる。
その際、填充袋23内の空気と填充部材18に混入した空気は、填充部材18よって填充袋23の基端側に押し出され、またその一部は填充袋23を透過し、該袋23と曲管31との間隙に押し出され、該間隙を移動して外部に排出されるしたがって、填充袋23内に填充部材18が円滑かつ緻密に填充され、該部材18の硬化後の強度に信頼性を得られる。
【0050】
また、填充管29の先端からも填充部材18が填充袋24内に吐き出され、これが填充袋24を先端側から填充し、該袋24が図8(c)のように補強部材19と略同断面に膨れる。
その際、填充袋24内の空気と填充部材18に混入した空気は、填充部材18よって填充袋24の基端側に押し出され、該袋24から填充袋23を経て外部に排出され、またその一部は填充袋24を透過し、該袋24と補強部材19との間隙に押し出され、該間隙を移動して外部に排出される。
したがって、填充袋24内に填充部材18が円滑かつ緻密に填充され、該袋24が補強部材19の内面に密着するとともに、補強部材18の硬化後の強度に信頼性を得られる。
【0051】
こうして、曲管31内に填充袋23,24と填充管28,29と補強部材19とを挿入し、填充部材18を補強部材19の内外に全域に亙って填充したところで、隣接の曲管31にも填充袋23,24と填充管28,29と補強部材19とを挿入し、これに填充部材18を填充する。以下、上記作業を順次他の曲管31に実行し、すべての曲管31に填充部材18を填充する。この場合、填充管28,29は填充部材18に埋設する。
【0052】
填充部材18の硬化後、曲管31の引き抜き開始位置に架枠33を架設し、該枠33に曲線ボーリング装置32の推進装置34を再度設置し、推進装置34の曲管フィードシリンダ35に、元押しケース37を介して曲管31を連結し、該管31を順次引き抜く。
【0053】
この場合、曲管31と填充部材18との間には填充袋23が介在し、また填充袋23の外径は曲管31の内径よりも若干小径で、それらの間に微小な間隙が形成されているから、曲管31を円滑かつ能率良く引き抜ける。
また、填充部材18の硬化後、曲管31を引き抜いているから、填充部材18の所定の強度を得られ、これが硬化する前に引き抜く場合のクラックの発生や、土圧等による変形、圧潰を防止できる。
【0054】
その際、空洞填充パイプ49の基端部に空洞填充部材供給管(図示略)を接続し、該管に填充部材を供給する。
このようにすると、上記パイプ49の先端からセメントミルク等の注入部材26が吐出され、これが引き抜かれた曲管31の空スペースと、湾曲掘削孔25とを填充する。この状況は図8(d)のようである。
【0055】
こうして、空洞填充部材26が曲管31の先端側から順次填充され、該管31が全て引き抜かれると、それらの周囲の全域に注入部材26が填充される。
したがって、この後注入部材26が硬化すると、該部材26を介して湾曲柱17が地山3と隣接の湾曲柱16,16に強固に固定される。この状況は図10のようである。
【0056】
この後、隣接の曲管31を引き抜き、当該空スペースおよび湾曲掘削孔25に注入部材26を填充する。以下、上記作業を順次他の曲管31に実行し、すべての曲管31を引き抜き、注入部材26を填充する。
【0057】
このようにして拡幅部13の上部に湾曲壁14が築造されると、該壁14によって止水効果が得られるとともに、上載荷重や土圧等が支持され、この後の湾曲壁14下方の拡幅工事を安全に行なえる。
しかも、湾曲壁14は上方に湾曲するアーチ状をしているから、従来のようなパイプルーフ工法に比べて、支持強度が高く、工事の安全性が増進する。
したがって、地盤改良のため従来より採用される、例えば注入工法や凍結工法、更には縁切り工法等の周辺構造物の防護工法が不要になり、また湾曲壁14を拡幅部13の覆工壁に充当し得るから、その分工費を低減し工期を短縮できる。
【0058】
次に湾曲壁14の築造後、拡幅部13の下部に湾曲壁15を築造する。
湾曲壁15の築造は、湾曲壁14の築造と実質的に同一で、曲線ボーリング装置32の推進装置34を架枠33に下向きに据え付け、該装置34から曲管30,31を前後して埋設し、これらに填充部材18および補強部材19を填充後、曲管30,31を引き抜き、その空スペースと掘削孔21,25に注入部材22,26を填充すればよい。
【0059】
こうして、拡幅部13の下部に湾曲壁15が築造されると、該壁15が下部地山3と縁切りして止水し、該壁15よりも下方の地下構造物を防護するから、このための防護法を要せず、また湾曲壁15を拡幅部13の覆工壁に充当し得るから、その分工費を低減し工期を短縮できる。
【0060】
湾曲壁14,15の築造後、これらで区画された拡幅部13を掘削し、当該掘削空スペースに構内駅10を建設する。その際、湾曲壁14,15を構内駅10の仕切壁として活用できる。
【0061】
この場合、上記実施例では湾曲柱16,16を湾曲柱17で接続して、湾曲壁14,15を構成しているから、湾曲柱17が湾曲柱16,16の連結部材として機能する。
その際、湾曲柱17の代わりに湾曲柱16で接続すれば、補強部材19と填充管29の省略分、湾曲壁14,15を安価かつ簡便に築造できる。
【0062】
このように、本発明の湾曲壁14,15は湾曲板状に形成されているから、縁切り工法で採用される従来の平板状の壁式連続地中壁に比べて、地中構造物の形状に応じて、その周囲を精密かつきめ細かく防護することができ、築造後は地下構造物の一部に利用できる。
また、本発明の湾曲壁14,15は、地山3に対し種々の角度で築造できるから、専ら鉛直に築造される従来の壁式連続地中壁に比べて、その広範な利用を図れる。
【0063】
【発明の効果】
請求項1の発明は、前記湾曲柱を、湾曲掘削孔の長さの全域に亘って配置し、相隣接する前記湾曲柱をその横断面径以下に近接配置したから、地中構造物や支持基盤の種々な形状に応じて精密、かつきめ細かに防護でき、かつその支持強度を強化することができる。
請求項2の発明は、相隣接する前記湾曲柱を互いの断面を一部重複して配置し連結したから、地中構造物や支持基盤の種々な形状に応じて精密、かつきめ細かに防護できるとともに、隣接する湾曲柱の連結強度を強化し、かつその支持強度を強化できる、連続湾曲壁状の地中湾曲部材を提供することができる。
請求項3の発明は、セメントを貧配合した填充部材を填充した湾曲柱と、セメントを富配合した填充部材を填充した湾曲柱とを、交互に配置したから、強度と工費を合理的に設計した地中湾曲部材を提供することができる。
請求項4の発明は、横断面を略数珠形状に形成したから、地山との接触面積を増加させて、湾曲柱を地山に強固に固定することができる。
請求項5の発明は、相隣接する曲管を、その横断面径以下に近接配置し、前記曲管の長さの全域に亘って填充袋を挿入後、該填充袋に填充部材を填充し、かつ該填充部材の硬化後、前記曲管を引き抜くから、曲線ボ−リング装置等の掘削機の移動距離を短縮し、掘削作業の能率向上を図れるとともに、掘削孔の煩雑な閉塞作業の解消と工費の低減を図り、また填充部材のクラックの発生や土圧等による変形、圧潰を未然に防止し、湾曲柱を地山に安全かつ確実に敷設するとともに、曲管を引き抜いて填充袋に填充部材を填充する方法に比べ、湾曲柱を確実かつ安全に、しかも精密に形成することができる。
請求項6の発明は、地山に敷設した前記湾曲柱の間に、該湾曲柱の断面を一部切除して曲線状の掘削孔を掘削し、該掘削孔に曲管を敷設するから、曲管の切削を回避し、掘削孔の掘削を容易に行なえるとともに、隣接する湾曲柱の連結強度を強化することができる。
請求項7の発明は、前記曲管に填充袋を挿入し、該填充袋に填充部材を填充し、該填充部材の硬化後、前記曲管を引き抜き、相隣接する湾曲柱を互いの断面を一部重複して配置し連結するから、填充部材に所定の強度を確保した後、曲管を引き抜くことによって、填充部材のクラックの発生や土圧等による変形、圧潰を未然に防止し、湾曲柱を地山に安全かつ確実に敷設するとともに、相隣接する湾曲柱の連結強度を強化することができる。
請求項8の発明は、前記掘削孔に注入部材を供給可能な空洞填充パイプを外周部に取り付けた曲管を敷設するから、空洞填充パイプと曲管を同時に敷設することによって、それらの敷設を合理的に施工することができる。
請求項9の発明は、前記填充袋の外径は、前記曲管の内径より若干小径で、填充袋に填充部材を充填した際、前記曲管と填充袋の間に微小な間隙を形成するから、曲管を円滑かつ能率良く引き抜けることができる。
請求項10の発明は、前記曲管の引き抜き時、前記空洞填充パイプを介して、曲管の外側の掘削孔に注入部材を充填し、注入部材の充填を合理的に行なうことができる。
請求項11の発明は、前記曲管の内部に弾性を有する離管材を挿入するから、曲管の引き抜きを促すことができる。
請求項12の発明は、前記填充袋の内面に脱気管を配置し、該管の一端を大気に開放するから、填充袋内に滞留する空気を確実に外部に排出することができる。
請求項13の発明は、前記湾曲柱の間を湾曲柱に沿って掘削し、該掘削穴にコンクリ−トまたはモルタル等の連結部材を打設して湾曲柱を連結するから、湾曲柱の連結を容易に施工することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す正面図で、トンネルの拡幅状況を示している。
【図2】図1のAーA線に沿う断面図である。
【図3】図2の要部を拡大して示す断面図である。
【図4】本発明による曲管の埋設状況を示す断面図である。
【図5】同図(a)〜(d)は本発明による湾曲柱の築造状況と、湾曲壁の築造中途状況とを順に示す断面図である。
【図6】図5のBーB線に沿う断面図で、曲管に填充袋と填充管を挿入した状況を若干縮小して図示している。
【図7】図5のCーC線に沿う断面図で、填充袋に填充部材を填充後、曲管の引き抜き空スペースと湾曲掘削孔に、注入部材を填充した状況を若干縮小して図示している。
【図8】同図(a)〜(d)は一方の湾曲柱の築造後における別の湾曲柱の築造状況と、湾曲壁の築造状況とを順に示す断面図である。
【図9】図8のDーD線に沿う断面図で、別の曲管に填充袋と填充管と補強部材とを挿入した状況を若干縮小して図示している。
【図10】図8のEーE線に沿う断面図で、各填充袋に填充部材を填充後、曲管の引き抜き空スペースと湾曲掘削孔に、注入部材を填充した状況を若干縮小して図示している。
【図11】本発明の第2実施例を示す断面図で、湾曲壁の築造状況を図示している。
【図12】本発明の第3実施例を示す断面図で、湾曲柱の築造状況を図示している。
【図13】本発明の第4実施例を示す断面図で、湾曲柱の別の築造状況を図示している。
【図14】本発明の第5実施例を示す拡大断面図で、曲管の引き抜き後の離管材と脱気管の配置状況を示している。
【符号の説明】
3 地山
16,17 湾曲柱(連結部材)
18 填充部材
19 補強部材
20,23,24 填充袋
21,25 湾曲掘削孔
22,26 注入部材
23a,24a 閉塞(部)
27,28,29 填充管
30,31 曲管
51 連結部材
52,53 離管材
54,55 脱気管
[0001]
[Industrial application fields]
The present invention relates to an underground bending member that can respond to protection of structures and support bases of various shapes, improve the protection ability, and reduce the construction cost, and a construction method thereof.
[0002]
[Prior art]
In the shield method, the natural ground stabilization method is generally adopted for the purpose of improving the safety and efficiency of shield work.
For example, in Japanese Patent Application Laid-Open No. 4-281990, a widened portion is excavated from the inside of a shield tunnel using a curved boring device, a curved pipe is embedded in the excavation hole, and the inner pipe is pulled out from the curved pipe. An infusion tube for improvement is inserted, a freezing agent or cement milk is injected into the infusion tube, and after the ground of the widened portion is improved, widening work is performed.
[0003]
However, in this conventional method, when a freezing agent is used, the construction cost becomes very expensive, the adoption of the construction method depends on the moisture content of the natural ground, and cement milk is injected into the ground improvement injection pipe. In this case, special consideration is required for filling cement milk and removing air in the pipe, and the conventional injection method for the vertical pipe cannot be used.
Furthermore, since the above-mentioned method supports the widened portion with a curved pipe, a predetermined support strength can be obtained, but there is a problem that a large number of curved pipes are required and the construction cost is increased.
[0004]
By the way, the edge cutting method has been conventionally adopted as a ground stabilization method or a protective method for surrounding structures, and among these methods, there are a column-type continuous underground wall method and a wall-type continuous underground wall method. Pile and continuous walls were used as barriers to prevent the effects of loose ground and subsidence on the structure.
[0005]
However, the columnar piles and continuous walls are straight or flat, and they are built vertically, so the construction conditions are limited and the construction range is limited. There was a limit to the arrangement according to the situation, and sufficient protective ability could not be obtained.
[0006]
[Problems to be solved by the invention]
The present invention solves such a problem, and provides an underground bending member that can respond to the protection of structures and support bases of various shapes, can improve the protection capability, and can reduce the construction cost, and a construction method thereof. The purpose is to do.
[0007]
[Means for Solving the Problems]
  For this reason,The invention according to claim 1 is an underground bending member in which a plurality of curved columns, in which the outer peripheral surface of the filling member is covered with a filling bag, are laid on the ground, and the curved columns are arranged over the entire length of the curved excavation hole. However, the curved columns adjacent to each other can be placed close to each other below the cross-sectional diameter so that they can be protected precisely and finely according to various shapes of underground structures and support bases, and the support strength is strengthened. ing.
  The invention according to claim 2 allows the curved columns adjacent to each other to be arranged and connected partially overlapping each other, and can be protected precisely and finely according to various shapes of underground structures and support bases. The present invention provides a continuous curved wall-like underground curved member that can reinforce the connection strength between adjacent curved pillars and enhance the supporting strength thereof.
  In the invention of claim 3, the curved column filled with the filling member poorly blended with the cement and the curved column filled with the filling member rich in the cement are alternately arranged to rationally design the strength and the construction cost. An underground bending member is provided.
  According to the invention of claim 4, the cross section is formed in a substantially bead shape, the contact area with the natural ground is increased, and the curved column can be firmly fixed to the natural ground.
  The invention according to claim 5 digs a plurality of curved excavation holes in a natural ground, lays a curved pipe over the entire length of the curved excavation hole, inserts a filling bag into the curved pipe, and then inserts the curved pipe And pulling the filling bag into the filling bag to form a curved columnIn the construction method of the underground curved member,Adjacent curved pipes are arranged close to each other below the cross-sectional diameter, and after the filling bag is inserted over the entire length of the curved pipe, the filling member is filled into the filling bag, and the filling member is cured. After that, the bent pipe is pulled out, the moving distance of the excavator such as a curved boring device is shortened, the efficiency of the excavation work is improved, the complicated clogging work of the excavation hole is eliminated, and the construction cost is reduced. Compared with the method of preventing cracking of the filling member and deformation and crushing due to earth pressure, etc., and laying the curved column safely and securely on the ground, and pulling the curved pipe and filling the filling member with the filling member The curved column is formed reliably, safely and precisely.
  In the invention of claim 6, between the curved columns laid on the natural ground, a part of the section of the curved column is excised to excavate a curved excavation hole, and a curved pipe is laid in the excavation hole, Cutting of the curved pipe is avoided, and the excavation hole is excavated safely and easily.
  In the invention of claim 7, a filling bag is inserted into the curved pipe, a filling member is filled into the filling bag, and after the filling member is cured, the curved pipe is pulled out, and the adjacent curved columns are cross-sectionally crossed each other. After overlapping and arranging and securing a predetermined strength to the filling member, the curved pipe is pulled out to prevent the filling member from cracking, deformation due to earth pressure, etc. Are laid on the ground safely and securely, and the connection strength between adjacent curved columns is strengthened.
  The invention according to claim 8 is to rationalize the laying of the hollow filling pipe and the curved pipe at the same time by laying the curved pipe with the hollow filling pipe capable of supplying the injection member into the excavation hole. We are trying to construct it.
  According to the ninth aspect of the present invention, the outer diameter of the filling bag is slightly smaller than the inner diameter of the bent tube, and when the filling member is filled in the filling bag, a minute gap is formed between the bent tube and the filling bag. In order to pull out the curved pipe smoothly and efficiently.
  According to a tenth aspect of the present invention, when the bent pipe is pulled out, the injection member is filled into the excavation hole outside the bent pipe through the cavity filling pipe so as to rationally fill the injection member.
  In the eleventh aspect of the present invention, an elastic release tube material is inserted into the bent tube to facilitate pulling out of the bent tube.
  According to a twelfth aspect of the present invention, a deaeration pipe is disposed on the inner surface of the filling bag, and one end of the pipe is opened to the atmosphere so that air staying in the filling bag can be surely discharged to the outside.
  Claim 13This invention excavates between the curved columns along the curved columns, and places connecting members such as concrete or mortar in the excavation holes to connect the curved columns, so that the curved columns can be easily connected. I can do it.
[0008]
[Action]
  The invention according to claim 1 is an underground bending member in which a plurality of curved columns, in which the outer peripheral surface of the filling member is covered with a filling bag, are laid on a natural ground, and the curved columns are arranged over the entire length of the curved excavation hole. Then, the adjacent curved columns are arranged close to each other below the cross-sectional diameter so that they can be protected precisely and finely according to various shapes of the underground structure and the support base, and the support strength is enhanced.
  The invention according to claim 2 allows the curved columns adjacent to each other to be arranged and connected partially overlapping each other, and can be protected precisely and finely according to various shapes of underground structures and support bases. The present invention provides a continuous curved wall-like underground curved member capable of enhancing the connection strength of adjacent curved columns and enhancing the supporting strength thereof.
  In the invention of claim 3, the curved column filled with the filling member poorly blended with the cement and the curved column filled with the filling member rich in the cement are alternately arranged to rationally design the strength and the construction cost. An underground bending member is provided.
  In the invention of claim 4, the cross section is formed in a substantially bead shape, the contact area with the natural ground is increased, and the curved column is firmly fixed to the natural ground.
  The invention according to claim 5 digs a plurality of curved excavation holes in a natural ground, lays a curved pipe over the entire length of the curved excavation hole, inserts a filling bag into the curved pipe, and then inserts the curved pipe And pulling the filling bag into the filling bag to form a curved columnIn the construction method of the underground curved member,Adjacent curved pipes are arranged close to each other below the cross-sectional diameter, and after the filling bag is inserted over the entire length of the curved pipe, the filling member is filled into the filling bag, and the filling member is cured. After that, the bent pipe is pulled out, the moving distance of the excavator such as a curved boring device is shortened, the efficiency of the excavation work is improved, the complicated clogging work of the excavation hole is eliminated, and the construction cost is reduced. Compared with the method of preventing cracking of the filling member and deformation and crushing due to earth pressure, etc., and laying the curved column safely and securely on the ground, and pulling the curved pipe and filling the filling member with the filling member The curved column is formed securely, safely and precisely.
  In the invention of claim 6, between the curved columns laid on the natural ground, a part of the section of the curved column is excised to excavate a curved excavation hole, and a curved pipe is laid in the excavation hole, The cutting of the curved pipe is avoided, the excavation hole is easily excavated, and the connection strength between the adjacent curved columns is enhanced.
  In the invention of claim 7, a filling bag is inserted into the curved pipe, a filling member is filled into the filling bag, and after the filling member is cured, the curved pipe is pulled out, and the adjacent curved columns are cross-sectionally crossed each other. After overlapping and arranging and securing a predetermined strength to the filling member, the curved pipe is pulled out to prevent the filling member from cracking, deformation due to earth pressure, etc. Are laid on the ground safely and securely, and the connection strength between adjacent curved columns is strengthened.
  The invention according to claim 8 is to rationalize the laying of the hollow filling pipe and the curved pipe at the same time by laying the curved pipe with the hollow filling pipe capable of supplying the injection member into the excavation hole. To construct.
  According to the ninth aspect of the present invention, the outer diameter of the filling bag is slightly smaller than the inner diameter of the bent tube, and when the filling member is filled in the filling bag, a minute gap is formed between the bent tube and the filling bag. Pull out the curved pipe smoothly and efficiently.
  In the tenth aspect of the present invention, when the bent pipe is pulled out, the injection member is filled in the excavation hole outside the bent pipe through the cavity filling pipe, so that the injection member is rationally filled.
  According to an eleventh aspect of the present invention, an elastic release tube material is inserted into the bent tube to facilitate pulling out of the bent tube.
  According to the twelfth aspect of the present invention, a deaeration pipe is disposed on the inner surface of the filling bag, one end of the pipe is opened to the atmosphere, and the air staying in the filling bag can be reliably discharged to the outside.
  Claim 13This invention excavates between the curved columns along the curved columns, and places connecting members such as concrete or mortar in the excavation holes to connect the curved columns, so that the curved columns can be easily connected. it can.
[0009]
【Example】
Hereinafter, the illustrated embodiment in which the present invention is applied to the widening of a shield tunnel will be described. In FIGS. 1 to 10, reference numerals 1 and 2 denote tunnels that are built apart from the natural ground 3 and cover the inner surface of these excavation holes. Segments 4 and 5 as construction walls are constructed, and peripheral walls 6 and 7 are provided on the inner surfaces of the segments 4 and 5.
Rails 8 and 9 are laid on the horizontal lower portions of the peripheral walls 6 and 7, and platforms 11 and 12 constituting the local station 10 are provided at positions close to the rails 8 and 9.
[0010]
The local station 10 is installed in the widened portion 13 between the tunnels 1 and 2, and the upper and lower portions of the widened portion 13 are partitioned by curved walls 14 and 15.
The curved walls 14 and 15 are formed to be bent in the vertical direction, and in the case of the embodiment, they are configured in the same shape, and a large number of the curved columns 16 and 17 are arranged continuously and partially overlapping as shown in FIG. However, it has a substantially beaded cross-sectional shape. In this case, the curved columns 16 and 17 also function as connecting members that connect them.
[0011]
In the case of the embodiment, the curved columns 16 and 17 are configured by bending a cylinder with the same diameter to have the same curvature, and alternately arranging them, and these are arranged as a filling member 18 such as mortar or concrete, or the filling member 18. It is composed of a reinforcing member 19 such as a steel pipe, a reinforcing bar or a steel plate, and the member 19 is formed to have the same length as the curved column 17.
Among them, the curved column 16 is constituted by a poorly-filled filling member 18 in which a small amount of cement is blended, and the curved column 17 is a richly-filled filling member 18 in which a larger amount of cement is blended than the curved column 16 and the member. 18 and a reinforcing member 19 embedded in 18.
[0012]
The circumferential surface of the curved column 16 is covered with a flexible filling bag 20 that can transmit air and prevent water leakage. The bag 20 is configured to be longer than the curved column 16, and the outer diameter of the bag 20 is a curve described later. It is formed to be slightly smaller in diameter than the inner diameter of the tube, and allows the air staying in the bag 20 to be discharged. An injection member such as cement milk is inserted into the curved excavation hole 21 between the bag 20 and the ground 3. 22 is filled.
In this case, the curved excavation hole 21 includes an extra excavation and is formed in a substantially elliptical shape as shown in FIG.
[0013]
The circumferential surface of the curved column 17 and the circumferential surface of the filling member 18 in the reinforcing member 19 are covered with flexible filling bags 23 and 24 that allow air to pass therethrough and prevent water leakage. 24 is configured to be longer than the curved column 17 and the reinforcing member 19.
Among these, the outer diameter of the filling bag 23 is formed to be slightly smaller than the inner diameter of the curved pipe, which will be described later, so that the air staying in the bag 23 can be discharged. The curved excavation hole 25 is filled with an injection member 26 such as cement milk. In this case, the curved excavation hole 25 includes an extra excavation and is formed in a substantially elliptical shape as shown in FIG.
[0014]
In the figure, reference numeral 27 denotes a flexible filling tube embedded on the outer peripheral side of the curved column 16, the distal end of which opens to the distal end portion of the filling bag 20, the base end portion projects from the filling bag 20, and the filling member supply pipe is inserted into the portion. (Not shown) are connected.
The filling tube 27 is preferably attached to the inner surface of the filling bag 20 by an appropriate means. By doing so, the filling bag 20 and the filling tube 27 are integrated, and can be easily inserted into a curved tube described later.
[0015]
Reference numeral 28 denotes a flexible long filling tube embedded on the outer peripheral side of the curved column 16, the distal end of which opens at the distal end portion of the filling bag 23, the base end portion projects from the filling bag 23, and the filling member supply pipe is formed at the portion. (Not shown) are connected.
The filling tube 28 is desirably attached to the inner surface of the filling bag 23 by an appropriate means. By doing so, the filling bag 23 and the filling tube 28 are integrated, and can be easily inserted into a curved tube described later.
[0016]
29 is a flexible long filling tube embedded on the outer peripheral side of the filling member 18 in the reinforcing member 19, one end of which opens to the tip of the filling bag 24, and the other end projects from the filling bag 24, A filling member supply pipe (not shown) is connected.
The filling tube 29 is desirably attached to the inner surface of the filling bag 24 by an appropriate means. By doing so, the filling bag 24 and the filling tube 29 are integrated, and can be easily inserted into a curved tube described later.
[0017]
In the figure, reference numerals 30 and 31 are curved pipes having the same diameter, and are configured to have approximately the same length as the curved columns 16 and 17, and these are embedded back and forth at a predetermined position of the natural ground 3 by the curved boring device 32. After filling the filling member 18 or the member 18 and the reinforcing member 19, it can be pulled out.
As shown in FIG. 4, the curved boring device 32 is installed on a long frame 33 installed in one of the tunnels 2, and a propulsion device 34 is attached to the frame 33.
[0018]
The propulsion device 34 includes a curved pipe feed cylinder 35 and an inner pipe feed cylinder 36, of which the curved pipe feed cylinder 35 is connected to the curved pipes 30 and 31 via a main pushing case 37. The rod 38 is extended so that the bent tubes 30 and 31 are sent out in the direction of the arrow.
[0019]
Further, the inner pipe feed cylinder 36 is connected to the inner pipe 40 through a case 39, and the cylinder rod 41 is extended to feed the inner pipe 40 in the direction of the arrow so that it can be inserted into the curved pipes 30 and 31. I have to.
The curved pipes 30 and 31 and the inner pipe 40 are composed of a large number of curved short pipes, which are pin-connected to form a predetermined curvature. The excavated earth and sand can be discharged to the tunnel 2 side using the gap with 40.
[0020]
A cylindrical shoe 42 and a drilling device 43 are provided at the distal ends of the curved pipes 30 and 31, and the shoe 42 is swingably connected to the distal ends of the curved pipes 30 and 31. Is provided with an oil motor (not shown) so that the rotational driving force of the motor can be transmitted to the cutter bit 44.
[0021]
In the figure, 45 is a mouth pipe attached to the opening of the segment 5, and a water stop valve 46 and a water stop device 47 are provided at the lower end thereof.
Numerals 48 and 49 are hollow filling pipes piped on the peripheral surfaces of the curved pipes 30 and 31. In the embodiment, a small-diameter steel pipe is welded to the small curved side peripheral surface, and one end of the pipe 48 is connected to the curved pipes 30 and 31. It opens to a front-end | tip part, and the other end is connected to cavity filling member supply pipes (not shown), such as cement milk.
[0022]
11 to 14 show another embodiment of the present invention, and the same reference numerals are used for the components corresponding to the above-described embodiment.
Among them, in the second embodiment shown in FIG. 11, instead of building the curved walls 14 and 15 by continuously and overlapping the curved columns 16 and 17, the curved columns 17 are installed at a predetermined distance apart by the above-described method. Between them, a special excavator is used for excavation along the curved columns 17 and 17, and a connecting member 51 such as concrete or mortar is driven into the excavation hole 50 to construct the curved walls 14 and 15.
[0023]
By doing so, it is possible to omit the construction of the plurality of curved columns 16 and 17 between the curved columns 17 and 17 and to reduce the work cost and the work period, and to change the cross-sectional shape of the curved walls 14 and 15 from a bead shape. The curved walls 14 and 15 having a constant thickness can be obtained.
In this case, if the curved column 16 is employed instead of the curved column 17 in accordance with the strength of the curved walls 14 and 15, the installation of the reinforcing member 19 and the omission of the member 19, the reduction in construction cost and construction period can be promoted.
[0024]
In the third and fourth embodiments shown in FIGS. 12 and 13, instead of the curved walls 14 and 15, a plurality of curved columns 16 or 17 are spaced apart by the above-described method and arranged in a column shape, and the natural ground 3 The stability of. In this case, in the fourth embodiment, the reinforcing member 19 is sufficiently filled, the strength of the curved column is strengthened, and the natural ground 3 is stabilized.
Thus, since the curved columns 16 and 17 of the present invention are formed in a curved column shape, compared to the conventional straight column-type continuous underground wall adopted in the edge cutting method, Depending on the shape of the support base, its periphery can be protected precisely and finely. Also, since the curved walls 14 and 15 of the present invention can be constructed at various angles with respect to the natural ground 3, they are constructed exclusively vertically. Compared with the conventional wall-type continuous underground wall, it can be used in a wide range.
Such column columns of the curved columns 16 and 17 can obtain the stability of the natural ground 3 more easily and cheaply than the curved walls 14 and 15.
[0025]
In this case, in the column row, the curved columns 16 and 17 are arranged around the underground structure as compared with the pipe roof method conventionally employed as a protection means for the underground structure. Since the curved pillars 16 and 17 are substantially arched, the support strength is strengthened compared to a straight pipe arranged horizontally or obliquely, and the protective ability of the underground structure can be improved.
[0026]
In the fifth embodiment shown in FIG. 14, the release pipe materials 52 and 53 having elasticity such as foamed polystyrene and rubber are inserted into the bent pipes 30 and 31, and the bent pipes 30 and 31 are urged to be pulled out. In addition, degassing pipes 54 and 55 are piped to the large curved side inner surfaces of the release pipe materials 52 and 53, that is, at the same positions on the top end side and the reinforcing member 19, and one end thereof is opened to the atmosphere. The air staying inside can be surely discharged.
[0027]
When the tunnels 1 and 2 are widened by a construction method such as an underground curved wall configured as described above, the tunnels 1 and 2 are excavated and the segments 4 and 5 are built on the inner surface of the excavation hole, Then, the frame 33 is installed at the boring start position of the excavation hole 21, and the propulsion device 34 of the curved boring device 32 is installed upward on the frame 33.
In this case, it is desirable that the frame 33 can move along the axial direction of the tunnel 2 in place of the fixed type as shown in the figure, is equipped with a plurality of jacks around it, and can support the propulsion device 34 during boring. By doing so, the propulsion device 34 can be easily moved.
[0028]
Then, the curved pipe 30 is connected to the curved pipe feed cylinder 35 of the propulsion device 34 via the main pushing case 37, and the curved short pipe constituting the pipe 30 is sequentially sent out in the direction of the arrow in FIG. While being inserted into the mouth tube 45, the inner tube 40 is connected to the inner tube feed cylinder 36 via a case 39, and the curved short tube constituting the tube 40 is sequentially sent out in the same direction as the bent tube 30.
[0029]
When the curved pipe 30 and the inner pipe 40 are sent out and the tip thereof is inserted into the natural ground 3, the excavating device 43 is driven to excavate the natural ground 3 into a substantially arc shape as shown in FIG. It moves to the gap between the curved pipe 30 and the inner pipe 40 and discharges it into the tunnel 2.
In this way, the excavator 43 excavates the natural ground 3, and the curved pipe 30 and the inner pipe 40 are sequentially sent out, and when the tip reaches the segment 4 of the tunnel 1, the excavator 43 is stopped, The inner tube 40 and the bent tube 30 are pulled out.
[0030]
Thereafter, the propulsion device 34 is moved by a predetermined distance in the axial direction of the tunnel 2 and installed on the frame 33. As described above, the curved pipe 30 is connected to the curved pipe feed cylinder 35 via the main pushing case 37. The curved short tubes constituting the tube 30 are sequentially sent out in the direction of the arrow in FIG. 4 and inserted into the mouth tube 45.
Further, the inner pipe 40 is connected to the inner pipe feed cylinder 36 via the case 39, and the curved short pipe constituting the pipe 40 is sequentially sent out in the same direction as the curved pipe 30.
[0031]
Then, the excavator 43 is driven to excavate the natural ground 3 in a substantially arc shape, and the curved pipe 30 and the inner pipe 40 are sequentially sent out, and when the tip reaches the segment 4 of the tunnel 1, the excavator 43 is Stop and pull out the device 43 and the inner tube 40 from the curved tube 30.
Hereinafter, these operations are repeated to embed a plurality of curved pipes 30 in the natural ground 3.
This situation is as shown in FIG. 5A, and the cavity filling pipe 48 is arranged on the small curved side of each pipe 30, that is, on the lower peripheral surface.
[0032]
Thereafter, a filling bag 20 having a filling tube 27 attached thereto is prepared, and the tip thereof is closed 20 a by appropriate means such as binding or binding, and this is inserted into the bent tube 30 using the filling tube 27.
This situation is as shown in FIGS. 5B and 6, and the blocking portion 20 a is located at the tip of the curved tube 30 on the tunnel 1 side, and one end of the filling tube 27 is opened inside, and the other end is filled. It protrudes from the bag 20, a filling member supply pipe (not shown) is connected to the protruding portion, and a poorly filled filling member 18 using a small amount of cement is supplied to the pipe.
[0033]
If it does in this way, the filling member 18 will be discharged | emitted in the filling bag 20 from the front-end | tip of the filling pipe | tube 27, this will fill the filling bag 20 from the front end side, and this bag 20 will be connected with the curved pipe 30 like FIG.5 (c). Swells to approximately the same cross section.
At that time, the air in the filling bag 20 and the air mixed in the filling member 18 are pushed out to the proximal end side of the filling bag 20 by the filling member 18, and part of the air passes through the filling bag 20, It is pushed out into the gap with the curved pipe 30, moves through the gap and is discharged to the outside. Therefore, the filling member 18 is smoothly and densely filled in the filling bag 20, and the strength after curing can be obtained.
[0034]
Thus, when the filling bag 20 and the filling pipe 27 are inserted and the filling member 18 is filled in the entire area of the curved pipe 30, the filling bag 20 and the filling pipe 27 are also inserted into the adjacent curved pipe 30, and the filling member is filled therewith. Fill 18 Thereafter, the above operation is sequentially performed on the other curved pipes 30, and the filling members 18 are filled in all the curved pipes 30. In this case, the filling tube 27 is embedded in the filling member 18.
[0035]
After the filling member 18 is cured, the frame 33 is installed at the drawing start position of the bent tube 30, the propulsion device 34 of the curved boring device 32 is installed again on the frame 33, and the bent tube feed cylinder 35 of the device 34 is attached to the bent tube 30. The curved pipe 30 is connected through the former pushing case 37, and the pipe 30 is sequentially pulled out.
[0036]
In this case, the filling bag 20 is interposed between the curved tube 30 and the filling member 18, and the outer diameter of the filling bag 20 is slightly smaller than the inner diameter of the bent tube 30, and a minute gap is formed between them. Therefore, the bent tube 30 is pulled out smoothly and efficiently.
In addition, since the bent tube 30 is pulled out after the filling member 18 is cured, a predetermined strength can be obtained in the bent tube 30, and cracking, deformation due to earth pressure, or the like when the tube is pulled out before it is cured can be prevented. It can be prevented beforehand.
[0037]
At that time, a cavity filling member supply pipe (not shown) is connected to the base end portion of the cavity filling pipe 48, and the filling member is supplied to the pipe.
In this way, the cavity filling member 22 such as cement milk is discharged from the tip of the pipe 48, and the empty space of the bent pipe 30 from which the hollow filling member 22 has been pulled out and the curved excavation hole 21 are filled. This situation is as shown in FIG.
[0038]
Thus, when the cavity filling member 22 is sequentially filled from the distal end side of the curved pipe 30 and all the pipe 30 is pulled out, the cavity filling member 22 is filled in the entire area around them.
Therefore, when the cavity filling member 22 is subsequently cured, the curved column 16 is firmly fixed to the natural ground 3 through the member 22. This situation is as shown in FIG.
[0039]
Thereafter, the adjacent curved pipe 30 is pulled out, and when the injection member 22 is filled in the empty space and the curved excavation hole 21, the mouth pipe 45 is removed. Thereafter, the above operation is sequentially performed on the other curved pipes 30, all the curved pipes 30 are pulled out, and the injection member 22 is filled.
[0040]
Next, the frame 33 is installed at the boring start position of the excavation hole 25, and the propulsion device 34 of the curved boring device 32 is installed upward on the frame 33.
Then, the curved pipe 31 is connected to the curved pipe feed cylinder 35 of the propulsion device 34 via the main pushing case 37, and the curved short pipe constituting the pipe 31 is sequentially sent in the direction of the arrow in FIG. In addition to being inserted into the mouth tube 45, the inner tube 40 is connected to the inner tube feed cylinder 36 via a case 39, and the curved short tube constituting the tube 40 is sequentially sent out in the same direction as the bent tube 31.
[0041]
When the curved pipe 31 and the inner pipe 40 are sent out and the tip thereof is inserted into the natural ground 3, the excavator 43 is driven, and the natural ground 3 between the curved columns 16, 16 and the curved columns 16, 16 are adjacent to each other. A part is excavated, and an excavation hole 25 having a substantially the same cross section as the excavation hole 21 is excavated in the part.
In this case, the excavator 43 scrapes a part of the curved columns 16 and 16, but since the filling member 18 is poorly blended with cement, it has lower hardness and strength than those with rich blends. The burden is reduced.
The excavator 43 excavates the excavation hole 25 in a substantially arc shape as shown in FIG. 4, moves the excavated earth and sand to the gap between the curved pipe 31 and the inner pipe 40, and discharges it into the tunnel 2.
[0042]
Thus, the excavator 43 excavates the natural ground 3, and the curved pipe 31 and the inner pipe 40 are sequentially sent out, and when the tip reaches the segment 4 of the tunnel 1, the excavator 43 is stopped, The inner tube 40 is pulled out from the curved tube 31.
[0043]
Thereafter, the propulsion device 34 is moved by a predetermined distance in the axial direction of the tunnel 2 and installed on the frame 33. As described above, the curved pipe 31 is connected to the curved pipe feed cylinder 35 via the main pushing case 37. The curved short tubes constituting the tube 31 are sequentially sent out in the direction of the arrow in FIG. 4 and inserted into the mouth tube 45.
Further, the inner pipe 40 is connected to the inner pipe feed cylinder 36 via the case 39, and the curved short pipe constituting the pipe 40 is sequentially sent out in the same direction as the curved pipe 31.
[0044]
Then, the excavator 43 is driven to excavate the natural ground 3 in a substantially arc shape, and the curved pipe 31 and the inner pipe 40 are sequentially sent out. When the tip reaches the segment 4 of the tunnel 1, the excavator 43 is Stop and pull out the device 43 and the inner tube 40 from the curved tube 31.
Hereinafter, these operations are repeated to embed a plurality of curved pipes 31 in the natural ground 3.
This situation is as shown in FIG. 8A, and the cavity filling pipe 49 is arranged on the small curved side of each pipe 31, that is, on the lower peripheral surface.
[0045]
Thereafter, a filling bag 23 having a filling pipe 28 attached thereto is prepared, the tip of the filling bag 23 is closed with an appropriate means such as binding or binding, and this is inserted into the bent pipe 31 using the filling pipe 28.
A reinforcing member 19 is accommodated in the filling bag 23, a filling bag 24 having a filling tube 29 attached to the inner surface is accommodated in the member 19, and the tip thereof is closed 24a by appropriate means such as binding or binding. .
[0046]
In this case, first, the filling bag 23 and the filling tube 28 may be inserted into the curved pipe 31, and then the reinforcing member 19 containing the filling bag 24 and the filling tube 29 may be inserted. This is troublesome, and the filling bag 23 is easily damaged or damaged when the reinforcing member 19 is inserted. Therefore, it is desirable to insert them together.
[0047]
This situation is as shown in FIGS. 8 (b) and 9, wherein the blocking portion 23a is located at the tip of the curved pipe 31 on the tunnel 1 side, and one end of the filling pipe 28 is opened inside, and the other end is filled. Projecting from the bag 23.
Further, the closing portion 24 a is located at the distal end portion of the reinforcing member 19 on the tunnel 1 side, one end of the filling tube 29 is opened inside, and the other end protrudes from the filling bag 24.
[0048]
Then, a filling member supply pipe (not shown) is connected to the other ends of the filling pipes 28 and 29, and a rich blending filling member 18 containing a larger amount of cement than the reinforcing member 18 of the curved column 16 is connected to the pipe at the same time. Supply.
[0049]
If it does in this way, the filling member 18 will be discharged | emitted in the filling bag 23 from the front-end | tip of the filling pipe | tube 28, and this will fill the filling bag 23 from the front end side, and this bag 23 will be connected with the curved pipe 31 like FIG.8 (c). Swells to approximately the same cross section.
At that time, the air in the filling bag 23 and the air mixed in the filling member 18 are pushed out to the proximal end side of the filling bag 23 by the filling member 18, and part of the air passes through the filling bag 23, Therefore, the filling member 18 is smoothly and densely filled in the filling bag 23, and the strength of the member 18 after hardening is reliable. Can be obtained.
[0050]
Further, the filling member 18 is also discharged into the filling bag 24 from the tip of the filling tube 29, which fills the filling bag 24 from the tip side, and the bag 24 is substantially the same as the reinforcing member 19 as shown in FIG. Swells in cross section.
At that time, the air in the filling bag 24 and the air mixed in the filling member 18 are pushed out to the proximal end side of the filling bag 24 by the filling member 18, discharged from the bag 24 through the filling bag 23, and A part passes through the filling bag 24, is pushed into the gap between the bag 24 and the reinforcing member 19, moves through the gap, and is discharged to the outside.
Therefore, the filling member 18 is smoothly and densely filled in the filling bag 24, the bag 24 is in close contact with the inner surface of the reinforcing member 19, and the strength of the reinforcing member 18 after hardening can be obtained.
[0051]
Thus, when the filling bags 23 and 24, the filling pipes 28 and 29, and the reinforcing member 19 are inserted into the curved pipe 31, and the filling member 18 is filled in the inside and outside of the reinforcing member 19, the adjacent curved pipes are filled. The filling bags 23 and 24, the filling pipes 28 and 29, and the reinforcing member 19 are also inserted into 31, and the filling member 18 is filled therein. Thereafter, the above operation is sequentially performed on the other curved pipes 31, and the filling members 18 are filled in all the curved pipes 31. In this case, the filling tubes 28 and 29 are embedded in the filling member 18.
[0052]
After the filling member 18 is cured, the frame 33 is installed at the drawing start position of the curved pipe 31, and the propulsion device 34 of the curved boring device 32 is installed again on the frame 33. The curved pipe 31 is connected via the main pushing case 37, and the pipe 31 is sequentially pulled out.
[0053]
  In this case, the filling bag 23 is interposed between the curved pipe 31 and the filling member 18, and the outer diameter of the filling bag 23 is slightly smaller than the inner diameter of the curved pipe 31, and a minute gap is formed between them. Therefore, the curved pipe 31 is pulled out smoothly and efficiently.
  In addition, after the filling member 18 is cured, the bent tube 31 is pulled out.Filling member 18Can be prevented from being cracked, deformed by earth pressure or the like when it is pulled out before being cured.
[0054]
At that time, a cavity filling member supply pipe (not shown) is connected to the base end portion of the cavity filling pipe 49, and the filling member is supplied to the pipe.
If it does in this way, injection members 26, such as cement milk, will be discharged from the tip of the above-mentioned pipe 49, and the empty space of the curved pipe 31 where this was pulled out and the curved excavation hole 25 will be filled up. This situation is as shown in FIG.
[0055]
Thus, the cavity filling member 26 is sequentially filled from the distal end side of the curved pipe 31, and when all of the pipe 31 is pulled out, the injection member 26 is filled in the entire area around them.
Therefore, when the injection member 26 is cured thereafter, the curved column 17 is firmly fixed to the curved columns 16 and 16 adjacent to the natural ground 3 via the member 26. This situation is as shown in FIG.
[0056]
Thereafter, the adjacent curved pipe 31 is pulled out, and the injection member 26 is filled in the empty space and the curved excavation hole 25. Thereafter, the above operations are sequentially performed on the other curved pipes 31, all the curved pipes 31 are pulled out, and the injection member 26 is filled.
[0057]
When the curved wall 14 is constructed on the upper portion of the widened portion 13 in this way, a water stop effect is obtained by the wall 14 and an overload, earth pressure, etc. are supported, and the widened portion below the curved wall 14 is subsequently expanded. Construction can be done safely.
In addition, since the curved wall 14 has an arch shape that curves upward, the support strength is higher than the conventional pipe roof construction method, and the safety of the work is improved.
Therefore, protective methods for surrounding structures such as an injection method, a freezing method, and an edge cutting method, which are conventionally employed for ground improvement, are not required, and the curved wall 14 is allocated to the lining wall of the widened portion 13. Therefore, the construction cost can be reduced and the construction period can be shortened.
[0058]
Next, after the curved wall 14 is constructed, the curved wall 15 is constructed at the lower portion of the widened portion 13.
The construction of the curved wall 15 is substantially the same as the construction of the curved wall 14, and the propulsion device 34 of the curved boring device 32 is installed downward on the frame 33, and the curved tubes 30 and 31 are embedded from the device 34 back and forth. Then, after filling the filling member 18 and the reinforcing member 19 into these, the curved pipes 30 and 31 are pulled out, and the empty spaces and the excavation holes 21 and 25 may be filled with the injection members 22 and 26.
[0059]
Thus, when the curved wall 15 is constructed at the lower portion of the widened portion 13, the wall 15 is cut off from the lower natural ground 3 to stop the water and protect the underground structure below the wall 15. Therefore, the curved wall 15 can be applied to the lining wall of the widened portion 13, thereby reducing the work cost and shortening the construction period.
[0060]
After the construction of the curved walls 14 and 15, the widened portion 13 partitioned by these is excavated, and the premises station 10 is constructed in the excavation empty space. In that case, the curved walls 14 and 15 can be utilized as a partition wall of the premise station 10.
[0061]
In this case, in the above embodiment, the curved columns 16 and 16 are connected by the curved column 17 to form the curved walls 14 and 15, so that the curved column 17 functions as a connecting member for the curved columns 16 and 16.
At this time, if the curved column 16 is connected instead of the curved column 17, the curved walls 14 and 15 can be constructed inexpensively and easily by omitting the reinforcing member 19 and the filling tube 29.
[0062]
Thus, since the curved walls 14 and 15 of this invention are formed in the curved plate shape, compared with the conventional flat wall type continuous underground wall employ | adopted by the edge cutting method, the shape of an underground structure Depending on the situation, the surrounding area can be protected precisely and finely, and after construction it can be used as part of the underground structure.
Moreover, since the curved walls 14 and 15 of this invention can be built at various angles with respect to the natural ground 3, compared with the conventional wall type continuous underground wall built exclusively vertically, the wide use can be aimed at.
[0063]
【The invention's effect】
  In the first aspect of the invention, the curved column is arranged over the entire length of the curved excavation hole, and the adjacent curved columns are arranged close to each other in the cross-sectional diameter thereof, so that an underground structure or support is provided. According to various shapes of the base, it can be protected precisely and finely, and its supporting strength can be enhanced.
  In the invention of claim 2, the curved columns adjacent to each other are arranged and connected with their cross-sections partially overlapping, so that they can be protected precisely and finely according to various shapes of underground structures and support bases. At the same time, it is possible to provide a continuous curved wall-like underground curved member that can reinforce the connection strength of the adjacent curved columns and enhance the supporting strength thereof.
  In the invention of claim 3, since the curved column filled with the filling member poorly blended with the cement and the curved column filled with the filling member rich in the cement are alternately arranged, the strength and the construction cost are rationally designed. An underground bending member can be provided.
  In the invention of claim 4, since the cross section is formed in a substantially bead shape, the curved pillar can be firmly fixed to the natural mountain by increasing the contact area with the natural mountain.
  In the invention of claim 5, the adjacent curved pipes are arranged close to each other in the cross sectional diameter thereof, and after the filling bag is inserted over the entire length of the curved pipe, the filling member is filled into the filling bag. And, after the filling member is cured, the bent pipe is pulled out, so that the moving distance of the excavator such as a curved boring device can be shortened, the efficiency of the excavation work can be improved, and the complicated clogging work of the excavation hole can be eliminated. The construction cost is reduced, the crack of the filling member is prevented and the deformation and crushing due to earth pressure etc. are prevented, the curved column is laid in the ground safely and securely, and the curved pipe is pulled out to fill the bag Compared to the method of filling the filling member, the curved column can be formed securely, safely and precisely.
  In the invention of claim 6, between the curved columns laid on the natural ground, a curved excavation hole is excavated by partially cutting a section of the curved column, and a curved pipe is laid in the excavation hole. Cutting of the curved pipe can be avoided, the excavation hole can be easily excavated, and the connection strength between the adjacent curved columns can be enhanced.
  In the invention of claim 7, a filling bag is inserted into the curved pipe, a filling member is filled into the filling bag, and after the filling member is cured, the curved pipe is pulled out, and the adjacent curved columns are cross-sectionally crossed each other. Since it is partially overlapped and connected, after securing a predetermined strength to the filling member, by pulling out the curved pipe, it is possible to prevent deformation and crushing of the filling member due to cracking, earth pressure, etc. While laying the pillar safely and securely on the ground, the connection strength between the adjacent curved pillars can be enhanced.
  The invention according to claim 8 lays a curved pipe having a cavity-filled pipe capable of supplying an injection member to the digging hole attached to the outer peripheral portion, and therefore laying them by laying the cavity-filled pipe and the curved pipe simultaneously. It can be reasonably constructed.
  In the invention of claim 9, the outer diameter of the filling bag is slightly smaller than the inner diameter of the curved tube, and when the filling member is filled in the filling bag, a minute gap is formed between the bent tube and the filling bag. Therefore, the curved pipe can be pulled out smoothly and efficiently.
  According to the invention of claim 10, when the bent pipe is pulled out, the injection member is filled into the excavation hole outside the curved pipe through the cavity filling pipe, so that the injection member can be filled reasonably.
  In the eleventh aspect of the present invention, since a release tube material having elasticity is inserted into the bent tube, the bent tube can be pulled out.
  In the twelfth aspect of the present invention, a deaeration pipe is arranged on the inner surface of the filling bag, and one end of the pipe is opened to the atmosphere, so that air staying in the filling bag can be reliably discharged to the outside.
  Claim 13In this invention, the curved columns are excavated along the curved columns, and connecting members such as concrete or mortar are connected to the excavation holes to connect the curved columns. Can be constructed.
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment of the present invention, and shows a widening state of a tunnel.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
3 is an enlarged cross-sectional view showing a main part of FIG.
FIG. 4 is a cross-sectional view showing a state in which a bent pipe is embedded according to the present invention.
FIGS. 5A to 5D are cross-sectional views sequentially showing a construction status of a curved column and a construction progress status of a curved wall according to the present invention.
6 is a cross-sectional view taken along line BB in FIG. 5 and shows a state in which a filling bag and a filling tube are inserted into a curved pipe, slightly reduced.
7 is a cross-sectional view taken along the line CC in FIG. 5, and shows a state in which the filling member is filled in the filling bag and the filling member is filled in the empty space and the curved excavation hole of the curved pipe. Show.
FIGS. 8A to 8D are cross-sectional views sequentially showing the construction status of another curved column after the construction of one curved column and the construction status of the curved wall. FIG.
9 is a cross-sectional view taken along the line DD of FIG. 8 and shows a state in which a filling bag, a filling tube, and a reinforcing member are inserted into another curved pipe, slightly reduced.
FIG. 10 is a cross-sectional view taken along the line EE in FIG. 8 and shows a slightly reduced state where the filling member is filled in the empty space and the curved excavation hole of the curved pipe after filling the filling bag with the filling member. It is shown.
FIG. 11 is a cross-sectional view showing a second embodiment of the present invention, illustrating the construction of a curved wall.
FIG. 12 is a cross-sectional view showing a third embodiment of the present invention, illustrating the construction status of a curved column.
FIG. 13 is a cross-sectional view showing a fourth embodiment of the present invention, illustrating another construction status of the curved column.
FIG. 14 is an enlarged cross-sectional view showing a fifth embodiment of the present invention, and shows an arrangement state of the release tube material and the deaeration tube after the bent tube is pulled out.
[Explanation of symbols]
3 natural mountains
16, 17 Curved column (connecting member)
18 Filling material
19 Reinforcing member
20, 23, 24 Filling bag
21, 25 Curved borehole
22, 26 Injection member
23a, 24a Blockage (part)
27, 28, 29 Filling tube
30, 31 curved pipe
51 Connecting member
52,53 Release tube material
54,55 Deaeration tube

Claims (13)

填充部材の外周面を填充袋で被覆した湾曲柱を地山に複数敷設した地中湾曲部材において、前記湾曲柱を、湾曲掘削孔の長さの全域に亘って配置し、相隣接する前記湾曲柱をその横断面径以下に近接配置したことを特徴とする地中湾曲部材。 In an underground bending member in which a plurality of curved columns whose outer peripheral surfaces are covered with a filling bag are laid in a natural ground, the curved columns are arranged over the entire length of the curved excavation hole, and the curved portions adjacent to each other are arranged. An underground bending member characterized in that columns are arranged close to each other in a cross sectional diameter or less . 相隣接する前記湾曲柱を互いの断面を一部重複して配置し連結した請求項1記載の地中湾曲部材。The underground curved member according to claim 1, wherein the curved columns adjacent to each other are arranged and connected with their respective cross sections partially overlapped . セメントを貧配合した填充部材を填充した湾曲柱と、セメントを富配合した填充部材を填充した湾曲柱とを、交互に配置した請求項記載の地中湾曲部材。The underground curved member according to claim 2 , wherein the curved column filled with a filling member poorly blended with cement and the curved column filled with a filling member richly blended with cement are alternately arranged . 横断面を略数珠形状に形成した請求項記載の地中湾曲部材。The underground curved member according to claim 2, wherein the cross section is formed in a substantially bead shape . 地山に複数の湾曲掘削孔を掘削し、該湾曲掘削孔の長さの全域に亘って曲管を敷設し、該曲管に填充袋を挿入後、前記曲管を引き抜くとともに、前記填充袋に填充部材を填充して湾曲柱を形成する地中湾曲部材の築造方法において、相隣接する曲管を、その横断面径以下に近接配置し、前記曲管の長さの全域に亘って填充袋を挿入後、該填充袋に填充部材を填充し、かつ該填充部材の硬化後、前記曲管を引き抜くことを特徴とする地中湾曲部材の築造方法。 Drilling a plurality of curved excavation holes in a natural ground, laying a curved pipe over the entire length of the curved excavation hole, inserting a filling bag into the curved pipe, pulling out the curved pipe, and filling the filling bag In the construction method of the underground curved member in which the filling member is filled to form the curved column , the adjacent curved pipes are arranged close to each other below the transverse cross-sectional diameter, and the entire length of the curved pipe is filled. A method for constructing an underground bending member, wherein a filling member is filled into the filling bag after the bag is inserted, and the curved pipe is pulled out after the filling member is cured. 地山に敷設した前記湾曲柱の間に、該湾曲柱の断面を一部切除して湾曲掘削孔を掘削し、該掘削孔に曲管を敷設する請求項記載の地中湾曲部材の築造方法 The construction of an underground curved member according to claim 5 , wherein a curved excavation hole is excavated by partially cutting a section of the curved column between the curved columns laid on a natural ground, and the curved pipe is laid in the excavation hole. Method 前記曲管に填充袋を挿入し、該填充袋に填充部材を填充し、該填充部材の硬化後、前記曲管を引き抜き、相隣接する湾曲柱を互いの断面を一部重複して配置し連結する請求項記載の地中湾曲部材の築造方法。 Insert a filling bag into the curved pipe, fill the filling bag with a filling member, and after the filling member has hardened, pull out the curved pipe, and arrange adjacent curved columns partially overlapping each other in cross section. The method for building an underground bending member according to claim 6 to be connected . 前記掘削孔に注入部材を供給可能な空洞填充パイプを外周部に取り付けた曲管を敷設する請求項または請求項記載の地中湾曲部材の築造方法。 The underground bending member construction method according to claim 5 or 6, wherein a curved pipe having a cavity-filling pipe capable of supplying an injection member to the excavation hole is attached to an outer peripheral portion . 前記填充袋の外径は、前記曲管の内径より若干小径で、填充袋に填充部材を充填した際、前記曲管と填充袋の間に微小な間隙を形成する請求項または請求項記載の地中湾曲部材の築造方法。 The outer diameter of the HamaTakashibukuro is slightly smaller in diameter than the inner diameter of the bent tube, when filled with stuffing member HamaTakashibukuro, claim 5 or claim to form a small gap between the curved pipe and HamaTakashibukuro 6 The construction method of the underground bending member as described. 前記曲管の引き抜き時、前記空洞填充パイプを介して、曲管の外側の掘削孔に注入部材を充填する請求項8記載の地中湾曲部材の築造方法。When withdrawal of the curved pipe, the cavity stuffing through a pipe, construction method according to claim 8 Symbol placing underground curved member to fill the outer borehole injection member bends. 前記曲管の内部に弾性を有する離管材を挿入する請求項記載の地中湾曲部材の築造方法。The underground bending member construction method according to claim 5, wherein a release tube material having elasticity is inserted into the bent pipe . 前記填充袋の内面に脱気管を配置し、該管の一端を大気に開放する請求項記載の地中湾曲部材の築造方法。The construction method of the underground bending member of Claim 5 which arrange | positions the deaeration pipe | tube on the inner surface of the said filling bag, and open | releases one end of this pipe | tube to air | atmosphere . 前記湾曲柱の間を湾曲柱に沿って掘削し、該掘削穴にコンクリ−トまたはモルタル等の連結部材を打設して湾曲柱を連結する請求項記載の地中湾曲部材 6. The underground curved member according to claim 5, wherein the curved column is connected by digging between the curved columns along the curved column and placing a connecting member such as a concrete or mortar in the drilled hole.
JP5050395A 1995-02-15 1995-02-15 Underground bending member and its construction method Expired - Lifetime JP3801229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5050395A JP3801229B2 (en) 1995-02-15 1995-02-15 Underground bending member and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5050395A JP3801229B2 (en) 1995-02-15 1995-02-15 Underground bending member and its construction method

Publications (2)

Publication Number Publication Date
JPH08218770A JPH08218770A (en) 1996-08-27
JP3801229B2 true JP3801229B2 (en) 2006-07-26

Family

ID=12860767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5050395A Expired - Lifetime JP3801229B2 (en) 1995-02-15 1995-02-15 Underground bending member and its construction method

Country Status (1)

Country Link
JP (1) JP3801229B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013627B1 (en) * 2010-05-31 2011-02-10 주식회사동일기술공사 Roof of underground structure and method for constructing the same
CN105240024B (en) * 2015-09-23 2017-08-25 中国地质大学(武汉) A kind of method of parallel shield method enlarging construction subway station

Also Published As

Publication number Publication date
JPH08218770A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
JP5103516B2 (en) Pre-support tunnel construction method for large section tunnel
KR101665515B1 (en) Direct-boring pipe roof tunnel construction method and structure non-cutting natural ground
US7600948B2 (en) Micropile retaining wall
JP3824114B2 (en) Whale bone method for large section tunnel
KR100913569B1 (en) Phc pile for retaining wall
KR101750273B1 (en) Tunnel Reinforcement structure and Tunnel Reinforcement methods using the same
JP3833403B2 (en) Large-section tunnel sushi bone method
JP5282541B2 (en) How to prevent lifting of the lining body
CN111335329A (en) Foundation pit supporting system and construction method thereof
JP6154532B2 (en) Guide material for tunnel
KR100914158B1 (en) Process of blocking water penetration and blocking earth collapsing by using impermeable wall without strut
KR100710867B1 (en) Method of upward type base reinforced a substitute for horizontal drainage and that of structure
KR101078080B1 (en) Earth retaining wall and it's construction method using the precast pile and ground reinforcement
CN107044135A (en) A kind of tunnel portal excavates the construction method built
GB2264739A (en) Diaphragm wall with liquid tight joints
JP3801229B2 (en) Underground bending member and its construction method
KR102239089B1 (en) Underaround continued wall structure using casing and pile continuous connection and method therefor
KR100823980B1 (en) Drain combination paker type pressurization grouting equipment and the upward method using the same
JP3860143B2 (en) Excavator for pipe roof and pipe roof construction method using them
KR200381571Y1 (en) Structure of upward type base reinforced a substitute for horizontal drainage
JP3602998B2 (en) Tunnel construction method and tunnel
JP2002188157A (en) Aseismatic reinforcing method for foundation of existing structure
KR102243586B1 (en) Two-side semicircle arch type leading pipe and structure of non-excavation type tunnel using thereof and method of constructing thereof
JP5282542B2 (en) Ground deformation prevention method and ground deformation prevention structure
KR100869369B1 (en) The ground reinforcement apparatus and method grouting type using bundle steel pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term