JP3800880B2 - Receiver unit - Google Patents

Receiver unit Download PDF

Info

Publication number
JP3800880B2
JP3800880B2 JP24044699A JP24044699A JP3800880B2 JP 3800880 B2 JP3800880 B2 JP 3800880B2 JP 24044699 A JP24044699 A JP 24044699A JP 24044699 A JP24044699 A JP 24044699A JP 3800880 B2 JP3800880 B2 JP 3800880B2
Authority
JP
Japan
Prior art keywords
light receiving
light
receiving element
recess
mid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24044699A
Other languages
Japanese (ja)
Other versions
JP2001068692A (en
Inventor
尚之 西川
慎司 桐畑
山中  浩
俊之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP24044699A priority Critical patent/JP3800880B2/en
Publication of JP2001068692A publication Critical patent/JP2001068692A/en
Application granted granted Critical
Publication of JP3800880B2 publication Critical patent/JP3800880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば光散乱式粒子検知センサや光電スイッチのように光を利用した機器あるいは装置等に用いられる受光ユニットに関するものである。
【0002】
【従来の技術】
従来より、センサやスイッチの分野では光を利用した機器あるいは装置等が種々実用化されているが、そのうちの一つとして煙粒子による散乱光を利用して煙の濃度を感知する、いわゆる光電式煙感知器がある。図29は従来の光電式煙感知器の上面断面図を示しており、ハウジング13で構成される暗箱内に設けられた発光ダイオード等の発光素子9と、受光軸を発光素子9の光軸と所定角度だけずらして設けられたフォトダイオード等の受光素子2と、受光素子2に光を集光する受光レンズ30と、発光素子9、受光素子2並びに後述する回路を構成する電子部品が実装されたプリント配線基板から成る回路基板31と、回路基板31との間で発光素子9や受光レンズ3を挟み込んで固定するとともに回路基板31に実装された電子部品32を覆い隠す光学基台33とを備えている。ここで発光素子9から放射される光が届く領域を投光領域M1、受光素子2で光を受光できる領域を受光領域M2、投光領域M1と受光領域M2とが重なった部分を検知領域M3とする。
【0003】
そして、発光素子9から投光された光が、ハウジング13内に流入して検知領域M3に達した煙などの粒子に散乱して散乱光が発生する。この散乱光を受光した受光素子2が受光光量に応じた微少な電流を出力し、この電流を増幅して受光素子2の受光光量レベルを知ることで煙の濃度を感知することができる。
【0004】
このような光電式煙感知器は図30に示すような回路構成を有している。まず、クロック回路7から出力される一定周期のパルス信号が発光回路8に入力されており、発光回路8が入力パルス信号に基づいて発光素子9をパルス的に発光させる。発光素子9から投光領域M1に投光された光は検知領域M3に存在する煙などの粒子に照射され、その一部が散乱により受光レンズ3に入射して受光素子2に集光される。受光素子2において受光した光が電流に変換され、受光素子2の出力電流がI/V変換回路10で電圧信号に変換された後に増幅回路11で増幅される。ここで、散乱による受光素子2の受光量は非常に微少なため、一般にはクロック回路7の出力パルス信号に同期して検波する同期検波回路12により、受光信号(増幅回路11で増幅された電圧信号)が発光素子9のパルス発光との同期検波が行われる。そして、同期検波回路12で検波された信号のレベルから検知領域に存在する煙粒子の濃度が検出できる。
【0005】
【発明が解決しようとする課題】
ところが上記従来例においては、煙粒子のような微粒子による非常に微小な散乱光を検出するため、受光部では受光素子2及び受光レンズ3の光軸がずれると、検出精度悪化の原因となる。そのため、各部品の高精度な実装並びに組み立てが必要となり、生産性が悪くなるとともに、実装や組み立てに多大なコストがかかることになる。また、粒子の散乱により得られる受光量は数10pW〜数nWと非常に微小であるため、信号処理を行うためには非常に大きな増幅を必要とする。これを一般のプリント基板上に構成される回路で行うと、配線長が長くなるために外部から侵入してくるノイズなどの影響を受けやすい。さらにその対策に、一般には非常に大きなシールド板を回路基板全体を覆うように取り付けているためにコストアップの要因となっている。また、I/V変換回路10や増幅回路11等を一般の回路部品で構成するとプリント基板の形状も大きくなるために小型化が図れない。さらに、ダストセンサや煙センサあるいは煙感知器などの光散乱式粒子検知センサの受光部分においては、光学系及び回路系の構成部品がほぼ同じであるが、一般の回路部品並びに光学部品で構成すると汎用化が図れず、コストダウンが図りにくい。
【0006】
本発明は上記事情に鑑みて為されたものであり、その目的とするところは、光散乱式粒子検知センサや光電スイッチのように光を利用した機器あるいは装置等に共通に用いることができ、位置決めが容易であり且つ小型化が図れる受光ユニットを提供することにある。
【0007】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、受けた光を電気信号に変換する受光素子と、外来の光を受光素子に集光する受光レンズと、少なくとも受光素子から出力される電気信号を処理する信号処理手段とをMIDに実装して成る受光ユニットであって、一面に凹所を有する多面体から成るMIDを形成し、凹所の底面に受光素子並びに電子部品を実装し、凹所の底面と背向するMIDの一面に受光レンズを実装し、他の面に接続用端子を設けるとともに、周面が鏡面加工された貫通孔から成る導光管を凹所の底面に設けて受光素子と受光レンズとを光学的に結合したことを特徴とし、受光素子と受光レンズの位置決めが正確に行え、しかもMIDが射出成型品のために形状精度を出しやすく、発光素子等の投光系との位置決めも行いやすくなる。また、ユニット化によって信号処理部分が小型化されるとともに配線長も短くなるために耐ノイズ性が向上する。さらに、MIDによる3次元立体配線を用いるため、平面方向のみならず垂直方向などにも実装できて実装面積が増え、また回路系のみならず光学系も一緒にMIDに実装することで3次元的な実装が可能となり、小型化が容易になる。しかも、ダストセンサや煙センサあるいは煙感知器などの光散乱式粒子検知センサ、あるいは光電スイッチのように光を利用した機器や装置等の受光部分に共通して用いることができるから、汎用化が図れてコストダウンが可能となる。さらに、受光素子並びに電子部品をMIDの表面に実装する構成に比較して耐ノイズ性を大幅に向上することができる。また、導光管を用いて受光素子に光を導くことにより、受光領域を簡単に制限することができる。さらに受光レンズと受光素子との間の距離が稼げるために光学設計の自由度が増えるとともに受光素子と電子部品との間の配線が容易に行えるために実装上の自由度も増える。
【0008】
請求項の発明は、請求項の発明において、貫通孔の周面を凹所の底面に向けて徐々に開口径が小さくなるように傾斜するテーパ面としたことを特徴とし、請求項の発明の作用に加えて、導光管によって受光素子の受光効率が向上でき、より多くの受光量を確保することができる。
【0009】
【発明の実施の形態】
本発明の実施形態を説明する前に、本発明と基本的な構成を共通にする参考例について説明する。
参考例1)
図1〜図5を参照して本発明の参考例1を詳細に説明する。
【0010】
参考例では、図1に示すように、多面体(直方体)に形成されたMID(Molded Interconnection Device)の一面(以下、この面を「天面」と呼ぶ)に受光素子2及び受光レンズ3を実装し、天面に隣り合う他の複数の面(以下、これらの面を「側面」と呼ぶ)に受光素子2の出力信号等の処理を行うための信号処理手段を構成する電子部品(抵抗やコンデンサ等のチップ部品4並びに信号処理用のIC5等)を実装するとともに、受光素子2及び受光レンズ3の実装面(天面)と背向する面(以下、この面を「底面」と呼ぶ)に接続用端子6を設けて受光ユニットAを構成している。
【0011】
MID1は、合成樹脂の射出成形によって直方体を形成し、その後に直方体全体に銅スパッタリング法によって銅薄膜を蒸着させ、レーザを利用して回路として必要な部分と不必要な部分とを分離し、電気めっきにより回路として必要な部分にのみめっきを施すなどの方法により製作される。また、この他にも、回路として必要な部分にめっきが付く樹脂を成形し(1shot目)、その後で回路として不必要な部分にめっきが付かない樹脂を1shot目の樹脂成形品の上からインサート成形する(2shot目)、いわゆる2ショット法で製作することもできる。
【0012】
また、受光素子2には一般にPinホトダイオード等が用いられるが、Si等で形成された受光部一体型のICでも構わない。また、受光量が大きい場合には受光レンズ3が不要となり、そのときは受光レンズ3を省いたり、形状を平面にしてレンズ効果を持たせない構造にすることも可能である。
【0013】
ここで、受光素子2と受光レンズ3とは、入射光の検知精度を確保するために互いの光軸を正確に合わせることが必要且つ重要となるが、MID1の天面に受光素子2と受光レンズ3を実装することにより、高精度な光軸合わせが容易に実現できる。また、受光レンズ3の成形にはトランスファモールド成形等が用いられる。あるいは受光レンズ3だけ別に成形しておいて、後でMID1の天面に接着することも可能である。このときMID1は射出成形で形成されるため、受光レンズ3を正確に位置決めして成形又は接着することが容易であり、従来多大な時間を必要とした光軸合わせのための調整作業を無くすことができる。
【0014】
図1及び図3に示すようにMID1の背向する一対の側面から底面にかけて各々接続用端子6が4つずつ露設されている。受光素子2、チップ部品4並びにIC5が、上述のようにしてMID1に形成された3次元立体配線(図示せず)によって互いに且つ接続用端子6と電気的に接続される。このようにMID1による3次元立体配線を用いるため、平面方向のみならず垂直方向などに実装面積を増やすことができ、MID1の6面全てを実装面にすることで上部(天面の方向)からみた寸法を大きくすることなく小型化が可能である。また、チップ部品4やIC5等の回路系のみならず、受光素子2並びに受光レンズ3の光学系も一つのMIDに実装して1つのユニット(受光ユニットA)に構成しているから、3次元的な実装が可能となって小型化が容易となる。
【0015】
ところで本参考例の受光ユニットAは、従来例で説明した光電式煙感知器やダストセンサに用いられる。図4に示すように受光ユニットAは発光素子9とともに光学基台14にマウントされてハウジング13内に収納される。また、受光ユニットAと発光素子9とは、フレキシブルプリント基板あるいは光学基台14に同時成形されたリードフレーム等に半田又は導電性接着剤により接合されて電気的な配線が行われる。また、図4R>4には図示していないが、煙感知器の場合には一般にハウジング13内を暗室にするためのラビリンスや、ハウジング13内への虫の侵入を防ぐための防虫網などがハウジング13に取り付けられる。さらにハウスダストを検出するダストセンサの場合には、埃を内部に侵入させるための開口部がハウジング13に設けられる。
【0016】
ここで、上記光電式煙感知器やダストセンサの回路構成は図5に示すように従来例と共通であって、一定周期のパルス信号を出力するクロック回路7と、クロック回路7からの入力パルス信号に基づいて発光素子9をパルス的に発光させる発光回路8と、受光素子2の出力電流を電圧信号に変換するI/V変換回路10と、I/V変換回路10の出力電圧を増幅する増幅回路11と、クロック回路7の出力パルス信号に同期して増幅回路11で増幅された電圧信号を発光素子9のパルス発光と同期検波する同期検波回路12とを備え、これらの各回路を構成する電子部品(チップ部品4やIC5等)がMID1の側面に実装されている。このように従来例においては平板状の回路基板31に実装されていたチップ部品4やIC5と受光素子2をMID1に実装したので、受光素子2からI/V変換回路10を経て増幅回路11に到るまでの配線長が短くなって耐ノイズ性が向上するという利点がある。なお、各回路の動作は従来例と共通であるから説明を省略する。
【0017】
また、上記回路構成及び光学系の構成は煙感知器やダストセンサあるいは煙センサ等の光散乱式粒子検知センサとして共通であるので、本参考例の受光ユニットAを上記何れの機器あるいは装置にも用いることができ、汎用化が図れてコストダウンが可能となる。
【0018】
ところで、図6及び図7に示すように本参考例の受光ユニットAをTO−5のような小型パッケージに収納することで耐ノイズ性を向上させることも可能である。而して、円盤状のステム15から突出するステム側端子16に、導電性接着剤や半田などを用いてMID1の底面に露出する接続用端子6を接続し、底面に光学フィルタ17が付設された略円筒形のキャン18をステム15に被せることで受光ユニットAをパッケージ内に収納すれば、より耐ノイズ性の高い受光ユニットが完成する。なお、このように構成される受光ユニットも煙感知器に限らず、他の光散乱を用いたダストセンサや煙センサにも有効である。
【0019】
また、本参考例における受光ユニットAの回路構成は、受光素子2とI/V変換回路10と増幅回路11という光を利用した機器や装置等の基本的な構成を有していることから、光散乱の原理を用いない光電スイッチや減光式の煙感知器にも本参考例の受光ユニットAが利用可能である。
【0020】
図8に本参考例の受光ユニットAを用いた光電スイッチSの回路構成例を示す。発光ダイオード等の発光素子9から放射した光が物体Xに反射し、その反射光が受光レンズ3を通して受光素子2に入射する。物体Xからの反射光が受光レンズ3を通して受光素子2に結像する位置は、物体Xが光電スイッチSから遠ざかった場合は発光素子9側に移動し、物体Xが光電スイッチSに近づいた場合はその反対側に結像点が移動する。このことから、物体Xが光電スイッチSから所定範囲の距離にあるときだけ受光素子2に光が入射するため、物体Xの存否や物体Xまでの距離が判別できる。受光素子2に光が入射したか否かは、受光ユニットAで受光素子2の出力を発光素子9の放射する光と同期検波することによって判別できる。このように散乱式のセンサ以外にも光を利用した機器や装置全般に本参考例の受光ユニットAの応用展開が可能である。
【0021】
参考例2)
図9〜図11を参照して本発明の参考例2を説明する。但し、本参考例の基本的な構成は参考例1と共通するので、共通する構成には同一の符号を付して説明を省略し、本参考例の特徴となる構成についてのみ説明する。
【0022】
参考例は、MID1の受光素子2及び受光レンズ3が実装された面(天面)の一部を、接続用端子6を設けた底面に対して傾斜させた点に特徴がある。
【0023】
従来例でも説明したように一般の光散乱式の煙感知器においては、受光素子2及び受光レンズ3の受光軸を発光素子9の光軸と所定角度だけずらしてハウジング13内に収納されるから、参考例1における受光ユニットAの構成では、光学基台14にマウントして受光軸を傾ける必要がある。
【0024】
それに対して本参考例では、図9及び図10に示すようにMID1の受光素子2及び受光レンズ3が実装された面(天面)の一部を、接続用端子6を設けた底面に対して傾斜させているから、図11に示すようにハウジング13内に収納する際に光学基台26に直接取り付ける必要が無く、発光素子9とともに平板状のプリント基板27に実装することができ、取り付けの自由度を増やすことができる。また、MID1は射出成形により形成されるため、天面の傾斜角度を任意且つ高精度に設定することが可能であり、発光素子9との光学的な位置決めが簡便になるという利点がある。
【0025】
参考例3)
図12及び図13を参照して本発明の参考例3を説明する。但し、本参考例の基本的な構成は参考例1と共通するので、共通する構成には同一の符号を付して説明を省略し、本参考例の特徴となる構成についてのみ説明する。
【0026】
参考例は、MID1の天面に凹部19を形成し、この凹部19の底面に受光素子2を実装するとともに凹部19の側面19aを底面に向けて徐々に開口径が小さくなるように傾斜するテーパ面とした点に特徴がある。
【0027】
図12に示すようにMID1の天面に開口形状が略矩形の凹部19が形成してあり、開口径が底面に向けて徐々に小さくなるように凹部19の4つの側面19aがテーパ面としてあり、さらに、これら4つの側面19aにはそれぞれ鏡面加工が施してある。
【0028】
而して、図13に示すように受光レンズ3によって凹部19の開口端面に集光された光は、凹部19の側面19aで反射されて凹部19の底面に実装されている受光素子2に入射する。すなわち、光が入射する凹部19の開口端面の面積S2よりも十分小さな受光面積S1を有する受光素子2により、凹部19の開口端面に当該開口端面と同じ受光面積を有する受光素子を配置した場合と同じ受光量が得られることになる。これにより、より受光面積の小さい受光素子2を使用できるため、さらに受光ユニットA全体の小型が図れる。また受光素子2を凹部19の底面に実装することにより、受光レンズ3と受光素子2の間隔を稼ぐことができるため、光学設計上の自由度が増えるという利点がある。なお、凹部19の側面19aを平面ではなく曲面としても同様の効果を奏することができる。
【0029】
参考例4)
図14〜図16を参照して本発明の参考例4を説明する。但し、本参考例の基本的な構成は参考例1と共通するので、共通する構成には同一の符号を付して説明を省略し、本参考例の特徴となる構成についてのみ説明する。
【0030】
参考例は、MID1の底面に凹所20を形成し、この凹所20の底面に受光素子2を実装し、凹所20の底面と背向するMID1の天面に受光レンズ3を実装するとともに、周面が鏡面加工された貫通孔から成る導光管21を凹所20の底面に設けて受光素子2と受光レンズ3とを光学的に結合した点に特徴がある。
【0031】
参考例3の構造においては、MID1の天面に設けた凹部19の底面に受光素子2を実装しているため、凹部19の底面が小さすぎたり、あるいは凹部19の深さが深すぎると実装作業が困難になる。
【0032】
しかしながら、本参考例では、図16に示すようにMID1の底面に設けた凹所20の底面に受光素子2を実装するとともに、図14に示すように凹所20の底面に設けた断面形状略円形の貫通孔から成る導光管21によりMID1の天面に実装した受光レンズ3と受光素子2とを光学的に結合しているため、導光管21を形成する貫通孔がどのような深い形状であっても受光素子2が容易に実装できるという利点がある。なお、受光素子2はフリップチップ実装などにより凹所20の底面に容易に実装することが可能である。
【0033】
また、導光管21を設けているため、参考例3と同様に光が入射する導光管21の入射口の面積よりも十分小さな受光面積を有する受光素子2で、導光管21の入射口と同じ受光面積を有する受光素子を配置した場合と同じ受光量が得られることになる。これにより、より受光面積の小さい受光素子2を使用できるため、さらに受光ユニットA全体の小型化が図れる。
【0034】
参考例5)
図17〜図19を参照して本発明の参考例5を説明する。但し、本参考例の基本的な構成は参考例1と共通するので、共通する構成には同一の符号を付して説明を省略し、本参考例の特徴となる構成についてのみ説明する。
【0035】
参考例は、MID1の底面に凹所20を形成し、この凹所20の底面にチップ部品4やIC5等の電子部品を実装し、凹所20の底面と背向するMID1の天面に受光素子2及び受光レンズ3を実装するとともに凹所20の底面から天面に貫通するスルーホール22を用いて電子部品と受光素子2の電気配線を行った点に特徴がある。このように電子部品をMID1の凹所20内に実装すれば、後述するように信号処理を行う電子部品のシールドが容易に行えるようになり、シールドされた電子部品には外部からの輻射ノイズなどが侵入しにくくなるから耐ノイズ性を高めることができる。また、参考例1〜4のように電子部品をMID1の側面に実装する構造に比較して受光ユニットAの外形寸法の小型化が図れる。
【0036】
参考例においては、図19に示すようにMID1の側面にめっきを施し、導電性材料によって断面形状略コ字形に形成されたシールド板23をMID1の底面に被せて凹所20を閉塞するとともに、シールド板23の側片23a,23aとMID1の側面(めっきされた面)とを導電性接着剤などにより接着して機械的な結合と電気的な導通を同時に行っている。ここで、MID1の側面はグランドラインと接続されるため、シールド板23もグランドラインに接続される。その結果、MID1の凹所20の底面に実装された電子部品がシールド板23並びにMID1のめっきされた側面によってシールドされるため、凹所20内に実装された電子部品には外部からの輻射ノイズなどが侵入しにくくなり、耐ノイズ性を高めることができる。その結果、耐ノイズ性の向上を図るために図6に示したようなキャンパッケージを施す必要が無く、電子部品のシールドが容易に行える。
【0037】
なお、シールド板23の構造は本参考例のものに限定する趣旨ではなく、例えばプリント基板に直接MID1を実装することで凹所20の開口面をプリント基板に形成されたグランド面で塞ぐようにしたり、あるいはシールド板をMIDやフレキシブル基板などで作成しても良い。
【0038】
また、図20〜図22に示すように、MID1の天面に断面形状略円形の凹部19′を形成し、この凹部19′の底面に受光素子2を実装するとともに凹部19′の側面19a′を底面に向けて徐々に開口径が小さくなるように傾斜するテーパ面とすれば、参考例3と同様に光が入射する凹部19′の開口端面の面積よりも十分小さな受光面積を有する受光素子2で、凹部19′の開口端面と同じ受光面積を有する受光素子を配置した場合と同じ受光量が得られることになるから、小さい受光素子2を使用しても十分な受光量を確保することができる。
【0039】
(実施形
図23〜図25を参照して本発明の実施形を説明する。但し、本実施形態の基本的な構成は参考例4及び参考例5と共通するので、共通する構成には同一の符号を付して説明を省略し、本実施形態の特徴となる構成についてのみ説明する。
【0040】
本実施形態は、参考例5の構造において、参考例4と同様にMID1の凹所20の底面に受光素子2を実装するとともに、周面が鏡面加工された貫通孔から成る導光管24を凹所20の底面に設けて受光素子2と受光レンズ3とを光学的に結合した点に特徴がある。
【0041】
而して本実施形態では、参考例5と同様にMID1の凹所20の底面に実装された電子部品だけでなく受光素子2もシールド板23並びにMID1のめっきされた側面によってシールドされるため、凹所20内に実装された電子部品及び受光素子2には外部からの輻射ノイズなどが侵入しにくくなり、耐ノイズ性をより高めることができる。その結果、耐ノイズ性の向上を図るために図6に示したようなキャンパッケージを施す必要が無く、電子部品のシールドが容易に行える。また、凹所20の底面に導光管24を設けているため、受光素子2の受光範囲を制限することができる。さらに、受光レンズ3と受光素子2の間隔を稼ぐことができるため、光学設計上の自由度が増えるという利点や、スルーホール22による電気配線が不要となるために実装上の自由度が増すという利点もある。
【0042】
なお、図26〜図28に示すように導光管24の周面を底面に向けて開口径が小さくなるように傾斜するテーパ面とすれば、参考例4と同様に光が入射する導光管24の入射口の面積よりも十分小さな受光面積を有する受光素子2で、導光管24の入射口と同じ受光面積を有する受光素子を配置した場合と同じ受光量が得られることになるから、小さい受光素子2を使用しても十分な受光量を確保することができる。
【0043】
【発明の効果】
請求項1の発明は、受けた光を電気信号に変換する受光素子と、外来の光を受光素子に集光する受光レンズと、少なくとも受光素子から出力される電気信号を処理する信号処理手段とをMIDに実装して成る受光ユニットであって、一面に凹所を有する多面体から成るMIDを形成し、凹所の底面に受光素子並びに電子部品を実装し、凹所の底面と背向するMIDの一面に受光レンズを実装し、他の面に接続用端子を設けるとともに、周面が鏡面加工された貫通孔から成る導光管を凹所の底面に設けて受光素子と受光レンズとを光学的に結合したので、受光素子と受光レンズの位置決めが正確に行え、しかもMIDが射出成型品のために形状精度を出しやすく、発光素子等の投光系との位置決めも行いやすくなる。また、ユニット化によって信号処理部分が小型化されるとともに配線長も短くなるために耐ノイズ性が向上する。さらに、MIDによる3次元立体配線を用いるため、平面方向のみならず垂直方向などにも実装できて実装面積が増え、また回路系のみならず光学系も一緒にMIDに実装することで3次元的な実装が可能となり、小型化が容易になる。しかも、ダストセンサや煙センサあるいは煙感知器などの光散乱式粒子検知センサ、あるいは光電スイッチのように光を利用した機器や装置等の受光部分に共通して用いることができるから、汎用化が図れてコストダウンが可能となるという効果がある。さらに、受光素子並びに電子部品をMIDの表面に実装する構成に比較して耐ノイズ性を大幅に向上することができ、また、導光管を用いて受光素子に光を導くことにより、受光領域を簡単に制限することができ、さらに受光レンズと受光素子との間の距離が稼げるために光学設計の自由度が増えるとともに受光素子と電子部品との間の配線が容易に行えるために実装上の自由度も増えるという効果がある。
【0044】
請求項の発明は、請求項の発明において、貫通孔の周面を凹所の底面に向けて徐々に開口径が小さくなるように傾斜するテーパ面としたので、請求項の発明の効果に加えて、導光管によって受光素子の受光効率が向上でき、より多くの受光量を確保することができるという効果がある。
【図面の簡単な説明】
【図1】 本発明の参考例1の斜視図である。
【図2】 同上の側面図である。
【図3】 同上の底面図である。
【図4】 同上を用いた光電式煙感知器の断面図である。
【図5】 同上の回路ブロック図である。
【図6】 同上をパッケージする分解斜視図である。
【図7】 同上をパッケージした斜視図である。
【図8】 同上を用いた光電スイッチの概略構成図である。
【図9】 本発明の参考例2の斜視図である。
【図10】 同上の側面図である。
【図11】 同上を用いた光電式煙感知器の断面図である。
【図12】 本発明の参考例3の側面断面図である。
【図13】 同上の説明図である。
【図14】 本発明の参考例4の側面断面図である。
【図15】 同上の斜視図である。
【図16】 同上の底面から見た分解斜視図である。
【図17】 本発明の参考例5の側面断面図である。
【図18】 同上の斜視図である。
【図19】 同上の底面から見た分解斜視図である。
【図20】 同上の他の構成を示す側面断面図である。
【図21】 同上の斜視図である。
【図22】 同上の底面から見た分解斜視図である。
【図23】 本発明の実施形の側面断面図である。
【図24】 同上の斜視図である。
【図25】 同上の底面から見た分解斜視図である。
【図26】 同上の他の構成を示す側面断面図である。
【図27】 同上の斜視図である。
【図28】 同上の底面から見た分解斜視図である。
【図29】 従来の光電式煙感知器の断面図である。
【図30】 同上の回路ブロック図である。
【符号の説明】
A 受光ユニット
1 MID
2 受光素子
3 受光レンズ
4 チップ部品
5 IC
6 接続用端子
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a light receiving unit used in a device or apparatus using light such as a light scattering type particle detection sensor or a photoelectric switch.
[0002]
[Prior art]
  Conventionally, in the field of sensors and switches, various devices or devices using light have been put into practical use. One of them is a so-called photoelectric type that senses smoke concentration using scattered light from smoke particles. There is a smoke detector. FIG. 29 shows a top cross-sectional view of a conventional photoelectric smoke detector, in which a light emitting element 9 such as a light emitting diode provided in a dark box composed of a housing 13, and a light receiving axis as an optical axis of the light emitting element 9. A light receiving element 2 such as a photodiode provided by shifting by a predetermined angle, a light receiving lens 30 for condensing light on the light receiving element 2, a light emitting element 9, the light receiving element 2, and electronic components constituting a circuit to be described later are mounted. A circuit board 31 formed of a printed wiring board and an optical base 33 that sandwiches and fixes the light emitting element 9 and the light receiving lens 3 between the circuit board 31 and covers the electronic component 32 mounted on the circuit board 31. I have. Here, the region where the light emitted from the light emitting element 9 reaches is the light projecting region M1, the region where the light receiving element 2 can receive the light is the light receiving region M2, and the portion where the light projecting region M1 and the light receiving region M2 overlap is the detection region M3. And
[0003]
  Then, the light projected from the light emitting element 9 flows into the housing 13 and scatters to particles such as smoke that reaches the detection region M3 to generate scattered light. The light receiving element 2 that has received the scattered light outputs a minute current corresponding to the amount of received light, amplifies this current, and knows the level of light received by the light receiving element 2 so that the smoke concentration can be sensed.
[0004]
  Such a photoelectric smoke detector has a circuit configuration as shown in FIG. First, a pulse signal with a constant period output from the clock circuit 7 is input to the light emitting circuit 8, and the light emitting circuit 8 causes the light emitting element 9 to emit light in a pulsed manner based on the input pulse signal. The light projected from the light emitting element 9 onto the light projecting area M1 is irradiated onto particles such as smoke existing in the detection area M3, and a part of the light is incident on the light receiving lens 3 by scattering and is collected on the light receiving element 2. . The light received by the light receiving element 2 is converted into a current, and the output current of the light receiving element 2 is converted into a voltage signal by the I / V conversion circuit 10 and then amplified by the amplifier circuit 11. Here, since the amount of light received by the light receiving element 2 due to scattering is very small, the light receiving signal (the voltage amplified by the amplifier circuit 11) is generally detected by the synchronous detection circuit 12 that detects in synchronization with the output pulse signal of the clock circuit 7. (Signal) and synchronous detection with the pulse light emission of the light emitting element 9 are performed. Then, the concentration of smoke particles present in the detection region can be detected from the level of the signal detected by the synchronous detection circuit 12.
[0005]
[Problems to be solved by the invention]
  However, in the above-described conventional example, since very minute scattered light due to fine particles such as smoke particles is detected, if the optical axes of the light receiving element 2 and the light receiving lens 3 are shifted in the light receiving section, it causes deterioration of detection accuracy. For this reason, it is necessary to mount and assemble each component with high accuracy, resulting in poor productivity and enormous costs for mounting and assembly. In addition, the amount of received light obtained by particle scattering is as very small as several tens of pW to several nW, and thus a very large amplification is required to perform signal processing. If this is performed by a circuit configured on a general printed circuit board, the wiring length becomes long, so that it is easily affected by noise entering from the outside. Further, as a countermeasure, generally a very large shield plate is attached so as to cover the entire circuit board, which increases the cost. Further, if the I / V conversion circuit 10, the amplifier circuit 11, and the like are configured by general circuit parts, the size of the printed circuit board becomes large, so that the size cannot be reduced. Furthermore, in the light receiving part of a light scattering type particle detection sensor such as a dust sensor, smoke sensor or smoke detector, the components of the optical system and circuit system are almost the same. Cannot be used for general purposes, making it difficult to reduce costs.
[0006]
  The present invention has been made in view of the above circumstances, and the object of the present invention can be used in common for devices or devices using light such as a light scattering particle detection sensor or a photoelectric switch, An object of the present invention is to provide a light receiving unit that can be easily positioned and can be reduced in size.
[0007]
[Means for Solving the Problems]
  In order to achieve the above object, a light receiving element for converting received light into an electrical signal, a light receiving lens for condensing extraneous light on the light receiving element, and an electric power output from at least the light receiving element. A light receiving unit comprising a MID and a signal processing means for processing a signal,A MID composed of a polyhedron having a recess on one surface is formed, a light receiving element and an electronic component are mounted on the bottom surface of the recess, a light receiving lens is mounted on one surface of the MID facing away from the bottom surface of the recess, and the other surface is mounted. In addition to providing connection terminals, a light guide tube consisting of a through hole with a mirror-finished peripheral surface is provided on the bottom surface of the recess to optically couple the light receiving element and the light receiving lens.In addition, the light receiving element and the light receiving lens can be accurately positioned, and the MID is easy to obtain the shape accuracy for the injection molded product, and the light emitting element or the like can be easily positioned. Further, the unitization reduces the size of the signal processing part and shortens the wiring length, thereby improving the noise resistance. Furthermore, since three-dimensional wiring by MID is used, it can be mounted not only in the plane direction but also in the vertical direction, increasing the mounting area, and by mounting not only the circuit system but also the optical system together in the MID, it is three-dimensional. Mounting becomes possible, and miniaturization becomes easy. Moreover, it can be used in common with light receiving parts of light scattering type particle detection sensors such as dust sensors, smoke sensors or smoke detectors, or devices and devices using light such as photoelectric switches. Cost reduction is possible.Furthermore, noise resistance can be greatly improved as compared with a configuration in which the light receiving element and the electronic component are mounted on the surface of the MID. Further, the light receiving area can be easily limited by guiding light to the light receiving element using the light guide tube. Furthermore, since the distance between the light receiving lens and the light receiving element can be increased, the degree of freedom in optical design is increased, and wiring between the light receiving element and the electronic component can be easily performed, so that the degree of freedom in mounting is also increased.
[0008]
  Claim2The invention of claim1In the invention, the peripheral surface of the through hole is a tapered surface that is inclined so that the opening diameter gradually decreases toward the bottom surface of the recess.1In addition to the operation of the invention, the light receiving efficiency of the light receiving element can be improved by the light guide tube, and a larger amount of received light can be secured.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
  Before describing an embodiment of the present invention, a reference example having a basic configuration in common with the present invention will be described.
  (Reference example1)
  1 to 5 of the present inventionReference example1 will be described in detail.
[0010]
  BookReference exampleThen, as shown in FIG. 1, the light receiving element 2 and the light receiving lens 3 are mounted on one surface of the MID (Molded Interconnection Device) formed in a polyhedron (cuboid) (hereinafter, this surface is referred to as “top surface”). Electronic components (resistors, capacitors, etc.) constituting signal processing means for processing the output signal of the light receiving element 2 on other surfaces (hereinafter referred to as “side surfaces”) adjacent to the top surface The chip component 4 and the signal processing IC 5 are mounted, and connected to the mounting surface (top surface) of the light receiving element 2 and the light receiving lens 3 (hereinafter referred to as “bottom surface”). The light receiving unit A is configured by providing the service terminals 6.
[0011]
  MID1 forms a rectangular parallelepiped by injection molding of synthetic resin, then deposits a copper thin film on the entire rectangular parallelepiped by a copper sputtering method, and separates a necessary part and an unnecessary part as a circuit using a laser. It is manufactured by a method such as plating only a necessary part as a circuit by plating. In addition to this, a resin that is plated on a part necessary for a circuit is molded (first shot), and then a resin that is not plated on a part that is not necessary for a circuit is inserted from above the first shot resin molded product. It can also be manufactured by the so-called two-shot method (2shot eyes).
[0012]
  In addition, although a pin photodiode or the like is generally used for the light receiving element 2, a light receiving unit integrated IC formed of Si or the like may be used. Further, when the amount of received light is large, the light receiving lens 3 is not necessary. In this case, the light receiving lens 3 can be omitted, or the structure can be made flat so as not to have a lens effect.
[0013]
  Here, it is necessary and important for the light receiving element 2 and the light receiving lens 3 to accurately match each other's optical axes in order to ensure the detection accuracy of incident light. By mounting the lens 3, highly accurate optical axis alignment can be easily realized. Also, transfer mold molding or the like is used for molding the light receiving lens 3. Alternatively, it is possible to form only the light receiving lens 3 separately and adhere to the top surface of the MID 1 later. At this time, since MID 1 is formed by injection molding, it is easy to accurately position and form or bond the light receiving lens 3 and to eliminate the adjustment work for optical axis alignment that has conventionally required a lot of time. Can do.
[0014]
  As shown in FIGS. 1 and 3, four connection terminals 6 are exposed from the pair of side surfaces facing back of the MID 1 to the bottom surface. The light receiving element 2, the chip component 4, and the IC 5 are electrically connected to each other and to the connection terminal 6 by the three-dimensional solid wiring (not shown) formed on the MID 1 as described above. As described above, since the three-dimensional solid wiring by MID1 is used, the mounting area can be increased not only in the plane direction but also in the vertical direction, etc. By making all six surfaces of MID1 into the mounting surface, the top (the direction of the top surface) can be used. Miniaturization is possible without increasing the size. Further, not only the circuit system such as the chip component 4 and the IC 5 but also the optical system of the light receiving element 2 and the light receiving lens 3 are mounted on one MID and configured as one unit (light receiving unit A). Mounting becomes possible and downsizing becomes easy.
[0015]
  By the way, bookReference exampleThe light receiving unit A is used for the photoelectric smoke detector and the dust sensor described in the conventional example. As shown in FIG. 4, the light receiving unit A is mounted on the optical base 14 together with the light emitting element 9 and is housed in the housing 13. The light receiving unit A and the light emitting element 9 are joined to a flexible printed circuit board or a lead frame or the like simultaneously formed on the optical base 14 with solder or a conductive adhesive to be electrically wired. Although not shown in FIG. 4R> 4, in the case of a smoke detector, generally a labyrinth for making the inside of the housing 13 a dark room or an insect net for preventing insects from entering the housing 13 is provided. It is attached to the housing 13. Further, in the case of a dust sensor that detects house dust, an opening for allowing dust to enter the housing 13 is provided in the housing 13.
[0016]
  Here, the circuit configuration of the photoelectric smoke detector and dust sensor is the same as that of the conventional example as shown in FIG. 5, and a clock circuit 7 that outputs a pulse signal with a constant period and an input pulse from the clock circuit 7. Based on the signal, the light emitting circuit 8 emits light in a pulse manner, the I / V conversion circuit 10 that converts the output current of the light receiving element 2 into a voltage signal, and the output voltage of the I / V conversion circuit 10 is amplified. The amplifier circuit 11 and a synchronous detection circuit 12 for synchronously detecting the voltage signal amplified by the amplifier circuit 11 in synchronization with the output pulse signal of the clock circuit 7 and the pulse light emission of the light emitting element 9 are configured. Electronic components (chip component 4, IC 5, etc.) to be mounted are mounted on the side surface of MID 1. As described above, since the chip component 4 or the IC 5 and the light receiving element 2 mounted on the flat circuit board 31 in the conventional example are mounted on the MID 1, the light receiving element 2 passes through the I / V conversion circuit 10 to the amplifier circuit 11. There is an advantage that the wiring length to the end is shortened and noise resistance is improved. Since the operation of each circuit is the same as that of the conventional example, description thereof is omitted.
[0017]
  In addition, the circuit configuration and the optical system configuration are common to light scattering particle detection sensors such as smoke detectors, dust sensors, or smoke sensors.Reference exampleThe light receiving unit A can be used in any of the above-described devices or apparatuses, and can be generalized to reduce costs.
[0018]
  By the way, as shown in FIGS.Reference exampleIt is possible to improve the noise resistance by housing the light receiving unit A in a small package such as TO-5. Thus, the connection terminal 6 exposed on the bottom surface of the MID 1 is connected to the stem-side terminal 16 protruding from the disc-shaped stem 15 using a conductive adhesive, solder, or the like, and the optical filter 17 is attached to the bottom surface. If the light receiving unit A is accommodated in the package by covering the stem 15 with the substantially cylindrical can 18, a light receiving unit with higher noise resistance is completed. The light receiving unit configured in this way is not limited to the smoke detector, but is effective for other dust sensors and smoke sensors using light scattering.
[0019]
  Also bookReference exampleThe light receiving unit A in FIG. 1 has the basic structure of the light receiving element 2, the I / V conversion circuit 10 and the amplifier circuit 11 that use light, such as devices and apparatuses. This also applies to unused photoelectric switches and dimming smoke detectors.Reference exampleThe light receiving unit A can be used.
[0020]
  Figure 8Reference example1 shows a circuit configuration example of a photoelectric switch S using the light receiving unit A. Light emitted from the light emitting element 9 such as a light emitting diode is reflected by the object X, and the reflected light enters the light receiving element 2 through the light receiving lens 3. The position where the reflected light from the object X forms an image on the light receiving element 2 through the light receiving lens 3 moves to the light emitting element 9 side when the object X moves away from the photoelectric switch S, and the object X approaches the photoelectric switch S. Moves the imaging point to the opposite side. From this, since the light is incident on the light receiving element 2 only when the object X is within a predetermined distance from the photoelectric switch S, the presence / absence of the object X and the distance to the object X can be determined. Whether or not light has entered the light receiving element 2 can be determined by synchronous detection of the output of the light receiving element 2 with the light emitted from the light emitting element 9 by the light receiving unit A. In addition to scattering-type sensors, this is not limited to devices and devices that use light.Reference exampleApplication development of the light receiving unit A is possible.
[0021]
  (Reference example2)
  With reference to FIGS.Reference example2 will be described. However, thisReference exampleThe basic configuration ofReference example1, the same components are denoted by the same reference numerals, and the description thereof is omitted.Reference exampleOnly the structure which becomes the characteristic of will be described.
[0022]
  BookReference exampleIs characterized in that a part of the surface (top surface) on which the light receiving element 2 and the light receiving lens 3 of MID1 are mounted is inclined with respect to the bottom surface on which the connection terminals 6 are provided.
[0023]
  As described in the conventional example, in the general light scattering type smoke detector, the light receiving axes of the light receiving element 2 and the light receiving lens 3 are stored in the housing 13 while being shifted from the optical axis of the light emitting element 9 by a predetermined angle. ,Reference exampleIn the configuration of the light receiving unit A in No. 1, it is necessary to mount it on the optical base 14 and tilt the light receiving axis.
[0024]
  Book against itReference exampleThen, as shown in FIGS. 9 and 10, a part of the surface (top surface) on which the light receiving element 2 and the light receiving lens 3 of MID1 are mounted is inclined with respect to the bottom surface on which the connection terminals 6 are provided. 11, it is not necessary to directly attach to the optical base 26 when housed in the housing 13, and can be mounted on the flat printed board 27 together with the light emitting element 9, thereby increasing the degree of freedom of attachment. Can do. Moreover, since MID1 is formed by injection molding, the inclination angle of the top surface can be set arbitrarily and with high precision, and there is an advantage that optical positioning with the light emitting element 9 is simplified.
[0025]
  (Reference example3)
  With reference to FIG. 12 and FIG.Reference example3 will be described. However, thisReference exampleThe basic configuration ofReference example1, the same components are denoted by the same reference numerals, and the description thereof is omitted.Reference exampleOnly the structure which becomes the characteristic of will be described.
[0026]
  BookReference exampleIs formed with a concave portion 19 on the top surface of the MID 1, the light receiving element 2 is mounted on the bottom surface of the concave portion 19, and the tapered surface is inclined so that the side surface 19 a of the concave portion 19 gradually decreases toward the bottom surface. There is a feature in the point.
[0027]
  As shown in FIG. 12, a concave portion 19 having a substantially rectangular opening shape is formed on the top surface of MID1, and the four side surfaces 19a of the concave portion 19 are tapered so that the opening diameter gradually decreases toward the bottom surface. Further, each of these four side surfaces 19a is mirror-finished.
[0028]
  Thus, as shown in FIG. 13, the light collected by the light receiving lens 3 on the opening end surface of the recess 19 is reflected by the side surface 19 a of the recess 19 and enters the light receiving element 2 mounted on the bottom surface of the recess 19. To do. That is, the light receiving element 2 having a light receiving area S1 sufficiently smaller than the area S2 of the opening end face of the recess 19 where light is incident and the light receiving element having the same light receiving area as the opening end face are disposed on the opening end face of the recess 19 The same amount of received light can be obtained. Thereby, since the light receiving element 2 having a smaller light receiving area can be used, the light receiving unit A as a whole can be further reduced in size. Further, by mounting the light receiving element 2 on the bottom surface of the concave portion 19, it is possible to increase the distance between the light receiving lens 3 and the light receiving element 2, so that there is an advantage that the degree of freedom in optical design is increased. The same effect can be obtained when the side surface 19a of the recess 19 is not a flat surface but a curved surface.
[0029]
  (Reference example4)
  With reference to FIGS.Reference example4 will be described. However, thisReference exampleThe basic configuration ofReference example1, the same components are denoted by the same reference numerals, and the description thereof is omitted.Reference exampleOnly the structure which becomes the characteristic of will be described.
[0030]
  BookReference exampleIs formed with a recess 20 on the bottom surface of the MID 1, the light receiving element 2 is mounted on the bottom surface of the recess 20, and the light receiving lens 3 is mounted on the top surface of the MID 1 facing away from the bottom surface of the recess 20. A feature is that a light guide tube 21 composed of a through hole having a mirror-finished surface is provided on the bottom surface of the recess 20 to optically couple the light receiving element 2 and the light receiving lens 3.
[0031]
  Reference exampleIn the structure 3, since the light receiving element 2 is mounted on the bottom surface of the recess 19 provided on the top surface of the MID 1, if the bottom surface of the recess 19 is too small or the depth of the recess 19 is too deep, a mounting operation is performed. It becomes difficult.
[0032]
  However, the bookReference exampleThen, the light receiving element 2 is mounted on the bottom surface of the recess 20 provided on the bottom surface of the MID 1 as shown in FIG. 16, and the cross-sectional shape provided on the bottom surface of the recess 20 as shown in FIG. The light receiving lens 3 mounted on the top surface of the MID 1 and the light receiving element 2 are optically coupled by the light guide tube 21, so that the through hole forming the light guide tube 21 has any deep shape. There is an advantage that the light receiving element 2 can be easily mounted. The light receiving element 2 can be easily mounted on the bottom surface of the recess 20 by flip chip mounting or the like.
[0033]
  Moreover, since the light guide tube 21 is provided,Reference example3, the light receiving element 2 having a light receiving area sufficiently smaller than the area of the entrance of the light guide tube 21 through which light enters, and the light receiving element having the same light receiving area as the entrance of the light guide tube 21 is disposed. The same amount of received light can be obtained. Thereby, since the light receiving element 2 having a smaller light receiving area can be used, the entire light receiving unit A can be further reduced in size.
[0034]
  (Reference example5)
  The present invention is described with reference to FIGS.Reference example5 will be described. However, thisReference exampleThe basic configuration ofReference example1, the same components are denoted by the same reference numerals, and the description thereof is omitted.Reference exampleOnly the structure which becomes the characteristic of will be described.
[0035]
  BookReference exampleIs formed with a recess 20 on the bottom surface of the MID 1, and an electronic component such as a chip component 4 or IC 5 is mounted on the bottom surface of the recess 20, and the light receiving element 2 on the top surface of the MID 1 facing away from the bottom surface of the recess 20. The light receiving lens 3 is mounted and the electronic component and the light receiving element 2 are electrically wired using the through hole 22 penetrating from the bottom surface of the recess 20 to the top surface. If the electronic component is mounted in the recess 20 of the MID 1 in this way, it becomes possible to easily shield the electronic component that performs signal processing as will be described later. Since it becomes difficult to penetrate, noise resistance can be improved. Also,Reference exampleThe external dimensions of the light receiving unit A can be reduced as compared with the structure in which electronic components are mounted on the side surfaces of the MID 1 as in 1-4.
[0036]
  BookReference example19, the side surface of MID 1 is plated as shown in FIG. 19, and a shield plate 23 formed in a substantially U-shaped cross section with a conductive material is placed on the bottom surface of MID 1 to close recess 20 and shield plate The side pieces 23a, 23a of 23 and the side surface (plated surface) of MID1 are bonded with a conductive adhesive or the like to perform mechanical coupling and electrical conduction simultaneously. Here, since the side surface of MID1 is connected to the ground line, the shield plate 23 is also connected to the ground line. As a result, since the electronic component mounted on the bottom surface of the recess 20 of MID1 is shielded by the shield plate 23 and the plated side surface of MID1, the electronic component mounted in the recess 20 has a radiation noise from the outside. It becomes difficult to enter, and noise resistance can be improved. As a result, it is not necessary to provide a can package as shown in FIG. 6 in order to improve noise resistance, and electronic parts can be easily shielded.
[0037]
  In addition, the structure of the shield plate 23 is the mainReference exampleFor example, by mounting MID1 directly on the printed circuit board, the opening surface of the recess 20 is closed with a ground surface formed on the printed circuit board, or the shield plate is MID, flexible substrate, etc. It may be created with.
[0038]
  Further, as shown in FIGS. 20 to 22, a concave portion 19 'having a substantially circular cross section is formed on the top surface of MID1, and the light receiving element 2 is mounted on the bottom surface of the concave portion 19' and the side surface 19a 'of the concave portion 19' is mounted. If it is a tapered surface inclined so that the opening diameter gradually decreases toward the bottom,Reference example3, the light receiving element 2 having a light receiving area sufficiently smaller than the area of the opening end face of the recess 19 ′ into which light is incident, and receiving the same light as the light receiving element having the same light receiving area as the opening end face of the recess 19 ′. Since a sufficient amount of light can be obtained, a sufficient amount of received light can be secured even if a small light receiving element 2 is used.
[0039]
  (Execution formstate)
  23 to 25, the embodiment of the present inventionstateWill be explained. However, the basic configuration of this embodiment isReference example4 andReference example5, the same reference numerals are given to the common components, and the description thereof will be omitted, and only the configuration that is a feature of the present embodiment will be described.
[0040]
  This embodimentReference exampleIn the structure of 5,Reference example4, the light receiving element 2 is mounted on the bottom surface of the recess 20 of the MID 1, and a light guide tube 24 including a through hole whose peripheral surface is mirror-finished is provided on the bottom surface of the recess 20. 3 is optically coupled.
[0041]
  Thus, in this embodiment,Reference example5, not only the electronic components mounted on the bottom surface of the recess 20 of the MID 1 but also the light receiving element 2 is shielded by the shield plate 23 and the plated side surface of the MID 1, and thus the electronic components mounted in the recess 20. In addition, radiation noise from the outside hardly enters the light receiving element 2, and noise resistance can be further improved. As a result, it is not necessary to provide a can package as shown in FIG. 6 in order to improve noise resistance, and electronic parts can be easily shielded. Moreover, since the light guide tube 24 is provided on the bottom surface of the recess 20, the light receiving range of the light receiving element 2 can be limited. Further, since the distance between the light receiving lens 3 and the light receiving element 2 can be increased, the degree of freedom in optical design is increased, and the electrical wiring by the through hole 22 is not required, so that the degree of freedom in mounting is increased. There are also advantages.
[0042]
  As shown in FIGS. 26 to 28, if the peripheral surface of the light guide tube 24 is a tapered surface inclined so that the opening diameter becomes smaller toward the bottom surface,Reference example4, the light receiving element 2 having a light receiving area sufficiently smaller than the area of the entrance of the light guide tube 24 through which light enters, and the light receiving element having the same light receiving area as the entrance of the light guide tube 24 is disposed. Since the same amount of received light can be obtained, a sufficient amount of received light can be secured even if a small light receiving element 2 is used.
[0043]
【The invention's effect】
  The invention according to claim 1 is a light receiving element that converts received light into an electric signal, a light receiving lens that collects extraneous light on the light receiving element, and a signal processing means that processes at least an electric signal output from the light receiving element. Is a light receiving unit mounted on a MID,A MID composed of a polyhedron having a recess on one surface is formed, a light receiving element and an electronic component are mounted on the bottom surface of the recess, a light receiving lens is mounted on one surface of the MID facing away from the bottom surface of the recess, and the other surface is mounted. In addition to providing connection terminals, a light guide tube consisting of a through hole with a mirror-finished peripheral surface is provided on the bottom surface of the recess to optically couple the light receiving element and the light receiving lens.Therefore, the positioning of the light receiving element and the light receiving lens can be accurately performed, and the MID is easy to obtain the shape accuracy because of the injection molded product, and the light emitting element or the like can be easily positioned. Further, the unitization reduces the size of the signal processing part and shortens the wiring length, thereby improving the noise resistance. Furthermore, since three-dimensional wiring by MID is used, it can be mounted not only in the plane direction but also in the vertical direction, increasing the mounting area, and by mounting not only the circuit system but also the optical system together in the MID, it is three-dimensional. Mounting becomes possible, and miniaturization becomes easy. Moreover, it can be used in common with light receiving parts of light scattering type particle detection sensors such as dust sensors, smoke sensors or smoke detectors, or devices and devices using light such as photoelectric switches. There is an effect that the cost can be reduced.Furthermore, the noise resistance can be greatly improved as compared with the configuration in which the light receiving element and the electronic component are mounted on the surface of the MID, and the light receiving region is obtained by guiding light to the light receiving element using the light guide tube. In addition, the distance between the light receiving lens and the light receiving element can be increased, so that the degree of freedom in optical design is increased and the wiring between the light receiving element and the electronic component can be easily performed. This has the effect of increasing the degree of freedom.
[0044]
  Claim2The invention of claim1In the invention of claim 1, since the peripheral surface of the through hole is a tapered surface inclined so that the opening diameter gradually decreases toward the bottom surface of the recess.1In addition to the effect of the invention, the light guide tube can improve the light receiving efficiency of the light receiving element, and can secure a larger amount of received light.
[Brief description of the drawings]
[Figure 1]Reference example of the present invention1 is a perspective view of FIG.
FIG. 2 is a side view of the above.
FIG. 3 is a bottom view of the above.
FIG. 4 is a cross-sectional view of a photoelectric smoke detector using the same as above.
FIG. 5 is a circuit block diagram of the above.
FIG. 6 is an exploded perspective view for packaging the same as above.
FIG. 7 is a perspective view in which the above is packaged.
FIG. 8 is a schematic configuration diagram of a photoelectric switch using the same as above.
FIG. 9Reference example of the present inventionFIG.
FIG. 10 is a side view of the above.
FIG. 11 is a cross-sectional view of a photoelectric smoke detector using the same as above.
FIG.Reference example of the present inventionFIG.
FIG. 13 is an explanatory diagram of the above.
FIG. 14Reference example of the present inventionFIG.
FIG. 15 is a perspective view of the same.
FIG. 16 is an exploded perspective view seen from the bottom.
FIG. 17Reference example of the present inventionFIG.
FIG. 18 is a perspective view of the same.
FIG. 19 is an exploded perspective view seen from the bottom.
FIG. 20 is a side sectional view showing another configuration of the above.
FIG. 21 is a perspective view of the same.
FIG. 22 is an exploded perspective view seen from the bottom.
FIG. 23Of the present inventionImplementationstateFIG.
FIG. 24 is a perspective view of the same.
FIG. 25 is an exploded perspective view seen from the bottom.
FIG. 26 is a side sectional view showing another configuration of the above.
FIG. 27 is a perspective view of the same.
FIG. 28 is an exploded perspective view seen from the bottom.
FIG. 29 is a cross-sectional view of a conventional photoelectric smoke detector.
FIG. 30 is a circuit block diagram of the above.
[Explanation of symbols]
  A Light receiving unit
  1 MID
  2 Light receiving element
  3 Light receiving lens
  4 Chip parts
  5 IC
  6 Terminal for connection

Claims (2)

受けた光を電気信号に変換する受光素子と、外来の光を受光素子に集光する受光レンズと、少なくとも受光素子から出力される電気信号を処理する信号処理手段とをMIDに実装して成る受光ユニットであって、一面に凹所を有する多面体から成るMIDを形成し、凹所の底面に受光素子並びに電子部品を実装し、凹所の底面と背向するMIDの一面に受光レンズを実装し、他の面に接続用端子を設けるとともに、周面が鏡面加工された貫通孔から成る導光管を凹所の底面に設けて受光素子と受光レンズとを光学的に結合したことを特徴とする受光ユニット。A light receiving element that converts received light into an electric signal, a light receiving lens that collects extraneous light on the light receiving element, and a signal processing means that processes at least an electric signal output from the light receiving element are mounted on the MID. A light receiving unit, which forms a MID consisting of a polyhedron with a recess on one side, mounts a light receiving element and electronic components on the bottom of the recess, and mounts a light receiving lens on one side of the MID facing away from the bottom of the recess In addition, a connection terminal is provided on the other surface, and a light guide tube composed of a through hole whose peripheral surface is mirror-finished is provided on the bottom surface of the recess to optically couple the light receiving element and the light receiving lens. The light receiving unit. 貫通孔の周面を凹所の底面に向けて徐々に開口径が小さくなるように傾斜するテーパ面としたことを特徴とする請求項1記載の受光ユニット 2. The light receiving unit according to claim 1 , wherein the peripheral surface of the through hole is a tapered surface inclined so that the opening diameter gradually decreases toward the bottom surface of the recess .
JP24044699A 1999-08-26 1999-08-26 Receiver unit Expired - Fee Related JP3800880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24044699A JP3800880B2 (en) 1999-08-26 1999-08-26 Receiver unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24044699A JP3800880B2 (en) 1999-08-26 1999-08-26 Receiver unit

Publications (2)

Publication Number Publication Date
JP2001068692A JP2001068692A (en) 2001-03-16
JP3800880B2 true JP3800880B2 (en) 2006-07-26

Family

ID=17059630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24044699A Expired - Fee Related JP3800880B2 (en) 1999-08-26 1999-08-26 Receiver unit

Country Status (1)

Country Link
JP (1) JP3800880B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084066A (en) 2001-04-11 2003-03-19 Nippon Kessho Kogaku Kk Component for radiation detector, radiation detector, and radiation-detection unit
DE10225919B3 (en) * 2002-06-11 2005-04-21 Siemens Ag Optical module and optical system
JP2005308631A (en) * 2004-04-23 2005-11-04 Matsushita Electric Works Ltd Semiconductor dynamic quantity sensor
DE102005011053A1 (en) * 2005-03-10 2006-09-21 Preh Gmbh Sun sensor in MID technology
DE102007031980A1 (en) 2007-07-10 2009-01-15 Robert Bosch Gmbh Connection unit for a pressure measuring cell
JP2010129833A (en) * 2008-11-28 2010-06-10 Nippon Telegr & Teleph Corp <Ntt> Optical module
JP5473745B2 (en) * 2010-04-21 2014-04-16 オムロンオートモーティブエレクトロニクス株式会社 Photodetector
JP2012227486A (en) * 2011-04-22 2012-11-15 Sumitomo Electric Device Innovations Inc Optical device
CN108019605A (en) * 2017-12-05 2018-05-11 深圳怡化电脑股份有限公司 A kind of mounting frame for sensor

Also Published As

Publication number Publication date
JP2001068692A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
US7675073B2 (en) Integrated circuit package provided with cooperatively arranged illumination and sensing capabilities
JP6347051B2 (en) device
JP2004158855A (en) Optical navigation sensor integrated with lens
TW201349467A (en) Opto-electronic module
JP3800880B2 (en) Receiver unit
JP2691951B2 (en) Photoelectric smoke detector
US5461451A (en) Distance measuring device and camera having same
US5258800A (en) Distance measuring device and camera having same
CN108200239B (en) Electronic device
CN112639447A (en) Photodetection module and photodetection device
TWM461794U (en) Optical device
JP2001153801A (en) Photoelectric particle detection sensor
JPH09321597A (en) Reflective photosensor
JP3972758B2 (en) Circuit sealing structure and fire detector
JPH11312281A (en) Photoelectric smoke sensor
KR100733431B1 (en) A photo device
CN215414061U (en) Sensor and temperature measuring device
CN217822805U (en) Optical distance sensing module
CN115685146A (en) Direct time-of-flight sensing module
CN108063181B (en) Electronic device
JP2008192874A (en) Light receiving package for optical sensor, and same optical sensor
JPH051790Y2 (en)
JPH04237005A (en) Photodetection module
JP2997964B2 (en) Distance measuring device and camera having this distance measuring device
JPH06104460A (en) Photodetector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees