JP3798068B2 - Combustion equipment - Google Patents

Combustion equipment Download PDF

Info

Publication number
JP3798068B2
JP3798068B2 JP13946396A JP13946396A JP3798068B2 JP 3798068 B2 JP3798068 B2 JP 3798068B2 JP 13946396 A JP13946396 A JP 13946396A JP 13946396 A JP13946396 A JP 13946396A JP 3798068 B2 JP3798068 B2 JP 3798068B2
Authority
JP
Japan
Prior art keywords
hot water
valve
temperature
closing
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13946396A
Other languages
Japanese (ja)
Other versions
JPH09303871A (en
Inventor
寿久 斉藤
直行 竹下
和浩 秋庭
喜久雄 岡本
久恭 渡辺
享 和泉沢
健生 山口
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP13946396A priority Critical patent/JP3798068B2/en
Publication of JPH09303871A publication Critical patent/JPH09303871A/en
Application granted granted Critical
Publication of JP3798068B2 publication Critical patent/JP3798068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は給水通路より導かれる水を給湯バーナ燃焼により加熱して給湯通路へ流出する給湯熱交換器を備えた燃焼機器に関するものである。
【0002】
【従来の技術】
燃焼機器として代表的な給湯器には、周知のように、給湯熱交換器と給湯バーナが設けられ、給湯熱交換器の入側には給水通路が、出側には給湯通路がそれぞれ接続され、給湯通路は台所等の給湯栓へ導かれている。給湯熱交換器は、給湯栓が開けられると、水供給源から給水通路を介して導かれた水を給湯バーナの給湯燃焼の熱を利用して加熱し、この加熱した湯を給湯通路を通し給湯栓を介して出湯する。
【0003】
【発明が解決しようとする課題】
ところで、周知のように、給湯栓の閉栓後つまり給湯停止後(止湯後)、給湯熱交換器内に滞留した湯は、図7の実線カーブAに示すように、給湯停止後すぐに後沸き(給湯熱交換器の保有熱量が給湯熱交換器の滞留湯に伝わって滞留湯温が上昇する現象)によって止湯前の給湯熱交換器湯温より高い湯温(オーバーシュート)の湯となる。このオーバーシュートの湯が給湯栓が開けられて給湯熱交換器から流れ出ると、湯の利用者が定めた給湯設定温度より高めの湯が出湯し湯の利用者に不快感を与えてしまうという問題が生じる。
【0004】
上記問題を解決するために、様々な手段が提案されているが、簡単な構成でもって出湯時の高温出湯を防止することができる満足すべき燃焼機器は今だ得られていない。
【0005】
本発明は上記課題を解決するためになされたものであり、その目的は、簡単な構成で、出湯開始時の高温出湯を確実に防止することができる燃焼機器を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は次のような構成をもって前記課題を解決する手段としている。すなわち、第1の発明は、給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、給湯熱交換器の出側の湯水温度を検出する給湯熱交換器出側湯温センサと、燃焼機器の器具の本体から外部へ導出され外部の空気を器具内に取り込む吸気延長管路と、この吸気延長管路の近傍に並設される部分を有し給湯バーナ燃焼の排気を外部へ排出する排気延長管路と、上記吸気延長管路と排気延長管路が並設する距離を設定する並設距離設定手段とを有する燃焼機器において、並設距離設定手段に設定された並設距離が長くなるに従って再出湯開始時にバイパス通路開閉弁の開弁時間を長くする方向に可変制御する構成をもって前記課題を解決する手段としている。
【0007】
第2の発明は、給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、給湯熱交換器の出側の湯水温度を検出する給湯熱交換器出側湯温センサとを有する燃焼機器において、給湯停止時の給湯熱交換器出側の検出温度を基準として該給湯熱交換器出側検出温度よりも予め与えられた温度だけ高い閉弁温度と該閉弁温度よりも予め与えられた温度だけ高い開弁温度とが格納されるデータ格納部と;出湯が開始された後に給湯熱交換器出側湯温センサの実測出側湯温と前記データ格納部に格納されている温度データを比較し、実測出側湯温が開弁温度以上であると判断したときにバイパス通路開閉弁への開弁信号を出力してバイパス通路開閉弁を開弁させ、実測出側湯温が閉弁温度以下であると判断したときにバイパス通路開閉弁への閉弁信号を出力するバイパス通路開閉弁開閉制御部と;バイパス通路開閉弁が開弁する度にその開弁してからの経過時間を計測する時間計測部と;予め定めた開弁リミット時間が与えられ、上記時間計測部の時間情報に基づき、バイパス通路開閉弁が開弁してからその開弁状態が維持されているにも拘わらず給湯熱交換器の実測出側湯温が上記閉弁温度以下に下がらずに上記開弁リミット時間に達したときにバイパス通路開閉弁を閉弁させるバイパス通路開閉弁強制閉弁部と;を有する構成をもって前記課題を解決する手段としている。
【0008】
第3の発明は、給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、給湯熱交換器の出側の湯水温度を検出する給湯熱交換器出側湯温センサとを有する燃焼機器において、給湯停止時の給湯熱交換器出側の検出温度を基準として該給湯熱交換器出側検出温度よりも予め与えられた温度だけ高い閉弁温度と該閉弁温度よりも予め与えられた温度だけ高い開弁温度とが格納されるデータ格納部と;出湯が開始された後に給湯熱交換器出側湯温センサの実測出側湯温と前記データ格納部に格納されている温度データを比較し、実測出側湯温が開弁温度以上であると判断したときにバイパス通路開閉弁への開弁信号を出力してバイパス通路開閉弁を開弁させ、実測出側湯温が閉弁温度以下であると判断したときにバイパス通路開閉弁への閉弁信号を出力するバイパス通路開閉弁開閉制御部と;出湯が開始される度にその出湯が開始されてからの経過時間を計測する時間計測部と;予め定めた開弁リミット時間が与えられ、上記時間計測部の時間情報に基づき、出湯が開始されてからバイパス通路開閉弁の開弁状態が維持されているにも拘わらず給湯熱交換器の実測出側湯温が上記閉弁温度以下に下がらずに上記開弁リミット時間に達したときにバイパス通路開閉弁を閉弁させるバイパス通路開閉弁強制閉弁部と;を有する構成をもって前記課題を解決する手段としている。
【0009】
第4の発明は、上記第2又は第3の発明の構成に加えて、給湯バーナ燃焼の給排気を行う燃焼ファンと;燃焼機器の器具の本体から外部へ導出され燃焼ファンの駆動により外部の空気を器具内に取り込む吸気延長管路と;この吸気延長管路の近傍に並設され燃焼ファンの駆動により給湯バーナ燃焼の排気を外部へ排出する排気延長管路と;上記吸気延長管路と排気延長管路の長さに応じ定められた燃焼ファンの回転制御モードを上記延長管路の長さに基づいて切り換え設定するためのファン回転制御モード切り換え手段と;上記ファン回転制御モード切り換え手段の切り換えモード情報を取り込み、この情報に基づいて吸気延長管路と排気延長管路の長さが長くなるに従ってバイパス通路開閉弁強制閉弁部に与えられている開弁リミット時間を長くする方向に可変設定する開弁リミット時間設定部と;が設けられている構成をもって前記課題を解決する手段としている。
【0010】
第5の発明は、上記第2又は第3又は第4の発明を構成する給湯熱交換器の給水通路と、給湯熱交換器の給湯通路を短絡する開閉弁を持たない常時バイパス通路が設けられている構成をもって前記課題を解決する手段としている。
【0011】
第6の発明は、上記第1〜第5の発明のいずれか1つの発明の構成に加えて、給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、上記バイパス通路と並列に設けられ前記給湯熱交換器の入側の給水通路と出側の給湯通路を短絡する常時バイパス通路と、該常時バイパス通路の開閉を行う第2のバイパス通路開閉弁と、燃焼機器の器具の本体から外部へ導出され外部の空気を器具内に取り込む吸気延長管路と、この吸気延長管路の近傍に並設される部分を有し給湯バーナ燃焼の排気を外部へ排出する排気延長管路とを備え、上記第2のバイパス通路開閉弁は出湯開始時に予め定められた給湯設定温度より低い湯温の湯が出湯するときのみ閉弁リミット時間設定部により設定された閉弁リミット時間を越えない予め定められた期間だけ閉弁制御される常開弁と成し、上記閉弁リミット時間設定部は前記吸気延長管路と排気延長管路の並設長さのデータに基づき上記閉弁リミット時間を予め与えられる手法に従い可変設定する構成をもって前記課題を解決する手段としている。
【0012】
第7の発明は、上記第1〜第5の発明のいずれか1つの発明の構成に加えて、給湯熱交換器の入側の給水通路と出側の給湯通路を短絡する常時バイパス通路と、該常時バイパス通路の開閉を行う第2のバイパス通路開閉弁とが設けられ、給湯停止時の給湯熱交換器出側の検出温度を基準として該給湯熱交換器出側検出温度よりも予め与えられた温度だけ低い開弁温度と該開弁温度よりも予め与えられた温度だけ低い閉弁温度とが格納されるデータ格納部と;出湯が開始された後に給湯熱交換器出側湯温センサの実測出側湯温と前記データ格納部に格納されている温度データを比較し、実測出側湯温が閉弁温度以下であると判断したときに第2のバイパス通路開閉弁への閉弁信号を出力して第2のバイパス通路開閉弁を閉弁させ、実測出側湯温が開弁温度以上であると判断したときに第2のバイパス通路開閉弁への開弁信号を出力する第2のバイパス通路開閉弁開閉制御部と;出湯が開始される度にその出湯が開始されてからの経過時間を計測する、あるいは、第2のバイパス通路開閉弁が閉弁する度にその閉弁してからの経過時間を計測する時間計測部と;予め定めた閉弁リミット時間が与えられ、上記時間計測部の計測時間が上記閉弁リミット時間に達したときに第2のバイパス通路開閉弁が閉弁していると判断した場合に第2のバイパス通路開閉弁を開弁させる第2のバイパス通路開閉弁強制開弁部と;給湯バーナ燃焼の給排気を行う燃焼ファンと;燃焼機器の器具の本体から外部へ導出され燃焼ファンの駆動により外部の空気を器具内に取り込む吸気延長管路と;この吸気延長管路の近傍に並設され燃焼ファンの駆動により給湯バーナ燃焼の排気を外部へ排出する排気延長管路と;上記吸気延長管路と排気延長管路の長さに応じ定められた燃焼ファンの回転制御モードを上記延長管路の長さに基づいて切り換え設定するためのファン回転制御モード切り換え手段と;上記ファン回転制御モード切り換え手段の切り換えモード情報を取り込み、この情報に基づいて吸気延長管路と排気延長管路の長さが長くなるに従って上記第2のバイパス通路開閉弁強制開弁部に与えられている閉弁リミット時間を短くする方向に可変設定する閉弁リミット時間設定部と;が設けられている構成をもって前記課題を解決する手段としている。
【0013】
第8の発明は、上記第1〜第7の発明のいずれか1つの発明を構成する燃焼ファンが燃焼室の排気側に設けられ、この燃焼ファンの駆動により給湯バーナ燃焼の排気を吸い出す構成として前記課題を解決する手段としている。
【0014】
上記構成の発明において、例えば、バイパス通路開閉弁開閉制御部は、出湯開始後に、給湯熱交換器の実測出側湯温とデータ格納部の温度データを比較し、実測出側湯温が開弁温度以上であると判断したときにバイパス通路開閉弁への開弁信号を出力し、高温出湯を防止するためにバイパス通路開閉弁を開弁させる。バイパス通路開閉弁が開弁すると、時間計測部はバイパス通路開閉弁が開弁してからの経過時間の計測を開始する。
【0015】
バイパス通路開閉弁の開弁期間中に、バイパス通路開閉弁開閉制御部が実測出側湯温が閉弁温度以下であると判断したときにバイパス通路開閉弁を閉弁しても高温出湯の虞れはなくなったとしてバイパス通路開閉弁への閉弁信号を出力する。バイパス通路開閉弁強制閉弁部は、上記時間計測部の情報に基づき、バイパス通路開閉弁が開弁してから予め定めた開弁リミット時間に達したときにバイパス通路開閉弁が開弁していると判断したときにバイパス通路開閉弁を閉弁させる。
【0016】
上記の如く、出湯開始後、給湯熱交換器の出側湯温が開弁温度以上であり、高温出湯の虞れがあるときに、バイパス通路開閉弁を開弁し、給湯熱交換器から流れ出た高温の湯にバイパス通路から水をミキシングして湯温を下げることによって高温出湯が回避される。
【0017】
【発明の実施の形態】
以下、本発明に係る実施の形態例を図面に基づき説明する。
【0018】
第1の実施の形態例の燃焼機器である給湯器は、図8に示すように、給湯器の器具本体を収容する器具ケース15を有し、この器具ケース15には外部へ導出された吸気延長管路52が設けられている。また、器具ケース15内には燃焼室16が形成され、この燃焼室16内には、給湯バーナ2と、この給湯バーナ2より上方側に設けられる給湯熱交換器1とが配設されており、燃焼室16の排気側は燃焼ファン17と排気管路55を介して排気延長管路53と連通されている。この排気延長管路53は前記吸気延長管路52の内部に配設されており、吸気延長管路52と排気延長管路53は二重管構造の延長筒51を形成している。
【0019】
また、前記給湯バーナ2より下方側の燃焼室形成壁には吸気孔31が形成されており、前記燃焼ファン17は回転駆動することにより、外部の空気を吸気延長管路52と、器具ケース15と燃焼室側壁の空隙57と、上記空気孔31とを介して給湯バーナ2へ供給し、給湯バーナ2の燃焼によって発生した排気を排気管路55と排気延長管路53を介して外部へ排出するように形成されている。
【0020】
また、前記給湯熱交換器1の入側には給水通路3が接続され、出側には給湯通路4が接続されており、給湯通路4は台所等の給湯栓19へ導かれている。前記給湯熱交換器1には入側の給水通路3と出側の給湯通路4を短絡する開閉弁を持たない常時バイパス通路5が並設され、この常時バイパス通路5は給湯熱交換器1側に流れる流量と常時バイパス通路5側に流れる流量の流量比が管路抵抗により予め定めた流量比(例えば7対3〜8対2)となるように形成されている。
【0021】
この常時バイパス通路5の出側接続部Xより下流側の給湯通路4と、常時バイパス通路入側接続部Yより上流側の給水通路3とを短絡するバイパス通路8が形成されている。このバイパス通路8には該通路の開閉を行うバイパス通路開閉弁であるバイパス弁10が介設されており、このバイパス弁10は通常の運転時には閉弁状態となっている。上記常時バイパス通路出側接続部Zより下流側の給湯通路4には流量を開弁量により制御する流量制御弁7が設けられている。
【0022】
なお、図中、12は水供給源から給水通路3を介して導かれた入水流量を検出するための流量検出センサを示し、13は給水通路3の入水の温度を検出するためのサーミスタ等の入水温度センサを示し、14は給湯熱交換器1の出側の湯水の温度を検出するためのサーミスタ等の給湯熱交換器出側湯温センサである出側湯温センサを示すものである。
【0023】
また、この給湯器には該給湯器の運転動作を制御する制御装置20が設けられ、この制御装置20にはリモコン18およびファン回転制御モード切り換え手段34が接続されている。リモコン18には給湯器の利用者が給湯温度を設定するための給湯温度設定手段21が形成されている。
【0024】
上記ファン回転制御モード切り換え手段34は、例えば、表1に示すように、延長筒51の長さLに応じ段階的に予め定められたファン回転制御モードを、給湯器の施工時等に施工業者やサービスマン等が延長筒51の長さLに基づいて切り換え設定するもので、制御装置20には予め定められたファン回転制御モード毎に与えられる図4に示すようなファン回転数と燃焼能力の関係を示すファン回転制御データが実験や演算等により求め与えられ、制御装置20はファン回転制御モード切り換え手段34に設定されたファン回転制御モードのファン回転制御データに基づき燃焼ファン17の回転制御を行って、延長筒51の長さLに応じて変化する延長筒51の管路抵抗の影響を受けずに給湯バーナ2の燃焼能力に見合った風量を安定的に給湯バーナ2へ供給する。
【0025】
【表1】

Figure 0003798068
【0026】
この第1の実施の形態例に示す制御装置20には本発明において特有な高温出湯防止手段が設けられている。
【0027】
図1には高温出湯防止手段25を備えた制御装置20の主要構成の一例が示されており、この制御装置20は燃焼制御部36と高温出湯防止手段25を有して構成されている。上記燃焼制御部36は予め与えられるシーケンスプログラムに従い給湯の運転動作を制御するもので、その制御構成は周知であるのでその説明は省略する。
【0028】
高温出湯防止手段25は、サンプリング部35と、基準値取り込み部37と、データ格納部40と、バイパス通路開閉弁強制閉弁部である強制閉弁部41と、開弁リミット時間設定部42と、開閉状態監視部44と、バイパス通路開閉弁開閉制御部である開閉制御部45と、開弁・閉弁温度算出部であるTOP・TCL算出部46と、時間計測部50とを有して構成されており、この高温出湯防止手段25は出湯開始時の高温出湯を確実に防止するためにバイパス弁10の開閉制御を精度良く行うものである。
【0029】
サンプリング部35は予め定めたサンプリング時間間隔(例えば、1秒間隔)を設定するタイマ(図示せず)を内蔵しており、このタイマによって設定されたサンプリング時間間隔毎に、出側湯温センサ14等の様々なセンサ出力や、リモコン18の情報(例えば、給湯温度設定手段21に設定されている給湯設定温度)をサンプリングする。
【0030】
基準値取り込み部37は、燃焼制御部36の制御動作の情報から給湯バーナ2の給湯燃焼が停止したと検知したときに、サンプリング部35がサンプリングした出側湯温センサ14の実測出側湯温を取り込み、この実測出側湯温を基準値SS として設定し、この基準値SS をTOP・TCL算出部46へ出力する。
【0031】
OP・TCL算出部46は上記基準値取り込み部37で設定された基準値SS を受け取ると、データ格納部40に予め格納されているTOP算出演算式データ(TOP=SS +α)およびTCL算出演算式データ(TCL=SS +β)を読み出し、上記基準値SS と、TOP算出演算式データおよびTCL算出演算式データとに基づき、開弁温度TOPと閉弁温度TCLを演算算出し、求めた開弁温度TOPと閉弁温度TCLをデータ格納部40に格納する。
【0032】
なお、上記TOP算出演算式データに示すαは第1の嵩上げ温度を表し、予め定められる定数(例えば、3℃)であり、また、TCL算出演算式データに示すβは第2の嵩上げ温度を表し、上記αより小さい予め定められる定数(例えば、2℃)である。また、算出した開弁温度TOPと閉弁温度TCLをデータ格納部40に書き込むときには、その開弁温度TOPと閉弁温度TCLより前に記憶されていた開弁温度TOP′と閉弁温度TCL′は自動消去され新たな開弁温度TOPと閉弁温度TCLに更新される。
【0033】
開閉制御部45は、前記燃焼制御部36の制御動作の情報から出湯が開始されたと検知した以降に、サンプリング部35を介して出側湯温センサ14の実測出側湯温TOUT を取り込み、この実測出側湯温TOUT と前記データ格納部40の開弁温度TOPを比較する。図2の(a)に示すように、出湯開始後、まず、給湯熱交換器1の出側の給湯通路4に滞留していた温めの湯の湯温が出側湯温センサ14により検出されるが、後沸きが生じている場合には、その後、高温の湯が給湯熱交換器1から流出し始め、出側湯温センサ14で検出される湯の湯温が上昇する。
【0034】
そして、開閉制御部45は、実測出側湯温TOUT が開弁温度TOP以上である(TOUT ≧TOP)と判断したときには、バイパス弁10を閉弁したままでは給湯熱交換器1から流れ出た湯にミキシングする水が常時バイパス通路5から流出する水だけのため、ミキシングする水量が不足となって給湯設定温度よりかなり高めの湯が出湯し、この高温出湯により湯の利用者に不快感を与えてしまうという問題や、非常に高温の湯が出湯して湯の利用者に火傷を負わせる危険が生じると判断し、バイパス弁駆動手段33へ開弁信号(バイパス通路開閉弁への開弁信号)を出力し、バイパス弁駆動手段33が図2の(c)に示すバイパス弁開・閉信号の開弁信号(開弁駆動電圧)をバイパス弁10に加えてバイパス弁10を開弁させる。
【0035】
このように、バイパス弁10を開弁することによって、給湯熱交換器1から流れ出た高温の湯に常時バイパス通路5およびバイパス通路8から流出した水がミキシングされ、図2の(b)に示すように、出湯湯温が下げられ、高温出湯を回避することができる。
【0036】
開閉制御部45は、バイパス弁駆動手段33の動作情報からバイパス弁10が開弁していると検知している間(バイパス弁10の開弁期間中)、出側湯温センサ14の実測出側湯温TOUT と前記データ格納部40の閉弁温度TCLを比較し、図2の(a)に示すように、給湯熱交換器1から流れ出る湯温が下がり始め、実測出側湯温TOUT が閉弁温度TCL以下である(TOUT ≦TCL)と判断したときに、高温出湯の虞れがなくなったと判断し、バイパス弁駆動手段33へ閉弁信号(バイパス通路開閉弁への閉弁信号)を出力し、バイパス弁10を閉弁させる。
【0037】
上記の如く、バイパス通路8とそのバイパス弁10を設け、出湯開始後、出側湯温センサ14の実測湯温TOUT が開弁温度TOP以上であるとき、つまり、高温出湯の虞れがあるときにバイパス弁10を開弁する構成としたので、後沸きが生じているために給湯熱交換器1から流出する湯の湯温が給湯設定温度の湯を出湯させる給湯熱交換器1の出側湯温よりもかなり高めであるときには、その高温の湯に常時バイパス通路5およびバイパス通路8から流出する水がミキシングされ、給湯熱交換器1から流出した湯の湯温が下げられ、高温出湯を防止することができる。
【0038】
ところで、出湯開始後、上記開閉制御部45の制御動作によりバイパス弁10が開弁された以降に、図3の実線カーブaに示すように、給湯設定温度が高くなる方向に変更された等に起因して給湯熱交換器の出側湯温(出側湯温センサ14が検出する実測出側湯温)TOUT が閉弁温度TCLより高めの湯温に安定し、出側湯温TOUT が閉弁温度TCL以下に下がらないためにバイパス弁10が閉弁せず、バイパス弁10が開弁したままになる場合がある。
【0039】
このようにバイパス弁10が開弁した状態のまま給湯運転が続行されると、給湯熱交換器1で作り出された湯に常時バイパス通路5およびバイバス通路8から流出する水をミキシングした後の湯の湯温が給湯設定温度になるように給湯バーナ2の燃焼能力制御が行われ、給湯熱交換器1の湯にミキシングする水が常時バイパス通路5の水だけである場合より給湯熱交換器1の湯温が高くなって給湯が停止された後の給湯熱交換器1の滞留湯の湯温が非常に高くなる。このように、給湯熱交換器1の滞留湯の湯温が非常に高い状態から出湯が開始されると、常時バイパス通路5の水に加えてバイパス通路8の水を給湯熱交換器1の湯にミキシングしても出湯湯温は給湯設定温度よりかなり高めとなってしまい、高温出湯を防止することができないという問題が生じる虞れがある。
【0040】
そこで、上記問題を回避するために、前記の如く、高温出湯防止手段25に強制閉弁部41と開閉状態監視部44と時間計測部50を設け、前記開閉制御部45は、前記構成に加えて、出側湯温センサ14が検出した実測出側湯温TOUTが開弁温度TOP以上であると判断してバイパス弁駆動手段33へ開弁信号を出力するときに、同時に、強制閉弁部41へバイパス弁開弁駆動信号を出力し、また、時間計測部50に備えられているタイマをリセット・駆動させる構成とし、バイパス弁10が開弁してから予め定められた開弁リミット時間に達したときにバイパス弁10を閉弁し、給湯熱交換器1の湯量に対するミキシング水量を減少させ給湯熱交換器1で作り出す湯の湯温下げて、前記バイパス弁10の開弁長期継続状態に起因した問題、つまり、次回の出湯時の給湯熱交換器1の湯温が高過ぎて給湯熱交換器1の湯量に対するミキシング水量が常時バイパス通路5とバイパス通路8の合計水量だけでは高温出湯を防止できないという問題を回避する構成とした。
【0041】
開閉状態監視部44は、燃焼制御部36の制御動作の情報から出湯が開始されたと検知した後、バイパス弁駆動手段33の開閉動作情報を取り込んで(図2の(c)に示すバイパス弁開・閉信号を取り込んで)バイパス弁10の開閉状態を監視する。
【0042】
前記データ格納部40には開弁リミット時間t0 (例えば、20秒)が予め与えられており、強制閉弁部41は、前記開閉制御部45から出力されたバイパス弁開弁駆動信号を受け取ると、上記データ格納部40に格納されている開弁リミット時間t0 を読み出し、また、開閉状態監視部44のバイパス弁開閉状態情報および時間計測部50のタイマ情報の取り込みを開始する。
【0043】
そして、それらの情報と開弁リミット時間t0 に基づき、時間計測部50(タイマ)の計測時間(バイパス弁10が開弁してからの経過時間)が開弁リミット時間t0 に達したときにバイパス弁10が開弁していると判断したときに、給湯熱交換器1の出側湯温TOUT が閉弁温度TCL以下に下がらずバイパス弁10が閉弁しない虞れがあり、バイパス弁10の開弁長期継続状態に起因した問題を防止するためにバイパス弁10を閉弁する必要があると判断し、バイパス弁駆動手段33へ閉弁信号を出力し、バイパス弁10を閉弁させる。
【0044】
上記の如く、バイパス弁10が開弁したままになってしまうと考えられる場合に、強制閉弁部41がバイパス弁10を閉弁させ、バイパス弁10の開弁長期継続状態に起因して生じる問題を確実に防止する。
【0045】
なお、前記開弁リミット時間t0 は、バイパス弁10を閉弁させても高温出湯の虞れがなく、しかも、湯の利用者がバイパス弁10を閉じたときの出湯湯温変動を違和感なく感じる期間(例えば、出湯開始してから出湯湯温が給湯設定温度に安定するまでの出湯湯温不安定期間)で、バイパス弁10の開弁長期継続状態に起因した問題を回避することができる最適な値が予め実験や演算等により求められ前記データ格納部40に格納される。
【0046】
ところで本発明者は、高温出湯を防止するより良い手段を得るために試行錯誤を繰り返しているうちに、図8に示すような延長筒51の長さL、つまり、吸気延長管路52と排気延長管路53が並設している長さLを考慮して給湯運転の制御を行わなければならないことに気付いた。この点に着目し、この実施の形態例では、さらに高温出湯防止手段25に開弁リミット時間設定部42が設けられている。この開弁リミット時間設定部42は、延長筒51の長さLに応じて前記開弁リミット時間を可変設定し、データ格納部40の開弁リミット時間を自動更新するものである。
【0047】
それというのは、図8に示すように、吸気延長管路52と排気延長管路53が並設されている場合に、吸気延長管路52を通る吸気空気は、排気延長管路53の排気熱風(例えば100 ℃〜120 ℃の風)の熱を受け取って加熱され(例えば、70℃以上に加熱され)、この加熱された空気が、給湯バーナ2の燃焼停止後のポストパージ期間(燃焼停止後、燃焼室16内の排気を外部へ排出するために燃焼ファン17を駆動させる期間)には給湯バーナ2を介して給湯熱交換器1に吹き付けられることになる。
【0048】
その吸気温風の温度は延長筒51の長さ(つまり、吸気延長管路52と排気延長管路53が並設している長さ)Lが長くなるに従って高温になり、上記吸気温風の温度が高くなるに従って給湯熱交換器1の滞留湯が冷めにくくなって、つまり、図7に示す給湯熱交換器1の滞留湯の後沸き時間が吸気温風が高温になるに従って長くなるので、出湯開始後、給湯熱交換器1から後沸きによる高温の湯がまだ出湯しているのにバイパス弁10が閉弁して給湯設定温度よりかなり高めの湯が出湯してしまうという問題を確実に回避するためには、吸気温風の温度が高くなるに従って、つまり、延長筒51の長さLが長くなるに従って前記開弁リミット時間を長くする方向に可変設定することが望ましい。
【0049】
そこで、この実施の形態例では、表2に示すように、延長筒51の長さLに応じて段階的に定めたファン回転制御モードに対応させて開弁リミット時間のデータを予め実験や演算等により求めてデータ格納部40に与えておき、開弁リミット時間設定部42は、ファン回転制御モード切り換え手段34に設定されているファン回転制御モードの情報を取り込み、このファン回転制御モードの情報と上記データ格納部40の開弁リミット時間データに基づき、延長筒51の長さLが長くなるに従って段階的に開弁リミット時間を長くなる方向に可変設定し、データ格納部40の開弁リミット時間を自動更新する構成とした。
【0050】
【表2】
Figure 0003798068
【0051】
上記の如く、延長筒51の長さLに応じて開弁リミット時間を可変設定することによって、出湯開始後にバイパス弁10が開弁した後、給湯熱交換器1から後沸きに起因した高温湯が流れ出切る前にバイパス弁10が閉弁して出湯湯温がかなり上昇し高温出湯してしまうという問題を防止することができる。もちろん、前述したようなバイパス弁10の開弁長期継続状態に起因した問題を回避することもできる。
【0052】
この実施の形態例によれば、バイパス通路8およびそのバイパス弁10を設け、出湯開始後、高温出湯の虞れがあるときに(給湯熱交換器1の出側湯温TOUT が開弁温度TOP以上となったときに)バイパス弁10を開弁させる構成としたので、高温出湯の虞れがあるときには、給湯熱交換器1から流出する高温の湯にバイパス通路8の水がミキシングされ、その高温の湯の湯温が下げられ、後沸きに起因した高温出湯を防止することができる。
【0053】
また、バイパス通路8とバイパス弁10を設け、バイパス弁10の開閉制御を行うだけで、上記の如く、出湯時の高温出湯を防止できるので、管路構成および制御構成の簡易化を図ることが容易であるという画期的な効果を奏することができる。
【0054】
さらに、強制閉弁部41と開閉状態監視部44と時間計測部50を設けたので、出湯開始後、バイパス弁10が開弁した以降に、バイパス弁10が開弁してから予め定めた開弁リミット時間に達したときにバイパス弁10が開弁している場合にはバイパス弁10が閉弁されることになり、給湯熱交換器1の出側湯温TOUT が開弁したままになってしまう事態を回避することができ、バイパス弁10の開弁長期継続状態に起因した問題を防止して、再出湯時の高温出湯防止を確実に行うことができる。
【0055】
さらに、開弁リミット時間設定部42を設けたので、延長筒51の長さLに応じて可変する給湯熱交換器1の滞留湯の後沸き時間の変化に対応させて開弁リミット時間を可変設定することができ、バイパス弁10の開弁の長期継続状態に起因した問題を防止し、かつ、高温出湯の虞れがない閉弁タイミングでバイパス弁10を閉弁させることが可能である。
【0056】
以下に第2の実施の形態例を説明する。この実施の形態例において特徴的なことは、常時バイパス通路5に、図8の点線に示すように、通常の運転時には開弁状態の第2のバイパス通路開閉弁である第2のバイパス弁61が設けられ、また、前記第1の実施の形態例に示した制御装置20の構成に加えて、図5に示す低温出湯防止手段60が設けられていることであり、出湯開始時に給湯設定温度よりかなり低めの湯(アンダーシュートの湯)が出湯し湯の利用者にアンダーシュートの湯による不快感を与えてしまうという低温出湯の問題を防止することができる構成とした。それ以外の構成は前記第1の実施の形態例と同様であり、その重複説明は省略する。
【0057】
上記低温出湯防止手段60は、データ格納部62と、第2のバイパス通路開閉弁強制開弁部である強制開弁部63と、閉弁リミット時間設定部64と、第2のバイパス通路開閉弁開閉制御部である第2の開閉制御部65と、TOP′・TCL′算出部66と、時間計測部67とを有して構成されている。
【0058】
OP′・TCL′算出部66は燃焼制御部36の情報により出湯が停止されたと検知したときに高温出湯防止手段25の基準値取り込み部37で設定された基準値SS を取り込み、データ格納部62に予め格納されているTOP′算出演算式データ(TOP′=SS −a)およびTCL′算出演算式データ(TCL′=SS −b)を読み出し、上記基準値SS と、TOP′算出演算式データおよびTCL′算出演算式データとに基づき、開弁温度TOP′と閉弁温度TCL′を演算算出し、求めた開弁温度TOP′と閉弁温度TCL′をデータ格納部62に格納する。
【0059】
なお、上記TOP′算出演算式データに示すaは予め定められる定数(例えば、2℃)であり、また、TCL′算出演算式データに示すbは上記aより大きい予め定められる定数(例えば、3℃)である。
【0060】
第2の開閉制御部65は、前記燃焼制御部36の制御動作の情報から出湯が開始されたと検知した以降に、出側湯温センサ14の実測出側湯温TOUT を取り込み、この実測出側湯温TOUT と前記データ格納部62の閉弁温度TCL′を比較する。図6の(a)に示すように、給湯熱交換器1の出側の出側湯温センサ14で検出される湯の湯温が上記閉弁温度TCL′以下となり、第2の開閉制御部65は、実測出側湯温TOUT が閉弁温度TCL′以下である(TOUT ≦TCL′)と判断したときには、第2のバイパス弁61を開弁したままでは給湯熱交換器1から流れ出た温めの湯に常時バイパス通路5から流出する水がミキシングされ、給湯熱交換器1の温めの湯の湯温がさらに下がり、給湯設定温度よりかなり低めの湯が出湯し、この低温出湯により湯の利用者に不快感を与えてしまうという問題が生じると判断し、第2のバイパス弁駆動手段68へ閉弁信号(バイパス通路開閉弁への閉弁信号)を出力し、第2のバイパス弁駆動手段68が図6の(c)に示す第2のバイパス弁開・閉信号の閉弁信号を第2のバイパス弁61に加えて第2のバイパス弁61を閉弁させる。
【0061】
このように、第2のバイパス弁61を閉弁することによって、給湯熱交換器1から流れ出た湯に常時バイパス通路5の水がミキシングされなくなり、図6の(b)に示すように、出湯湯温が上昇し、低温出湯を回避することができる。
【0062】
第2の開閉制御部65は、第2のバイパス弁駆動手段68の動作情報から第2のバイパス弁61が閉弁していると検知している間(第2のバイパス弁61の閉弁期間中)、出側湯温センサ14の実測出側湯温TOUT と前記データ格納部62の開弁温度TOP′を比較し、図6の(a)に示すように、給湯熱交換器1から流れ出る湯温が上がり始め、実測出側湯温TOUT が開弁温度TOP′以上である(TOUT ≧TOP′)と判断したときに、低温出湯の虞れがなくなったと判断し、第2のバイパス弁駆動手段68へ開弁信号(第2のバイパス通路開閉弁への開弁信号)を出力し、第2のバイパス弁61を開弁させる。
【0063】
また、第2の開閉制御部65は、上記構成に加えて、出側湯温センサ14が検出した実測出側湯温TOUT が閉弁温度TCL′以下であると判断して第2のバイパス弁駆動手段68へ閉弁信号を出力するときに、同時に、強制開弁部63へ第2のバイパス弁閉弁駆動信号を出力し、また、時間計測部67に備えられているタイマをリセット・駆動させる構成を有している。
【0064】
前記データ格納部62にはさらに閉弁リミット時間t1 (例えば、20秒)が予め与えられており、強制開弁部63は、前記第2の開閉制御部65から出力された第2のバイパス弁閉弁駆動信号を受け取ると、上記データ格納部62に格納されている閉弁リミット時間t1 を読み出し、また、第2のバイパス弁駆動手段68のバイパス弁開閉状態情報および時間計測部67のタイマ情報の取り込みを開始する。
【0065】
そして、それらの情報と閉弁リミット時間t1 に基づき、時間計測部(タイマ)67の計測時間が閉弁リミット時間t1 に達したときに第2のバイパス弁61が閉弁していると判断したときに、第2のバイパス弁駆動手段68へ開弁信号を出力し、第2のバイパス弁61を開弁させる。
【0066】
なお、前記閉弁リミット時間t1 は、第2のバイパス弁61を閉弁させても低温出湯の虞れがなく、しかも、湯の利用者が第2のバイパス弁61を開けたときの出湯湯温変動を違和感なく感じる期間(例えば、出湯開始してから出湯湯温が給湯設定温度に安定するまでの出湯湯温不安定期間)である最適な値が予め実験や演算等により求められ前記データ格納部62に格納される。
【0067】
この実施の形態例では、さらに、閉弁リミット時間設定部64が設けられている。この閉弁リミット時間設定部64は、延長筒51の長さLに応じて前記閉弁リミット時間を可変設定し、データ格納部62の閉弁リミット時間を自動更新するものである。
【0068】
この実施の形態例では、表3に示すように、延長筒51の長さLに応じて段階的に定めたファン回転制御モードに対応させて閉弁リミット時間のデータを予め実験や演算等により求めてデータ格納部62に与えておき、閉弁リミット時間設定部64は、ファン回転制御モード切り換え手段34に設定されているファン回転制御モードの情報を取り込み、このファン回転制御モードの情報と上記データ格納部62の閉弁リミット時間データに基づき、延長筒51の長さLが長くなるに従って段階的に閉弁リミット時間を短くする方向に可変設定し、データ格納部62の閉弁リミット時間を自動更新する構成とした。
【0069】
【表3】
Figure 0003798068
【0070】
この実施の形態例によれば、前記第1の実施の形態例の構成に加えて、低温出湯防止手段60を設けたので、前記第1の実施の形態例同様に出湯開始時の高温出湯を防止できる上に、低温出湯をも防止することができるという画期的な効果を奏することが可能である。
【0071】
なお、本発明は、上記各実施の形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、上記各実施の形態例では、燃焼制御部36の制御動作の情報に基づいて止湯・出湯開始を検知していたが、流量検出センサ12のセンサ出力を用いて止湯・出湯開始を検知するようにしてもよいし、給湯通路4の給湯栓19側に流水を検出するための流水スイッチ(給湯確認スイッチ)等のセンサを設け、このセンサのセンサ出力を用いて止湯・出湯開始を検知するようにしてもよい。
【0072】
また、図8に示した給湯器には常時バイパス通路5が設けられていたが、前記第1の実施の形態例に示した高温出湯防止手段は常時バイパス通路5を省略した各種の燃焼機器にも適用できるものであり、上記第1の実施の形態例の高温出湯防止手段25を設けて高温出湯防止動作を行うことによって、出湯時に給湯設定温度より許容範囲を越えた高温の湯が出湯し湯の利用者に不快感を与えるという問題および高温出湯による危険を回避できる。上記のように常時バイパス通路5を省略した場合にはその分管路構成を簡単にできる。
【0073】
ただ、常時バイパス通路5を設けることによって、バイパス弁10が閉じている通常運転時における給湯熱交換器1の通水量が減少し給湯熱交換器1の通水温が上昇するために、給湯熱交換器1の通水温の低下、つまり、給湯熱交換器1の水管表面温度の低下に起因して給湯バーナ燃焼により発生した水蒸気が給湯熱交換器1の水管表面に付着する結露現象を回避することができ、結露現象の多発に起因した給湯熱交換器1の腐食等の弊害の問題を防止することができる。
【0074】
さらに、上記各実施の形態例では、バイパス通路8およびそのバイパス弁10は1組しか設けられていなかったが、複数組設けてもよい。この場合には、それらバイパス弁を個々に制御するようにする。例えば、第1のバイパス弁には第1の開弁温度と第1の閉弁温度が対応し、第2のバイパス弁には上記第1の開弁温度より高い第2の開弁温度と第1の閉弁温度より高い第2の閉弁温度が対応するという如く、給湯熱交換器1の出側湯温が高くなるにしたがって、開弁しているバイパス弁の数が多くなるように各バイパス弁に対応する開弁温度と閉弁温度を設定し、それら開弁温度と閉弁温度に基づいて各バイパス弁を個々に制御するようにしてもよい。この場合には後沸き等の度合に応じて給湯熱交換器1から流出する高温の湯量に対するミキシング水量の割合を可変することが可能となる。
【0075】
また、上記の如く、バイパス通路8およびそのバイパス弁10が複数組設けられる場合には、例えば、唯1個の開弁リミット時間を与えておき、最初にバイパス弁10が開弁してから開弁リミット時間に達したときにいずれかのバイパス弁10が開弁していたときにはその開弁していた全てのバイパス弁10を閉弁させるようにしてもよいし、上記複数のバイパス弁10に個々に対応させた開弁リミット時間を与えておき、個々のバイパス弁10毎に開弁してからの時間を計測し、計測時間が開弁リミット時間に達したときにそのバイパス弁10が開弁していたときには該バイパス弁10を閉弁させるようにしてもよい。
【0076】
さらに、上記第2の実施の形態例では、上記バイパス通路5およびその第2のバイパス弁61は1組しか設けられていなかったが、複数組設けてもよい。この場合には、複数の第2のバイパス弁を個々に制御するようにする。この場合には、出湯時の給湯熱交換器1の湯温が低くなるに従って、閉弁する第2のバイパス弁の数を多くし常時バイパス通路5からのミキシング水量を少なくするという如く、出湯時の給湯熱交換器1の湯温に応じて給湯熱交換器1の湯量に対するミキシング水量の割合を可変することが可能となる。
【0077】
さらに、上記各実施の形態例ではTOP・TCL算出部46は開弁温度TOPと閉弁温度TCLを演算算出していたが、基準値SS に基づいて開弁温度TOP、閉弁温度CLを検出するための表データやグラフデータ等を予め求めてTOP検出データ、TCL検出データとして内蔵メモリに格納しておき、これらTOP検出データおよびTCL検出データと、基準値SS とに基づき開弁温度TOPと閉弁温度TCLを検出するという如く、演算を用いない他の手法により開弁温度TOPと閉弁温度TCLを検出するようにしてもよい。また、上記同様に、第2の実施の形態例に示したTOP′=TCL算出部66は演算を用いない他の手法により開弁温度TOP′と閉弁温度TCL′を検出するようにしてもよい。
【0078】
さらに、上記各実施の形態例ではTOP・TCL算出部46、TOP′・TCL′算出部66は出湯待機中に、開弁温度TOP,TOP′および閉弁温度TCL,TCL′を算出していたが、基準値取り込み部37が取り込んだ基準値SS をデータ格納部40,62に格納するようにし、出湯開始時に、データ格納部40,62からその基準値SS を読み出して開弁温度TOP,TOP′および閉弁温度TCL,TCL′を算出するようにしてもよい。
【0079】
さらに、上記各実施の形態例では、開弁温度TOPを求めるのに用いる第1の嵩上げ温度αと、閉弁温度TCLを求めるのに用いる第2の嵩上げ温度βとは予め定められていたが、上記第1の嵩上げ温度αと第2の嵩上げ温度βを可変設定するための可変設定手段を制御装置20が設けられている制御基板32等に設けて、サービスマン等が上記第1の嵩上げ温度αと第2の嵩上げ温度βを可変設定できるようにしてもよい。また、上記同様にして、第2の実施の形態例に示したTOP′算出演算式データの定数aとTCL′算出演算式データの定数bを可変設定できるようにしてもよい。
【0080】
さらに、上記各実施の形態例では、開閉制御部45はバイパス弁10の開閉状態をバイパス弁駆動手段33の情報から直接的に検知していたが、開閉状態監視部44の情報を取り込んでバイパス弁10の開閉状態を間接的に検知するようにしてもよい。
【0081】
さらに、上記各実施の形態例では開閉状態監視部44が設けられていたが、この開閉状態監視部44は省略してもよい。この場合、強制閉弁部41はバイパス弁10の開閉状態の情報をバイパス弁駆動手段33から直接的に取り込むことになる。
【0082】
さらに、上記各実施の形態例では常時バイパス通路5が1本だけ設けられていたが、常時バイパス通路5を複数本設けてもよい。この場合にも、前記の如く、給湯熱交換器1の流量とそれら常時バイパス通路の総流量の流量比が管路抵抗により予め定めた流量比となるように複数の常時バイパス通路5を形成する。
【0083】
さらに、上記各実施の形態例では、時間計測部50はバイパス弁10が開弁してからの経過時間を計測するように構成されていたが、例えば、開閉制御部45の情報に基づき、あるいは、燃焼制御部36の情報を取り込んで出湯が開始されてからの経過時間を計測するようにしてもよい。この場合には、強制閉弁部41は、開閉状態監視部44および時間計測部50の情報を取り込んで、出湯が開始されてから予め定めた開弁リミット時間に達したときにバイパス弁10が開弁している場合には、上記各実施の形態例で述べたようにバイパス弁10の開弁長期継続状態に起因した問題を回避するためにバイパス弁10を閉弁する必要があると判断し、バイパス弁10を閉弁させる。
【0084】
さらに、上記各実施の形態例では、開弁リミット時間設定部42は、ファン回転制御モード切り換え手段34に設定されている延長筒51の長さLに対応したファン回転制御モードに基づいて、開弁リミット時間を可変設定していたが、例えば、図1の点線に示す延長筒長さ検出部43と、図1および図8の点線で示す風量センサ11とを設けて、次のように開弁リミット時間を可変設定してもよい。
【0085】
例えば、予め定めた一定のファン回転数で燃焼ファン17を回転駆動させた場合に、延長筒51の長さLが長くなるに従って延長筒51の管路抵抗の増大により風量センサ11が検出するファン風量は小さくなることから、一定のファン回転数で燃焼ファン17を回転駆動させたときの風量センサ11の検出ファン風量は延長筒51の長さLに対応するものである。
【0086】
このことから、予め風量と延長筒51の長さとの関係データを与えておき、延長筒長さ検出部43は、燃焼制御部36を介して予め定められた試験のファン回転数で燃焼ファン17を回転駆動させ、この状態で風量センサ11が検出したファン風量を前記関係データに照らし合わせて延長筒51の長さLを検出し、開弁リミット時間設定部42は、その検出延長筒長さLに基づき、開弁リミット時間を可変設定するようにしてもよい。
【0087】
また、上記同様にして、第2の実施の形態例に示した低温出湯防止手段60の閉弁リミット時間設定部64は閉弁リミット時間を可変設定するようにしてもよい。
【0088】
さらに、次のようにして開弁リミット時間、閉弁リミット時間を可変設定することも可能である。例えば、データ格納部40に予め定めた試験のファン回転数で燃焼ファン17を回転駆動させたときの風量センサ11の検出ファン風量と開弁リミット時間の関係を示す開弁リミット時間設定データを予め実験や演算等により求めてグラフデータや表データや演算式データ等で格納しておき、開弁リミット時間設定部42は、燃焼制御部36を介して予め定めた試験のファン回転数で燃焼ファン17を回転駆動させ、風量センサ11が検出したファン風量を取り込み、この取り込んだファン風量と、上記データ格納部40の開弁リミット時間設定データとに基づき、検出ファン風量が小さくなるに従って開弁リミット時間が長くなる方向に、つまり、延長筒51の長さLが長くなるに従って開弁リミット時間が長くなる方向に、開弁リミット時間を連続的に、あるいは、段階的に可変設定するようにしてもよい。
【0089】
さらに、上記各実施の形態例では、ファン回転制御モード、開弁リミット時間、閉弁リミット時間は延長筒51の長さLに応じ3段階で設定されていたが、2段階でもよいし、4段階以上でもよいし、連続的に設定してもよい。
【0090】
さらに、上記各実施の形態例では、図8の給湯器を例にして説明したが、本発明は図8の給湯器のシステム構成以外の各種の燃焼機器にも適用するものである。例えば、図8の給湯器では、燃焼ファン17は燃焼室16の排気側に設けられ、排気ガスを吸い出すように形成されていたが、図9に示すように、燃焼室16の吸気側に設け、排気ガスを押し出すように形成してもよい。
【0091】
図8に示すように燃焼ファン17を燃焼室16の排気側に設ける場合には、燃焼ファン17は給湯バーナ燃焼により生じた高温の排気の熱を受けるために、燃焼ファン17には高温の排気熱に耐え得る高い耐熱性が要求されるが、図9に示すように燃焼ファン17を燃焼室16の吸気側に設ける場合には燃焼ファン17は上記排気熱を受けないので、耐熱性が低い燃焼ファン17を用いることが可能で、その燃焼ファン17の価格は安価であるので、給湯器のコストを低減することができる。
【0092】
さらに、図8の給湯器では、延長筒51は吸気延長管路52と排気延長管路53の二重管構造であったが、図10の(a)に示すように、吸気延長管路52と排気延長管路53が隣接した二本管構造であってもよい。この場合、同図に示しように、屋外に出る部分のみが2重管構造となるので、開弁リミット時間設定部42や閉弁リミット時間設定部64は、2重管となっている部分の長さL′に基づき、リミット時間を可変設定することになる。
【0093】
さらに、図8の給湯器では、吸気延長管路52と排気延長管路53が設けられていたが、図10の(b)に示すように、吸気延長管路52を省略し、その代わりに器具ケース15にルーバ54を形成し、そのルーバ54を介して外部の空気を取り込むようにしたものでもよいし、屋外に設置する目的で製造される給湯器であれば、吸気延長管路52および排気延長管路53を省略し、その代わりに器具ケース15に上記同様のルーバ54と、図10の(b)の点線で示すように排気管路55に連通する排気口58とを設け、ルーバ54を介して外部の空気を取り込み、排気口58を介して排気ガスを外部へ排出するタイプのものであってもよい。
【0094】
上記のように、排気延長管路53のみを有する、あるいは、吸気延長管路52と排気延長管路53の両方がないタイプの給湯器において、第1、第2の実施の形態例に示した制御装置20と同一のものを用いて制御する場合には、排気ガスの熱によって、吸気空気の温度が高温に加熱されることはないので、制御特性改善のために設定する延長筒51の長さ設定を最短として制御する。
【0095】
さらに、図8の給湯器は給湯機能のみを有する単機能給湯器であったが、本発明は、風呂バーナを備え、給湯と湯張りと高温差し湯と追い焚き等の機能を有する図11に示すような複合給湯器や、図12に示すように、給湯と湯張りと高温差し湯等の機能を有する給湯器や、給湯バーナのみを有し給湯と湯張りと高温差し湯と追い焚き等の機能を有する図13に示すような一缶二水構成の給湯器にも適用するものである。
【0096】
さらに、上記第2の実施の形態例では、制御装置20に高温出湯防止手段25と低温出湯防止手段60が設けられていたが、低温出湯防止手段60だけを設けてもよい。この場合には、低温出湯防止手段60に高温出湯防止手段25の基準値取り込み部37と同様の制御部が設けられることになる。
【0097】
さらに、上記各実施の形態例では延長筒51の長さLに応じて開弁リミット時間を可変設定していたが、延長筒51の長さLが長くなるに従って、給湯熱交換器1の出側湯温TOUT が図2の(a)に示す閉弁温度TCLから基準値SS に下がるのに要する時間が長くなるので、TCL算出演算式データの定数βの値を延長筒51の長さLが長くなるに従って小さく(例えば2℃から1℃に)可変することで、給湯熱交換器1の出湯湯温TOUT が閉弁温度TCLから基準値SS に下がるのに要する時間が短くなり、制御特性を改善できる。この場合、開弁リミット時間を予め定めた一定の値に固定してもよい。
【0098】
さらに、上記第2の実施の形態例に示したTOP′算出演算式データの定数aの値を延長筒51の長さLが長くなるに従って小さくする方向に可変してもよい。
【0099】
【発明の効果】
この発明によれば、出湯開始後、高温出湯の虞れがあるときにバイパス通路開閉弁を開弁して給湯熱交換器から流出した高温の湯にバイパス通路の水をミキシングする構成としたので、給湯熱交換器の後沸きに起因した高温の湯が出湯時に出湯するのを確実に防止でき、湯の利用者に出湯時の高温出湯により不快感を与えてしまうという問題や高温出湯による危険を回避することができる。
【0100】
また、必要最低限のバイパス通路およびその開閉弁を設け、出湯開始時にバイパス通路開閉弁の開閉制御を行うだけで、出湯時の高温出湯を防止できるので、管路構成を簡易化することが可能であり、給湯器のコスト低減を図ることができるという画期的な効果を奏することができる。
【0101】
さらに、時間計測部とバイパス通路開閉弁強制閉弁部が設けられているので、時間計測部で計測している時間が予め定めた開弁リミット時間に達したときにバイパス通路開閉弁が開弁している場合にはバイパス通路開閉弁が閉弁されることになり、例えば、給湯熱交換器の出側湯温が閉弁温度より高めの湯温で安定し閉弁温度以下に下がらないためにバイパス通路開閉弁が開弁したままになって次回の出湯時の高温出湯を防止できないという事態の発生を確実に回避することができる。
【0102】
開弁リミット時間設定部が設けられている構成にあっては、吸気延長管路と排気延長管路の長さが長くなるに従って、つまり、吸気延長管路から流れ出る吸気空気の温度が高くなるに従って、開弁リミット時間を長くする方向に可変設定するので、上記延長管路の長さに応じた給湯熱交換器の滞留湯の後沸き特性の変化に対応して開弁リミット時間を可変設定でき、前記の如く、バイパス通路開閉弁が開弁したままになってしまったときに生じる問題を回避できるのはもちろんのこと、延長管路の長さの影響を受けずに、高温出湯の虞れがなく、かつ、出湯湯温変動の違和感が少ないタイミングでバイパス通路開閉弁を閉弁させることが可能である。
【0103】
給湯熱交換器の給水通路と給湯通路を短絡する開閉弁をもたない常時バイパス通路が設けられている構成にあっては、給湯通路の常時バイパス通路出側接続部で、給湯熱交換器で加熱された湯と常時バイパス通路側を通った水がミキシングされることになり、例えば、バイパス通路開閉弁を開弁してバイパス通路を通る水によって給湯熱交換器から流出した湯の温度を下げなければならないのにも拘わらず、バイパス通路開閉弁が故障して開弁しないという事態が発生しても、上記の如く、給湯熱交換器の湯は常時バイパス通路の水がミキシングされることによって湯温が下げられることから、高温の湯が出湯し湯の利用者に火傷を負わせてしまうというような重大な問題は回避することができる。
【0104】
常時バイパス通路に第2のバイパス弁を設け、出湯時に給湯熱交換器の出側湯温が予め定めた閉弁温度以下になったときに第2のバイパス弁を閉弁する構成にあっては、出湯時に給湯熱交換器から流れ出る湯の湯温が低く、給湯設定温度よりかなり低めの湯が出湯する虞れがあるときに、第2のバイパス弁を閉弁することで給湯熱交換器の湯量に対するミキシング水量の割合が減少し、出湯湯温が上昇し、再出湯時等の低温出湯を防止することができる。
【0105】
燃焼ファンが燃焼室の排気側に設けられている構成にあっては、燃焼ファンの駆動により給湯バーナ燃焼の排気ガスを吸い出すので、排気ガスをより効率的に外部へ排出することができる。
【図面の簡単な説明】
【図1】本発明において特有な高温出湯防止手段の実施の形態例を示すブロック構成図である。
【図2】バイパス弁の開閉制御の動作例を示すタイムチャートである。
【図3】出湯開始後の給湯熱交換器の出側湯温における時間的変化の一例を示すグラフである。
【図4】ファン回転制御モード毎のファン回転数と燃焼能力の関係例を示すグラフである。
【図5】第2の実施の形態例を示すブロック構成図である。
【図6】第2のバイパス弁の開閉制御の動作例を示すタイムチャートである。
【図7】給湯熱交換器の滞留湯の温度における時間的変化の一例を示すグラフである。
【図8】本発明の燃焼機器である給湯器の一システム構成例を示すモデル図である。
【図9】燃焼ファンの配設位置のその他の例を示す説明図である。
【図10】吸排気手段のその他のシステム構成例を示す説明図である。
【図11】本発明の燃焼機器である複合給湯器の一システム構成例を示すモデル図である。
【図12】本発明の燃焼機器である湯張り機能(高温差し湯機能)付給湯器の一システム構成例を示すモデル図である。
【図13】本発明の燃焼機器である一缶二水構成の給湯器の一システム構成例を示すモデル図である。
【符号の説明】
1 給湯熱交換器
3 給水通路
4 給湯通路
5 常時バイパス
8 バイパス通路
10 バイパス弁
14 出側湯温センサ
40 データ格納部
41 強制閉弁部
42 開弁リミット時間設定部
45 開閉制御部
50 時間計測部
61 第2のバイパス弁
63 強制開弁部
64 閉弁リミット時間設定部
65 第2の開閉制御部
67 時間計測部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion apparatus including a hot water supply heat exchanger that heats water guided from a water supply passage by hot water supply burner combustion and flows out into the hot water supply passage.
[0002]
[Prior art]
As is well known, a hot water heater typical as a combustion device is provided with a hot water heat exchanger and a hot water burner, and a hot water passage is connected to the inlet side of the hot water heat exchanger and a hot water passage is connected to the outlet side. The hot water passage is led to a hot water tap such as a kitchen. When the hot water tap is opened, the hot water supply heat exchanger heats the water led from the water supply source through the water supply passage using the heat of the hot water combustion of the hot water burner, and passes the heated hot water through the hot water supply passage. Hot water is discharged through the water tap.
[0003]
[Problems to be solved by the invention]
By the way, as is well known, after the hot water tap is closed, that is, after the hot water supply is stopped (after the hot water is stopped), the hot water staying in the hot water heat exchanger is immediately after the hot water supply stop as shown by a solid curve A in FIG. Boiling (a phenomenon in which the amount of heat stored in the hot water heat exchanger is transferred to the hot water in the hot water heat exchanger and the hot water temperature rises) results in a hot water (overshoot) hot water higher than the hot water heat exchanger water temperature before the hot water stops. . When this overshoot hot water is opened and flows out of the hot water heat exchanger, hot water that is higher than the hot water set temperature determined by the hot water user will cause hot water users to feel uncomfortable Occurs.
[0004]
Various means have been proposed to solve the above problem, but a satisfactory combustion device that can prevent high-temperature hot water at the time of hot water with a simple configuration has not yet been obtained.
[0005]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a combustion device that can reliably prevent high-temperature hot water at the start of hot water with a simple configuration.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration as means for solving the above problems. That is, the first aspect of the present invention is to provide a hot water heat exchanger that heats water guided from the water supply passage using the heat of hot water burner combustion and flows out to the hot water passage, and a water supply passage and an outlet on the inlet side of the hot water heat exchanger. A bypass passage that short-circuits the hot water supply passage on the side, a bypass passage on-off valve that opens and closes the bypass passage, a hot water supply heat exchanger outlet side hot water temperature sensor that detects a hot water temperature on the outlet side of the hot water heat exchanger, and a combustion device Exhaust air that is led out from the main body of the appliance and takes in external air into the appliance, and has a portion that is juxtaposed in the vicinity of the intake extension pipeline, and exhausts the hot water burner combustion to the outside In a combustion apparatus having an extension pipe and a side-by-side distance setting means for setting a distance at which the intake extension pipe and the exhaust extension pipe are arranged side by side, the side-by-side distance set in the side-by-side distance setting means is increased. According to At the start of re-bathing A means for variably controlling the valve opening time of the bypass passage opening / closing valve to increase the valve opening time is a means for solving the above-mentioned problems.
[0007]
A second aspect of the invention is a hot water heat exchanger that heats water guided from a water supply passage using the heat of hot water burner combustion and flows out into the hot water supply passage, and a water supply passage on the inlet side and an outlet side of the hot water heat exchanger. In a combustion apparatus having a bypass passage that short-circuits a hot water supply passage, a bypass passage on-off valve that opens and closes the bypass passage, and a hot water supply heat exchanger outlet side hot water temperature sensor that detects a hot water temperature on the outlet side of the hot water heat exchanger The valve closing temperature that is higher than the detected temperature on the outlet side of the hot water heat exchanger on the basis of the detected temperature on the outlet side of the hot water heat exchanger when the hot water supply is stopped, and the temperature that is given in advance above the valve closing temperature A data storage unit that stores a valve opening temperature that is as high as possible; and a comparison between the actually measured outlet side hot water temperature of the hot water supply heat exchanger outlet side hot water temperature sensor and the temperature data stored in the data storage unit after the start of the hot water supply If the measured outlet water temperature is higher than the valve opening temperature, When it is shut off, it outputs a valve opening signal to the bypass passage opening / closing valve to open the bypass passage opening / closing valve, and when it is determined that the actually measured hot water temperature is equal to or lower than the valve closing temperature, it closes to the bypass passage opening / closing valve. A bypass passage opening / closing valve opening / closing control section for outputting a valve signal; a time measuring section for measuring an elapsed time since the bypass passage opening / closing valve is opened each time the valve is opened; a predetermined valve opening limit time is given Based on the time information of the time measuring unit, after the bypass passage opening / closing valve is opened Although the valve open state is maintained, the measured hot water temperature of the hot water heat exchanger does not drop below the valve closing temperature. When the valve opening limit time is reached In And a bypass passage on / off valve forcibly closing portion that closes the ipass passage on / off valve.
[0008]
According to a third aspect of the present invention, there is provided a hot water heat exchanger that heats the water guided from the water supply passage using the heat of hot water burner combustion and flows out to the hot water supply passage, and a water supply passage on the inlet side and an outlet side of the hot water heat exchanger. In a combustion apparatus having a bypass passage that short-circuits a hot water supply passage, a bypass passage on-off valve that opens and closes the bypass passage, and a hot water supply heat exchanger outlet side hot water temperature sensor that detects a hot water temperature on the outlet side of the hot water heat exchanger The valve closing temperature that is higher than the detected temperature on the outlet side of the hot water heat exchanger on the basis of the detected temperature on the outlet side of the hot water heat exchanger when the hot water supply is stopped, and the temperature that is given in advance above the valve closing temperature A data storage unit that stores a valve opening temperature that is as high as possible; and a comparison between the actually measured outlet side hot water temperature of the hot water supply heat exchanger outlet side hot water temperature sensor and the temperature data stored in the data storage unit after the start of the hot water supply If the measured outlet water temperature is higher than the valve opening temperature, When it is shut off, it outputs a valve opening signal to the bypass passage opening / closing valve to open the bypass passage opening / closing valve, and when it is determined that the actually measured hot water temperature is equal to or lower than the valve closing temperature, it closes to the bypass passage opening / closing valve. A bypass passage on / off valve opening / closing control unit for outputting a valve signal; a time measuring unit for measuring an elapsed time from the start of the hot water every time the hot water is started; and a predetermined valve opening limit time, Based on the time information of the time measuring unit, Although the open state of the bypass passage on-off valve is maintained, the measured hot water temperature of the hot water supply heat exchanger does not drop below the valve closing temperature. When the valve opening limit time is reached In And a bypass passage on / off valve forcibly closing portion that closes the ipass passage on / off valve.
[0009]
In addition to the configuration of the second or third invention, a fourth invention is a combustion fan for supplying and exhausting hot water burner combustion; and is led to the outside from the main body of the appliance of the combustion equipment and driven externally by driving the combustion fan. An intake extension line that takes air into the appliance; an exhaust extension line that is juxtaposed in the vicinity of the intake extension line and that exhausts hot water burner combustion to the outside by driving a combustion fan; and the intake extension line Fan rotation control mode switching means for switching and setting the rotation control mode of the combustion fan determined according to the length of the exhaust extension pipe line based on the length of the extension pipe line; Takes in switching mode information, and based on this information, the valve opening limit time given to the bypass passage on / off valve forced closing part as the length of the intake extension pipe and exhaust extension pipe becomes longer And the valve opening limit time setting unit for variably setting a direction to lengthen; is a means of solving the problem with a configuration provided.
[0010]
According to a fifth aspect of the present invention, there is provided a water supply passage of the hot water heat exchanger constituting the second, third or fourth aspect of the invention, and a constant bypass passage having no on-off valve for short-circuiting the hot water supply passage of the hot water heat exchanger. The above-described configuration serves as means for solving the above-described problem.
[0011]
In addition to the configuration of any one of the first to fifth inventions, a sixth aspect of the invention is a hot water supply that heats water guided from the water supply passage using the heat of hot water burner combustion and flows out to the hot water supply passage. A heat exchanger, a bypass passage that short-circuits an inlet water supply passage and an outlet hot water passage of the hot water heat exchanger, a bypass passage opening / closing valve that opens and closes the bypass passage, and the bypass passage are provided in parallel. A constant bypass passage that short-circuits the inlet water supply passage and the outlet hot water passage of the hot water heat exchanger, a second bypass passage opening / closing valve that opens and closes the constant bypass passage, and an external body from the body of the appliance of the combustion device. An intake extension pipe that is led to the outside and takes in external air into the appliance, and an exhaust extension pipe that has a portion arranged in the vicinity of the intake extension pipe and exhausts the exhaust gas of the hot water burner to the outside The second bypass passage opening / closing valve is Only when a hot water with a temperature lower than a preset hot water supply temperature is discharged at the start of hot water, the valve is controlled to be closed only for a predetermined period that does not exceed the valve closing limit time set by the valve closing limit time setting unit. The valve closing limit time setting unit is configured to variably set the valve closing limit time according to a method given in advance based on data on the lengths of the intake extension pipe and the exhaust extension pipe arranged in parallel. As a means to solve the problem.
[0012]
In addition to the configuration of any one of the first to fifth inventions, the seventh invention is a constant bypass passage that short-circuits the inlet water supply passage and the outlet hot water passage of the hot water heat exchanger, A second bypass passage opening / closing valve for opening and closing the bypass passage is provided, and is given in advance from the detected temperature on the outlet side of the hot water heat exchanger when hot water supply is stopped as a reference. A data storage unit that stores a valve opening temperature that is lower than the valve opening temperature and a valve closing temperature that is lower than the valve opening temperature in advance; a hot water supply heat exchanger outlet-side hot water temperature sensor When the measured outlet-side hot water temperature is compared with the temperature data stored in the data storage section and it is determined that the measured outlet-side hot water temperature is equal to or lower than the valve closing temperature, the valve closing signal to the second bypass passage opening / closing valve Is output to close the second bypass passage on-off valve, A second bypass passage opening / closing valve opening / closing control unit that outputs a valve opening signal to the second bypass passage opening / closing valve when it is determined that the temperature is equal to or higher than the valve opening temperature; A time measuring unit that measures an elapsed time from the time when the second bypass passage on-off valve is closed, or measures an elapsed time since the valve is closed; gives a predetermined valve closing limit time The second bypass passage opening / closing valve is opened when it is determined that the second bypass passage opening / closing valve is closed when the measurement time of the time measuring unit reaches the valve closing limit time. 2 bypass passage on / off valve forced opening portion; combustion fan for supplying and exhausting hot water burner combustion; intake air extension led out from the main body of the appliance of combustion equipment and taking in external air into the appliance by driving the combustion fan This line; An exhaust extension pipe that is juxtaposed in the vicinity of the pipe and exhausts the hot water burner combustion exhaust to the outside by driving the combustion fan; a combustion fan that is determined according to the length of the intake extension pipe and the exhaust extension pipe Fan rotation control mode switching means for switching the rotation control mode based on the length of the extension pipe; and switching mode information of the fan rotation control mode switching means is fetched, and the intake extension pipe based on this information And a valve closing limit time setting unit that variably sets the valve closing limit time given to the second bypass passage opening / closing valve forced opening part as the length of the exhaust extension pipe increases. The provided configuration serves as means for solving the above-described problems.
[0013]
In an eighth aspect of the invention, the combustion fan constituting any one of the first to seventh aspects of the present invention is provided on the exhaust side of the combustion chamber, and the combustion fan is driven to suck out exhaust gas from hot water burner combustion. It is a means for solving the above-mentioned problems.
[0014]
In the invention having the above-described configuration, for example, the bypass passage opening / closing valve opening / closing control unit compares the measured hot water temperature of the hot water heat exchanger with the temperature data of the data storage unit after the start of hot water, and the actual hot water temperature is opened. When it is determined that the temperature is higher than the temperature, a valve opening signal is output to the bypass passage opening / closing valve, and the bypass passage opening / closing valve is opened to prevent high temperature hot water. When the bypass passage opening / closing valve is opened, the time measuring unit starts measuring the elapsed time after the bypass passage opening / closing valve is opened.
[0015]
Even if the bypass passage opening / closing valve is closed when the bypass passage opening / closing valve opening / closing control unit determines that the measured outlet-side hot water temperature is equal to or lower than the valve closing temperature during the opening period of the bypass passage opening / closing valve, high temperature hot water may be discharged. A valve closing signal to the bypass passage opening / closing valve is output assuming that this is no longer the case. The bypass passage on / off valve forcibly closing portion opens the bypass passage on / off valve when a predetermined valve opening limit time is reached after the bypass passage on / off valve opens based on the information of the time measuring section. When it is determined that there is, the bypass passage on-off valve is closed.
[0016]
As described above, after the start of the hot water supply, when the outlet hot water temperature of the hot water supply heat exchanger is equal to or higher than the valve opening temperature and there is a possibility of high temperature hot water supply, the bypass passage opening / closing valve is opened and the hot water supply heat exchanger starts to flow out. High temperature hot water can be avoided by mixing the hot water with hot water from the bypass passage to lower the hot water temperature.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
As shown in FIG. 8, the water heater that is the combustion device of the first embodiment has an instrument case 15 that accommodates the instrument body of the hot water heater, and the instrument case 15 has intake air led out to the outside. An extension line 52 is provided. Further, a combustion chamber 16 is formed in the appliance case 15, and a hot water supply burner 2 and a hot water supply heat exchanger 1 provided above the hot water supply burner 2 are disposed in the combustion chamber 16. The exhaust side of the combustion chamber 16 communicates with the exhaust extension line 53 via the combustion fan 17 and the exhaust line 55. The exhaust extension pipe 53 is disposed inside the intake extension pipe 52, and the intake extension pipe 52 and the exhaust extension pipe 53 form an extension cylinder 51 having a double pipe structure.
[0019]
In addition, an intake hole 31 is formed in the combustion chamber forming wall below the hot water supply burner 2, and the combustion fan 17 is driven to rotate so that external air is supplied to the intake extension pipe 52 and the instrument case 15. The combustion chamber side wall gap 57 and the air hole 31 are supplied to the hot water supply burner 2, and the exhaust gas generated by the combustion of the hot water supply burner 2 is discharged to the outside through the exhaust line 55 and the exhaust extension line 53. It is formed to do.
[0020]
A hot water supply passage 3 is connected to the inlet side of the hot water heat exchanger 1, and a hot water supply passage 4 is connected to the outlet side of the hot water supply heat exchanger 1. The hot water supply passage 4 is led to a hot water tap 19 such as a kitchen. The hot water supply heat exchanger 1 is provided with a constant bypass passage 5 that does not have an on-off valve that short-circuits the inlet side water supply passage 3 and the outlet side hot water supply passage 4, and this constant bypass passage 5 is provided on the hot water supply heat exchanger 1 side. The flow rate ratio between the flow rate flowing to the bypass passage 5 and the flow rate always flowing to the bypass passage 5 side is set to a flow rate ratio (for example, 7 to 3 to 8 to 2) determined in advance by pipe resistance.
[0021]
A bypass passage 8 that short-circuits the hot water supply passage 4 downstream from the outlet side connection portion X of the constant bypass passage 5 and the water supply passage 3 upstream of the constant bypass passage inlet side connection portion Y is formed. The bypass passage 8 is provided with a bypass valve 10 that is a bypass passage opening / closing valve for opening and closing the passage, and the bypass valve 10 is closed during normal operation. A flow rate control valve 7 for controlling the flow rate by the valve opening amount is provided in the hot water supply passage 4 on the downstream side of the constant bypass passage outlet side connection portion Z.
[0022]
In the figure, reference numeral 12 denotes a flow rate detection sensor for detecting the incoming flow rate introduced from the water supply source through the water supply passage 3, and reference numeral 13 denotes a thermistor for detecting the temperature of the incoming water in the water supply passage 3. Reference numeral 14 denotes an incoming water temperature sensor, and reference numeral 14 denotes an outlet hot water temperature sensor which is a hot water supply heat exchanger outlet hot water temperature sensor such as a thermistor for detecting the temperature of hot water on the outlet side of the hot water heat exchanger 1.
[0023]
The water heater is provided with a control device 20 for controlling the operation of the water heater. A remote controller 18 and a fan rotation control mode switching means 34 are connected to the control device 20. The remote controller 18 is formed with hot water supply temperature setting means 21 for the user of the water heater to set the hot water supply temperature.
[0024]
For example, as shown in Table 1, the fan rotation control mode switching means 34 sets a fan rotation control mode that is predetermined stepwise according to the length L of the extension cylinder 51 at the time of construction of the water heater. 4 or the like, which is set by the service person or the like based on the length L of the extension cylinder 51, and is given to the controller 20 for each predetermined fan rotation control mode as shown in FIG. Fan rotation control data indicating the relationship between the rotation speed of the combustion fan 17 is obtained based on the fan rotation control data in the fan rotation control mode set in the fan rotation control mode switching means 34. Thus, the air volume corresponding to the combustion capacity of the hot water supply burner 2 is stably supplied to the hot water supply burner 2 without being affected by the pipe resistance of the extension cylinder 51 which changes in accordance with the length L of the extension cylinder 51.
[0025]
[Table 1]
Figure 0003798068
[0026]
The control device 20 shown in the first embodiment is provided with a high-temperature hot water prevention means unique to the present invention.
[0027]
FIG. 1 shows an example of a main configuration of a control device 20 provided with a high temperature hot water prevention means 25, and this control device 20 is configured to include a combustion control unit 36 and a high temperature hot water prevention means 25. The combustion control unit 36 controls the operation of hot water supply in accordance with a sequence program given in advance, and since its control configuration is well known, its description is omitted.
[0028]
The high temperature hot water prevention means 25 includes a sampling unit 35, a reference value capturing unit 37, a data storage unit 40, a forced valve closing unit 41 which is a bypass passage on / off valve forced valve closing unit, and a valve opening limit time setting unit 42. , An open / close state monitoring unit 44, an open / close control unit 45 which is a bypass passage on / off valve open / close control unit, and a open / close valve temperature calculation unit T OP ・ T CL Comprising a calculation unit 46 and a time measurement unit 50, this high temperature hot water prevention means 25 accurately controls opening and closing of the bypass valve 10 in order to reliably prevent high temperature hot water at the start of the hot water. It is.
[0029]
The sampling unit 35 has a built-in timer (not shown) for setting a predetermined sampling time interval (for example, one second interval), and the outlet side hot water temperature sensor 14 is set at every sampling time interval set by the timer. Are sampled, and information of the remote controller 18 (for example, a hot water supply set temperature set in the hot water supply temperature setting means 21) is sampled.
[0030]
The reference value capturing unit 37 detects the actual measured hot water temperature of the outlet hot water temperature sensor 14 sampled by the sampling unit 35 when detecting that the hot water combustion of the hot water supply burner 2 has stopped from the information of the control operation of the combustion controller 36. , And measure the measured hot water temperature on the outlet side as the reference value S S This reference value S is set as S T OP ・ T CL The result is output to the calculation unit 46.
[0031]
T OP ・ T CL The calculation unit 46 calculates the reference value S set by the reference value capturing unit 37. S , T stored in advance in the data storage unit 40 is received. OP Calculation formula data (T OP = S S + Α) and T CL Calculation formula data (T CL = S S + Β) and read the reference value S S And T OP Calculation formula data and T CL Based on the calculation formula data, the valve opening temperature T OP And valve closing temperature T CL Is calculated, and the obtained valve opening temperature T OP And valve closing temperature T CL Is stored in the data storage unit 40.
[0032]
The above T OP Α shown in the calculation formula data represents the first raising temperature, is a predetermined constant (eg, 3 ° C.), and T CL Β shown in the calculation formula data represents the second raising temperature, and is a predetermined constant (for example, 2 ° C.) smaller than α. The calculated valve opening temperature T OP And valve closing temperature T CL Is written in the data storage unit 40, the valve opening temperature T OP And valve closing temperature T CL The valve opening temperature T previously memorized OP ′ And valve closing temperature T CL 'Is automatically deleted and a new valve opening temperature T OP And valve closing temperature T CL Updated to
[0033]
The opening / closing controller 45 detects the actual hot water temperature T of the outlet hot water temperature sensor 14 via the sampling unit 35 after detecting that the hot water has started from the information of the control operation of the combustion controller 36. OUT , And this measured outlet temperature T OUT And the valve opening temperature T of the data storage unit 40 OP Compare As shown in FIG. 2A, after the start of hot water supply, first, the hot water temperature of the hot water remaining in the hot water supply passage 4 on the outlet side of the hot water supply heat exchanger 1 is detected by the outlet side hot water temperature sensor 14. However, when post-boiling occurs, hot water starts to flow out of the hot water supply heat exchanger 1 and the hot water temperature detected by the outlet-side hot water temperature sensor 14 increases.
[0034]
The opening / closing control unit 45 then measures the actual delivery side hot water temperature T. OUT Is the valve opening temperature T OP (T OUT ≧ T OP ), The water to be mixed with the hot water flowing out of the hot water supply heat exchanger 1 is always only the water flowing out of the bypass passage 5 with the bypass valve 10 closed, so the amount of water to be mixed becomes insufficient. There is a risk that hot water that is considerably higher than the set temperature will come out and this hot hot water will cause discomfort to the hot water user, and there is a risk that the hot water will come out and burn the hot water user. 2 and outputs a valve opening signal (opening signal to the bypass passage opening / closing valve) to the bypass valve driving means 33, and the bypass valve driving means 33 outputs the bypass valve opening / closing signal shown in FIG. A valve opening signal (valve opening drive voltage) is applied to the bypass valve 10 to open the bypass valve 10.
[0035]
As described above, by opening the bypass valve 10, the water flowing out from the bypass passage 5 and the bypass passage 8 is always mixed with the high-temperature hot water flowing out from the hot water supply heat exchanger 1, as shown in FIG. As described above, the temperature of the tapping hot water is lowered and high temperature hot water can be avoided.
[0036]
While the opening / closing control unit 45 detects that the bypass valve 10 is open from the operation information of the bypass valve drive means 33 (during the valve opening period of the bypass valve 10), Side hot water temperature T OUT And the valve closing temperature T of the data storage unit 40 CL As shown in FIG. 2 (a), the hot water temperature flowing out from the hot water supply heat exchanger 1 begins to decrease, and the measured outgoing hot water temperature T OUT Is the valve closing temperature T CL (T OUT ≦ T CL ), It is determined that there is no longer a risk of high temperature hot water, and a valve closing signal (a valve closing signal to the bypass passage opening / closing valve) is output to the bypass valve driving means 33, and the bypass valve 10 is closed.
[0037]
As described above, the bypass passage 8 and the bypass valve 10 are provided. After the start of pouring, the measured hot water temperature T of the outlet hot water temperature sensor 14 is measured. OUT Is the valve opening temperature T OP Since the bypass valve 10 is opened when the above is true, that is, when there is a risk of hot hot water, the temperature of the hot water flowing out of the hot water supply heat exchanger 1 due to the occurrence of post-boiling is the hot water supply. When it is considerably higher than the hot water temperature of the hot water supply heat exchanger 1 that discharges hot water at the set temperature, the water flowing out of the bypass passage 5 and the bypass passage 8 is always mixed with the hot water, and the hot water supply heat exchanger The temperature of the hot water flowing out from 1 can be lowered, and hot hot water can be prevented.
[0038]
By the way, after the start of the hot water supply, after the bypass valve 10 is opened by the control operation of the opening / closing control unit 45, as shown by the solid curve a in FIG. Due to this, the hot water temperature of the hot water supply heat exchanger (actually measured hot water temperature detected by the hot water temperature sensor 14) T OUT Is the valve closing temperature T CL Stable to a higher hot water temperature, outgoing hot water temperature T OUT Is the valve closing temperature T CL In some cases, the bypass valve 10 does not close because it does not drop below, and the bypass valve 10 remains open.
[0039]
When the hot water supply operation is continued with the bypass valve 10 opened as described above, the hot water after the water flowing out from the bypass passage 5 and the bypass passage 8 is always mixed with the hot water produced by the hot water supply heat exchanger 1. The combustion capacity control of the hot water burner 2 is performed so that the hot water temperature of the hot water is equal to the set hot water temperature, and the hot water supply heat exchanger 1 is compared to the case where only the water in the bypass passage 5 is always mixed with the hot water of the hot water heat exchanger 1. The hot water temperature of the hot water in the hot water supply heat exchanger 1 after the hot water temperature becomes high and the hot water supply is stopped becomes very high. As described above, when the hot water starts from a state where the hot water temperature of the hot water supply heat exchanger 1 is very high, the water in the bypass passage 8 is always added to the hot water in the hot water heat exchanger 1 in addition to the water in the bypass passage 5. Even if mixing is performed, the hot water temperature becomes considerably higher than the hot water supply set temperature, which may cause a problem that high temperature hot water cannot be prevented.
[0040]
Therefore, in order to avoid the above problem, as described above, the high temperature hot water prevention means 25 is provided with the forced valve closing portion 41, the open / close state monitoring portion 44, and the time measuring portion 50, and the open / close control portion 45 is added to the above configuration. Measured delivery side hot water temperature T detected by the delivery side hot water temperature sensor 14 OUT Is the valve opening temperature T OP When the valve opening signal is output to the bypass valve driving means 33 based on the above determination, the bypass valve opening driving signal is output to the forced valve closing portion 41 at the same time, and the time measuring portion 50 is provided. The timer is reset and driven, and when the predetermined valve opening limit time is reached after the bypass valve 10 is opened, the bypass valve 10 is closed, and the mixing water amount with respect to the hot water amount of the hot water supply heat exchanger 1 Of hot water produced by the hot water supply heat exchanger 1 The The problem caused by the long-term continuous opening state of the bypass valve 10, that is, the hot water temperature of the hot water supply heat exchanger 1 at the next hot water discharge is too high, and the amount of mixing water relative to the hot water amount of the hot water supply heat exchanger 1 is always bypassed. It was set as the structure which avoids the problem that high temperature hot water cannot be prevented only by the total water quantity of the channel | path 5 and the bypass channel | path 8. FIG.
[0041]
The open / close state monitoring unit 44 detects that the hot water has started from the control operation information of the combustion control unit 36, and then takes in the open / close operation information of the bypass valve drive means 33 (bypass valve opening shown in FIG. 2C). -Take in the closing signal) and monitor the open / close state of the bypass valve 10.
[0042]
The data storage unit 40 has a valve opening limit time t. 0 (For example, 20 seconds) is given in advance, and when the forcible valve closing unit 41 receives the bypass valve opening drive signal output from the opening / closing control unit 45, the opening is stored in the data storage unit 40. Valve limit time t 0 And reading of the bypass valve open / close state information of the open / close state monitoring unit 44 and the timer information of the time measuring unit 50 is started.
[0043]
And the information and valve opening limit time t 0 The time measured by the time measuring unit 50 (timer) (the elapsed time since the bypass valve 10 opened) is the valve opening limit time t. 0 When it is determined that the bypass valve 10 is open when the temperature reaches the outlet water temperature T of the hot water supply heat exchanger 1 OUT Is the valve closing temperature T CL There is a risk that the bypass valve 10 will not close and the bypass valve 10 will not close, and it is determined that the bypass valve 10 needs to be closed in order to prevent problems caused by the long-term continuous opening of the bypass valve 10. A valve closing signal is output to the drive means 33, and the bypass valve 10 is closed.
[0044]
As described above, when the bypass valve 10 is considered to remain open, the forced valve closing part 41 closes the bypass valve 10 and is caused by the valve valve long-term continuous state. Make sure to prevent problems.
[0045]
The valve opening limit time t 0 Is a period when there is no fear of hot hot water even when the bypass valve 10 is closed, and the hot water user feels the temperature fluctuation of the hot water when the bypass valve 10 is closed (for example, when the hot water is started) The hot water temperature is unstable until the hot water supply temperature is stabilized at the hot water supply set temperature), and the optimal value that can avoid problems caused by the long-term continuous opening of the bypass valve 10 is determined in advance through experiments, calculations, etc. And stored in the data storage unit 40.
[0046]
By the way, the present inventor repeated trial and error in order to obtain better means for preventing high temperature hot water, and the length L of the extension cylinder 51 as shown in FIG. 8, that is, the intake extension pipe 52 and the exhaust gas. It has been found that the hot water supply operation must be controlled in consideration of the length L where the extension pipes 53 are juxtaposed. Focusing on this point, in this embodiment, the high temperature hot water preventing means 25 is further provided with a valve opening limit time setting unit 42. The valve opening limit time setting unit 42 variably sets the valve opening limit time according to the length L of the extension cylinder 51, and automatically updates the valve opening limit time of the data storage unit 40.
[0047]
This is because, as shown in FIG. 8, when the intake extension pipeline 52 and the exhaust extension pipeline 53 are arranged in parallel, the intake air passing through the intake extension pipeline 52 is exhausted from the exhaust extension pipeline 53. The heat of hot air (for example, 100 ° C. to 120 ° C.) is received and heated (for example, heated to 70 ° C. or more), and this heated air is used for the post-purge period (combustion stop) after the hot water supply burner 2 stops combustion. Thereafter, during the period in which the combustion fan 17 is driven to exhaust the exhaust gas in the combustion chamber 16 to the outside, the hot water supply heat exchanger 1 is blown through the hot water supply burner 2.
[0048]
The temperature of the intake hot air becomes higher as the length of the extension cylinder 51 (that is, the length in which the intake extension pipe 52 and the exhaust extension pipe 53 are arranged in parallel) L becomes longer. As the temperature increases, the hot water in the hot water supply heat exchanger 1 becomes harder to cool, that is, the after-boiling time of the hot water in the hot water supply heat exchanger 1 shown in FIG. After starting the hot water supply, the hot water from the hot water supply heat exchanger 1 is still hot, but the bypass valve 10 is closed and the hot water that is considerably higher than the hot water supply temperature is discharged. In order to avoid this, it is desirable to variably set the valve opening limit time to increase as the temperature of the intake hot air increases, that is, as the length L of the extension cylinder 51 increases.
[0049]
Therefore, in this embodiment, as shown in Table 2, the valve opening limit time data is obtained in advance through experiments and calculations corresponding to the fan rotation control mode determined stepwise according to the length L of the extension cylinder 51. The valve opening limit time setting unit 42 takes in information on the fan rotation control mode set in the fan rotation control mode switching means 34 and obtains information on the fan rotation control mode. Based on the valve opening limit time data of the data storage unit 40, the valve opening limit time of the data storage unit 40 is variably set so that the valve opening limit time is gradually increased as the length L of the extension cylinder 51 increases. The time is automatically updated.
[0050]
[Table 2]
Figure 0003798068
[0051]
As described above, by variably setting the valve opening limit time according to the length L of the extension cylinder 51, after the bypass valve 10 is opened after the start of hot water, the hot water caused by the post-boiling from the hot water supply heat exchanger 1 It is possible to prevent the problem that the bypass valve 10 is closed before the hot water flows out and the hot water temperature rises considerably and hot hot water is discharged. Of course, the problems caused by the long-term continuous opening state of the bypass valve 10 as described above can be avoided.
[0052]
According to this embodiment, the bypass passage 8 and the bypass valve 10 are provided, and when there is a possibility of hot hot water after the start of hot water (outside hot water temperature T of the hot water supply heat exchanger 1). OUT Is the valve opening temperature T OP Since the bypass valve 10 is opened (when the above is reached), when there is a possibility of hot hot water, the water in the bypass passage 8 is mixed with the hot water flowing out of the hot water supply heat exchanger 1, The hot water temperature of the hot water is lowered, and high temperature hot water caused by post-boiling can be prevented.
[0053]
Moreover, since the bypass passage 8 and the bypass valve 10 are provided and only the opening / closing control of the bypass valve 10 is performed, as described above, high temperature hot water at the time of hot water can be prevented, so that the pipe line configuration and the control configuration can be simplified. An epoch-making effect that it is easy can be achieved.
[0054]
Further, since the forced valve closing part 41, the open / close state monitoring part 44 and the time measuring part 50 are provided, after the bypass valve 10 is opened after the start of pouring, the predetermined opening after the bypass valve 10 is opened. If the bypass valve 10 is open when the valve limit time is reached, the bypass valve 10 will be closed, and the outlet side hot water temperature T of the hot water supply heat exchanger 1 will be closed. OUT Can be avoided, and problems caused by the long-term continuous opening of the bypass valve 10 can be prevented, and high temperature hot water discharge can be reliably prevented during re-heating.
[0055]
In addition, since the valve opening limit time setting unit 42 is provided, the valve opening limit time can be varied in accordance with the change in the post-boiling time of the hot water in the hot water supply heat exchanger 1 that varies according to the length L of the extension cylinder 51. The bypass valve 10 can be closed at a valve closing timing that can prevent the problem caused by the long-term continuous opening of the bypass valve 10 and does not cause the possibility of hot hot water.
[0056]
The second embodiment will be described below. What is characteristic in this embodiment is that the second bypass valve 61, which is a second bypass passage opening / closing valve that is open during normal operation, is always provided in the bypass passage 5 as indicated by the dotted line in FIG. 5 is provided, and in addition to the configuration of the control device 20 shown in the first embodiment, a low temperature hot water prevention means 60 shown in FIG. 5 is provided. A configuration that can prevent the problem of low temperature hot water, in which a considerably lower hot water (undershoot hot water) gives unpleasant feeling to the user of the hot water from the undershoot. The other configuration is the same as that of the first embodiment, and a duplicate description thereof is omitted.
[0057]
The low temperature hot water prevention means 60 includes a data storage unit 62, a forced opening unit 63 that is a second bypass passage opening / closing valve forced opening portion, a valve closing limit time setting unit 64, and a second bypass passage opening / closing valve. A second opening / closing controller 65 which is an opening / closing controller; OP 'T CL 'A calculation unit 66 and a time measurement unit 67 are included.
[0058]
T OP 'T CL The calculation unit 66 detects the reference value S set by the reference value taking-in unit 37 of the high-temperature hot-water prevention means 25 when it detects that the hot-water supply has been stopped based on information from the combustion control unit 36. S T stored in advance in the data storage unit 62 OP 'Calculation formula data (T OP '= S S -A) and T CL 'Calculation formula data (T CL '= S S -B), the reference value S S And T OP 'Calculation formula data and T CL 'Based on the calculation formula data, the valve opening temperature T OP ′ And valve closing temperature T CL ′ Is calculated and calculated, and the obtained valve opening temperature T OP ′ And valve closing temperature T CL 'Is stored in the data storage unit 62.
[0059]
The above T OP 'A shown in the calculation formula data is a predetermined constant (for example, 2 ° C), and T CL 'B shown in the calculation formula data is a predetermined constant (for example, 3 ° C.) larger than the above a.
[0060]
The second open / close control unit 65 detects the actual hot water temperature T of the outlet side hot water temperature sensor 14 after detecting that the hot water has started from the control operation information of the combustion control unit 36. OUT , And this measured outlet temperature T OUT And the valve closing temperature T of the data storage unit 62 CL Compare ′. As shown in FIG. 6A, the hot water temperature detected by the outlet hot water temperature sensor 14 on the outlet side of the hot water supply heat exchanger 1 is the valve closing temperature T. CL ′ Or less, the second opening / closing control unit 65 determines the measured delivery side hot water temperature T. OUT Is the valve closing temperature T CL ′ Or less (T OUT ≦ T CL ′), When the second bypass valve 61 remains open, the hot water flowing out of the hot water supply heat exchanger 1 is always mixed with the water flowing out of the bypass passage 5 to warm the hot water supply heat exchanger 1. The hot water temperature of the hot water is further lowered, hot water that is considerably lower than the hot water supply set temperature is discharged, and it is determined that this low temperature hot water may cause discomfort to the hot water user, and the second bypass valve is driven. A valve closing signal (a valve closing signal to the bypass passage opening / closing valve) is output to the means 68, and the second bypass valve driving means 68 closes the second bypass valve opening / closing signal shown in FIG. A signal is applied to the second bypass valve 61 to close the second bypass valve 61.
[0061]
In this way, by closing the second bypass valve 61, the water in the bypass passage 5 is not always mixed with the hot water flowing out from the hot water supply heat exchanger 1, and as shown in FIG. The hot water temperature rises and low temperature hot water can be avoided.
[0062]
While the second opening / closing control unit 65 detects that the second bypass valve 61 is closed from the operation information of the second bypass valve driving means 68 (the closing period of the second bypass valve 61). Middle), actual measured outlet temperature T of outlet temperature sensor 14 OUT And the valve opening temperature T of the data storage unit 62 OP ′ And the hot water temperature flowing out from the hot water supply heat exchanger 1 starts to rise, as shown in FIG. OUT Is the valve opening temperature T OP ′ Or more (T OUT ≧ T OP ′), It is determined that there is no risk of low temperature hot water, and a valve opening signal (a valve opening signal to the second bypass passage opening / closing valve) is output to the second bypass valve driving means 68, 2 bypass valve 61 is opened.
[0063]
Further, in addition to the above-described configuration, the second opening / closing control unit 65 includes an actually measured delivery side hot water temperature T detected by the delivery side hot water temperature sensor 14. OUT Is the valve closing temperature T CL ′, When the valve closing signal is output to the second bypass valve driving means 68 because it is determined to be less than or equal to the same time, the second bypass valve closing driving signal is output to the forced valve opening portion 63 at the same time. The timer provided in the measuring unit 67 is reset and driven.
[0064]
The data storage unit 62 further includes a valve closing limit time t. 1 (For example, 20 seconds) is given in advance, and when the forced valve opening unit 63 receives the second bypass valve closing drive signal output from the second opening / closing control unit 65, the data storage unit 62 Valve closing limit time t stored in 1 And reading of the bypass valve opening / closing state information of the second bypass valve driving means 68 and the timer information of the time measuring unit 67 are started.
[0065]
And those information and valve closing limit time t 1 Based on the above, the measurement time of the time measuring unit (timer) 67 is the valve closing limit time t 1 When it is determined that the second bypass valve 61 is closed when reaching the value, a valve opening signal is output to the second bypass valve driving means 68, and the second bypass valve 61 is opened.
[0066]
The valve closing limit time t 1 Is a period when there is no fear of low temperature hot water even when the second bypass valve 61 is closed, and the hot water user feels the temperature fluctuation of the hot water when the second bypass valve 61 is opened without a sense of incongruity ( For example, an optimum value that is a hot water temperature instability period from when the hot water starts to when the hot water temperature becomes stable at the hot water supply set temperature) is obtained in advance by experiments, calculations, etc., and stored in the data storage unit 62.
[0067]
In this embodiment, a valve closing limit time setting unit 64 is further provided. The valve closing limit time setting unit 64 variably sets the valve closing limit time according to the length L of the extension cylinder 51, and automatically updates the valve closing limit time of the data storage unit 62.
[0068]
In this embodiment, as shown in Table 3, the valve closing limit data is obtained in advance through experiments, calculations, etc., corresponding to the fan rotation control mode determined stepwise according to the length L of the extension cylinder 51. Obtained and provided to the data storage unit 62, the valve closing limit time setting unit 64 takes in the information on the fan rotation control mode set in the fan rotation control mode switching means 34, the information on the fan rotation control mode and the above information Based on the valve closing limit time data in the data storage unit 62, the valve closing limit time in the data storage unit 62 is variably set so that the valve closing limit time is gradually reduced as the length L of the extension cylinder 51 increases. It was configured to automatically update.
[0069]
[Table 3]
Figure 0003798068
[0070]
According to this embodiment, in addition to the configuration of the first embodiment, the low temperature hot water prevention means 60 is provided, so that the high temperature hot water at the start of the hot water is discharged as in the first embodiment. In addition to being able to prevent, it is possible to achieve an epoch-making effect that low temperature hot water can be prevented.
[0071]
Note that the present invention is not limited to the above-described embodiments, and can take various embodiments. For example, in each of the above embodiments, the start of hot water and hot water is detected based on the information of the control operation of the combustion control unit 36. However, the start of hot water and hot water is started using the sensor output of the flow rate detection sensor 12. Sensors such as a running water switch (hot water supply confirmation switch) for detecting running water may be provided on the hot water tap 19 side of the hot water supply passage 4, and start of hot water and hot water using the sensor output of this sensor. May be detected.
[0072]
Further, although the bypass passage 5 is always provided in the water heater shown in FIG. 8, the high-temperature hot water prevention means shown in the first embodiment is applied to various combustion devices in which the bypass passage 5 is always omitted. The high temperature hot water prevention means 25 of the first embodiment is provided and the high temperature hot water prevention operation is performed, so that hot water having a temperature exceeding the allowable range at the time of hot water is discharged. The problem of causing discomfort to the user of hot water and the danger caused by hot hot water can be avoided. When the bypass passage 5 is always omitted as described above, the branch pipe configuration can be simplified.
[0073]
However, by providing the bypass passage 5 at all times, the amount of water flow through the hot water supply heat exchanger 1 during normal operation when the bypass valve 10 is closed is reduced and the water flow temperature of the hot water supply heat exchanger 1 is increased. To avoid the dew condensation phenomenon in which water vapor generated by hot water burner combustion due to a decrease in the water flow temperature of the water heater 1, that is, due to a decrease in the water pipe surface temperature of the hot water heat exchanger 1 adheres to the water pipe surface of the hot water heat exchanger 1. It is possible to prevent problems such as corrosion of the hot water supply heat exchanger 1 due to frequent occurrence of the dew condensation phenomenon.
[0074]
Further, in the above embodiments, only one set of the bypass passage 8 and its bypass valve 10 is provided, but a plurality of sets may be provided. In this case, the bypass valves are individually controlled. For example, a first valve opening temperature and a first valve closing temperature correspond to the first bypass valve, and a second valve opening temperature and a second valve temperature higher than the first valve opening temperature correspond to the second bypass valve. As the second valve closing temperature higher than the valve closing temperature of 1 corresponds, the number of bypass valves opened increases as the outlet side hot water temperature of the hot water heat exchanger 1 increases. A valve opening temperature and a valve closing temperature corresponding to the bypass valve may be set, and each bypass valve may be individually controlled based on the valve opening temperature and the valve closing temperature. In this case, the ratio of the amount of mixing water to the amount of hot water flowing out from the hot water supply heat exchanger 1 can be varied according to the degree of post-boiling and the like.
[0075]
Further, as described above, when a plurality of sets of bypass passages 8 and their bypass valves 10 are provided, for example, only one valve opening limit time is given, and the valve is opened after the bypass valve 10 is first opened. When any bypass valve 10 is opened when the valve limit time is reached, all the bypass valves 10 that have been opened may be closed, or the plurality of bypass valves 10 may be closed. The valve opening limit time corresponding to each individual is given, and the time since the valve is opened for each individual bypass valve 10 is measured. When the measured time reaches the valve opening limit time, the bypass valve 10 is opened. When the valve is open, the bypass valve 10 may be closed.
[0076]
Furthermore, in the second embodiment, only one set of the bypass passage 5 and the second bypass valve 61 is provided, but a plurality of sets may be provided. In this case, the plurality of second bypass valves are individually controlled. In this case, as the hot water temperature of the hot water supply heat exchanger 1 at the time of hot water is lowered, the number of second bypass valves to be closed is increased and the amount of mixing water from the bypass passage 5 is constantly reduced, According to the hot water temperature of the hot water supply heat exchanger 1, the ratio of the mixing water amount to the hot water amount of the hot water supply heat exchanger 1 can be varied.
[0077]
Further, in each of the above embodiments, T OP ・ T CL The calculation unit 46 calculates the valve opening temperature T OP And valve closing temperature T CL Was calculated, but the reference value S S Based on the valve opening temperature T OP , Valve closing temperature CL Table data, graph data, etc. for detecting OP Detection data, T CL These are stored in the built-in memory as detection data, and these T OP Detection data and T CL Detection data and reference value S S Based on the valve opening temperature T OP And valve closing temperature T CL The valve opening temperature T can be detected by another method that does not use computation. OP And valve closing temperature T CL May be detected. Similarly to the above, the T shown in the second embodiment is used. OP '= T CL The calculation unit 66 uses a different method that does not use computation to determine the valve opening temperature T. OP ′ And valve closing temperature T CL ′ May be detected.
[0078]
Further, in each of the above embodiments, T OP ・ T CL Calculation unit 46, T OP 'T CL ′ The calculation unit 66 waits for hot water while the valve opening temperature T OP , T OP ′ And valve closing temperature T CL , T CL ′ Was calculated, but the reference value S captured by the reference value capturing unit 37 S Is stored in the data storage units 40 and 62, and at the start of pouring, the reference value S is stored from the data storage units 40 and 62. S Is read and the valve opening temperature T OP , T OP ′ And valve closing temperature T CL , T CL 'May be calculated.
[0079]
Further, in each of the above embodiments, the valve opening temperature T OP The first raised temperature α used to determine the valve closing temperature T CL The second raising temperature β used to determine the first raising temperature β is determined in advance, but the control device 20 is provided with variable setting means for variably setting the first raising temperature α and the second raising temperature β. It may be provided on the control board 32 or the like so that a service person or the like can variably set the first raised temperature α and the second raised temperature β. Similarly to the above, the T shown in the second embodiment is used. OP ′ Constants a and T of calculation formula data CL 'The constant b of the calculation formula data may be variably set.
[0080]
Further, in each of the above embodiments, the open / close control unit 45 has directly detected the open / closed state of the bypass valve 10 from the information of the bypass valve drive means 33. The open / closed state of the valve 10 may be indirectly detected.
[0081]
Furthermore, although the open / close state monitoring unit 44 is provided in each of the above embodiments, the open / close state monitoring unit 44 may be omitted. In this case, the forced valve closing section 41 directly takes in information on the open / close state of the bypass valve 10 from the bypass valve driving means 33.
[0082]
Furthermore, although only one bypass passage 5 is always provided in each of the above embodiments, a plurality of always bypass passages 5 may be provided. Also in this case, as described above, the plurality of constant bypass passages 5 are formed so that the flow rate ratio between the flow rate of the hot water supply heat exchanger 1 and the total flow rate of these constant bypass passages is a flow rate ratio determined in advance by the pipe resistance. .
[0083]
Further, in each of the above embodiments, the time measuring unit 50 is configured to measure the elapsed time after the bypass valve 10 is opened, for example, based on the information of the opening / closing control unit 45, or Alternatively, the elapsed time from the start of the hot water extraction by taking in the information of the combustion control unit 36 may be measured. In this case, the forced valve closing unit 41 takes in the information of the open / close state monitoring unit 44 and the time measuring unit 50, and when the bypass valve 10 has reached a predetermined valve opening limit time after the start of hot water, When the valve is open, it is determined that it is necessary to close the bypass valve 10 in order to avoid problems caused by the long-term open state of the bypass valve 10 as described in the above embodiments. Then, the bypass valve 10 is closed.
[0084]
Further, in each of the above embodiments, the valve opening limit time setting unit 42 opens based on the fan rotation control mode corresponding to the length L of the extension cylinder 51 set in the fan rotation control mode switching means 34. Although the valve limit time was variably set, for example, an extended cylinder length detector 43 shown by a dotted line in FIG. 1 and an air volume sensor 11 shown by a dotted line in FIGS. 1 and 8 are provided and opened as follows. The valve limit time may be variably set.
[0085]
For example, when the combustion fan 17 is rotationally driven at a predetermined fixed fan rotational speed, the fan detected by the air flow sensor 11 due to an increase in the pipe resistance of the extension cylinder 51 as the length L of the extension cylinder 51 increases. Since the air volume becomes small, the detected fan air volume of the air volume sensor 11 when the combustion fan 17 is rotationally driven at a constant fan rotation speed corresponds to the length L of the extension cylinder 51.
[0086]
From this, the relationship data between the air volume and the length of the extension cylinder 51 is given in advance, and the extension cylinder length detection unit 43 is set to the combustion fan 17 at the fan rotational speed of the test determined in advance via the combustion control unit 36. , And the length L of the extension cylinder 51 is detected by comparing the fan air volume detected by the air volume sensor 11 in this state with the related data, and the valve opening limit time setting unit 42 detects the length of the extension cylinder Based on L, the valve opening limit time may be variably set.
[0087]
In the same manner as described above, the valve closing limit time setting unit 64 of the low temperature hot water preventing means 60 shown in the second embodiment may variably set the valve closing limit time.
[0088]
Further, the valve opening limit time and the valve closing limit time can be variably set as follows. For example, the valve opening limit time setting data indicating the relationship between the detected fan air volume of the air volume sensor 11 and the valve opening limit time when the combustion fan 17 is rotationally driven at a predetermined fan rotation speed in the data storage unit 40 is stored in advance. It is obtained by experiment, calculation, etc., and stored as graph data, table data, calculation formula data, etc., and the valve opening limit time setting unit 42 is set to the combustion fan at the fan speed of the test determined in advance via the combustion control unit 36. 17 is rotated, the fan air volume detected by the air volume sensor 11 is captured, and the valve opening limit is set as the detected fan air volume decreases based on the fetched fan air volume and the valve opening limit time setting data in the data storage unit 40. The valve opening limit time is continuously increased in the direction in which the time becomes longer, that is, in the direction in which the valve opening limit time becomes longer as the length L of the extension cylinder 51 becomes longer, or Stepwise may be variably set.
[0089]
Further, in each of the above embodiments, the fan rotation control mode, the valve opening limit time, and the valve closing limit time are set in three steps according to the length L of the extension cylinder 51, but may be two steps. It may be more than stages or may be set continuously.
[0090]
Further, in each of the above embodiments, the hot water heater of FIG. 8 has been described as an example, but the present invention is also applicable to various combustion devices other than the system configuration of the hot water heater of FIG. For example, in the water heater of FIG. 8, the combustion fan 17 is provided on the exhaust side of the combustion chamber 16 and is formed so as to suck out the exhaust gas. However, as shown in FIG. The exhaust gas may be formed to be pushed out.
[0091]
When the combustion fan 17 is provided on the exhaust side of the combustion chamber 16 as shown in FIG. 8, the combustion fan 17 receives the heat of the hot exhaust gas generated by the hot water burner combustion. Although high heat resistance that can withstand heat is required, when the combustion fan 17 is provided on the intake side of the combustion chamber 16 as shown in FIG. 9, the combustion fan 17 does not receive the exhaust heat and thus has low heat resistance. Since the combustion fan 17 can be used and the price of the combustion fan 17 is low, the cost of the water heater can be reduced.
[0092]
Further, in the water heater of FIG. 8, the extension cylinder 51 has a double pipe structure of the intake extension pipe 52 and the exhaust extension pipe 53, but as shown in FIG. Further, a double pipe structure in which the exhaust extension pipe 53 is adjacent may be used. In this case, as shown in the figure, since only the part that goes outside has a double pipe structure, the valve opening limit time setting unit 42 and the valve closing limit time setting unit 64 are the parts of the double pipe. The limit time is variably set based on the length L ′.
[0093]
Further, in the water heater shown in FIG. 8, the intake extension pipe 52 and the exhaust extension pipe 53 are provided. However, as shown in FIG. A louver 54 may be formed in the instrument case 15, and outside air may be taken in through the louver 54. If the water heater is manufactured for the purpose of installing outdoors, the intake extension pipe 52 and The exhaust extension pipe 53 is omitted, and instead, the instrument case 15 is provided with a louver 54 similar to the above, and an exhaust port 58 communicating with the exhaust pipe 55 as shown by the dotted line in FIG. It may be of a type that takes in external air through 54 and discharges exhaust gas to the outside through an exhaust port 58.
[0094]
As described above, in the hot water heater having only the exhaust extension pipe 53 or not having both the intake extension pipe 52 and the exhaust extension pipe 53, the first and second embodiments are shown. When control is performed using the same control device 20, the temperature of the intake air is not heated to a high temperature due to the heat of the exhaust gas. Control the setting as the shortest.
[0095]
Further, the water heater in FIG. 8 is a single-function water heater having only a hot water supply function. However, the present invention is provided with a bath burner in FIG. 11 having functions such as hot water supply, hot water filling, high-temperature hot water supply and reheating. As shown in Fig. 12, a water heater with functions such as hot water supply, hot water filling and high temperature hot water supply, a hot water supply hot water supply, hot water filling, high temperature hot water supply, reheating, etc. The present invention is also applied to a water heater having a single can / two water structure as shown in FIG.
[0096]
Furthermore, in the second embodiment, the control device 20 is provided with the high temperature hot water prevention means 25 and the low temperature hot water prevention means 60. However, only the low temperature hot water prevention means 60 may be provided. In this case, the control unit similar to the reference value taking-in unit 37 of the high temperature hot water prevention means 25 is provided in the low temperature hot water prevention means 60.
[0097]
Further, in each of the embodiments described above, the valve opening limit time is variably set according to the length L of the extension cylinder 51. However, as the length L of the extension cylinder 51 becomes longer, the temperature of the hot water supply heat exchanger 1 is increased. Side hot water temperature T OUT Is the valve closing temperature T shown in FIG. CL To reference value S S Since it takes longer time to lower CL By changing the value of the constant β of the calculation formula data to be smaller (for example, from 2 ° C. to 1 ° C.) as the length L of the extension cylinder 51 becomes longer, the tapping water temperature T of the hot water supply heat exchanger 1 is changed. OUT Is the valve closing temperature T CL To reference value S S Therefore, the time required for the operation to decrease is shortened, and the control characteristics can be improved. In this case, the valve opening limit time may be fixed to a predetermined value.
[0098]
Further, the T shown in the second embodiment is used. OP 'The value of the constant a of the calculation formula data may be varied in the direction of decreasing as the length L of the extension cylinder 51 increases.
[0099]
【The invention's effect】
According to the present invention, after the start of hot water, when there is a possibility of high temperature hot water, the bypass passage opening / closing valve is opened to mix the water in the bypass passage with the hot water flowing out of the hot water supply heat exchanger. It is possible to reliably prevent hot water caused by boiling after the hot water supply heat exchanger from being discharged at the time of hot water discharge, and there is a problem that high temperature hot water at the time of hot water gives discomfort to hot water users and the danger due to hot hot water supply Can be avoided.
[0100]
In addition, a minimum bypass passage and its opening / closing valve are provided, and by simply controlling the opening / closing of the bypass passage opening / closing valve at the start of hot water, high-temperature hot water at the time of hot water can be prevented, thereby simplifying the pipe configuration. Thus, an epoch-making effect that the cost of the water heater can be reduced can be achieved.
[0101]
In addition, since a time measurement unit and a bypass passage on / off valve forced closing unit are provided, the bypass passage on / off valve opens when the time measured by the time measurement unit reaches a predetermined valve opening limit time. If this is the case, the bypass passage on-off valve will be closed. For example, the outlet hot water temperature of the hot water heat exchanger is stable at a hot water temperature higher than the valve closing temperature and does not fall below the valve closing temperature. In addition, it is possible to reliably avoid the occurrence of a situation in which the bypass passage on-off valve remains open and high temperature hot water discharge at the next hot water discharge cannot be prevented.
[0102]
In the configuration in which the valve opening limit time setting unit is provided, as the length of the intake extension pipe and the exhaust extension pipe increases, that is, as the temperature of the intake air flowing out from the intake extension pipe increases. Since the valve opening limit time is variably set, the valve opening limit time can be variably set in response to changes in the post-boiling characteristics of the hot water in the hot water heat exchanger according to the length of the extension pipe. As mentioned above, it is possible to avoid the problem that occurs when the bypass passage on-off valve remains open, as well as the possibility of high temperature hot water without being affected by the length of the extension pipe. In addition, the bypass passage opening / closing valve can be closed at a timing when there is little discomfort in the hot water temperature fluctuation.
[0103]
In a configuration in which a bypass passage that does not have an open / close valve that short-circuits the water supply passage of the hot water supply heat exchanger and the hot water supply passage is provided, the hot water supply heat exchanger Heated hot water and water that has always passed through the bypass passage will be mixed. For example, the temperature of the hot water flowing out of the hot water supply heat exchanger is lowered by opening the bypass passage opening and closing valve and passing through the bypass passage. In spite of this, even if the bypass passage opening / closing valve fails and does not open, the hot water in the hot water supply heat exchanger is always mixed with the water in the bypass passage as described above. Since the hot water temperature is lowered, it is possible to avoid a serious problem that hot water is discharged and burns hot water users.
[0104]
In a configuration in which a second bypass valve is always provided in the bypass passage and the second bypass valve is closed when the outlet hot water temperature of the hot water supply heat exchanger becomes equal to or lower than a predetermined valve closing temperature at the time of hot water. When the temperature of the hot water flowing out of the hot water supply heat exchanger at the time of hot water is low and there is a possibility that hot water considerably lower than the hot water supply set temperature will be discharged, the second bypass valve is closed to close the hot water supply heat exchanger. The ratio of the amount of mixing water to the amount of hot water decreases, the temperature of the hot spring water rises, and low temperature hot water such as when re-watering can be prevented.
[0105]
In the configuration in which the combustion fan is provided on the exhaust side of the combustion chamber, the exhaust gas of hot water supply burner combustion is sucked out by driving the combustion fan, so that the exhaust gas can be discharged to the outside more efficiently.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram showing an embodiment of a high temperature hot water preventing means unique to the present invention.
FIG. 2 is a time chart showing an operation example of bypass valve opening / closing control.
FIG. 3 is a graph showing an example of a temporal change in the outlet hot water temperature of the hot water supply heat exchanger after the start of hot water supply.
FIG. 4 is a graph showing an example of the relationship between fan rotation speed and combustion capacity for each fan rotation control mode.
FIG. 5 is a block diagram showing a second embodiment.
FIG. 6 is a time chart showing an operation example of opening / closing control of a second bypass valve.
FIG. 7 is a graph showing an example of a temporal change in the temperature of accumulated hot water in a hot water supply heat exchanger.
FIG. 8 is a model diagram showing a system configuration example of a water heater that is a combustion apparatus according to the present invention.
FIG. 9 is an explanatory view showing another example of the arrangement position of the combustion fan.
FIG. 10 is an explanatory view showing another system configuration example of the intake / exhaust means.
FIG. 11 is a model diagram showing a system configuration example of a composite water heater that is a combustion apparatus according to the present invention.
FIG. 12 is a model diagram showing an example of the system configuration of a hot water supply device with a hot water filling function (high temperature hot water function) that is a combustion device of the present invention.
FIG. 13 is a model diagram showing a system configuration example of a water heater having a single can / two water configuration, which is a combustion device according to the present invention.
[Explanation of symbols]
1 Hot water heat exchanger
3 water supply passage
4 Hot water passage
5 Always bypass
8 Bypass passage
10 Bypass valve
14 Outlet temperature sensor
40 Data storage
41 Forced valve closing
42 Valve opening limit time setting section
45 Open / close control unit
50 hour measurement unit
61 Second bypass valve
63 Forced valve opening
64 Valve closing limit time setting section
65 Second open / close control unit
67 Time measurement unit

Claims (8)

給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、給湯熱交換器の出側の湯水温度を検出する給湯熱交換器出側湯温センサと、燃焼機器の器具の本体から外部へ導出され外部の空気を器具内に取り込む吸気延長管路と、この吸気延長管路の近傍に並設される部分を有し給湯バーナ燃焼の排気を外部へ排出する排気延長管路と、上記吸気延長管路と排気延長管路が並設する距離を設定する並設距離設定手段とを有する燃焼機器において、並設距離設定手段に設定された並設距離が長くなるに従って再出湯開始時にバイパス通路開閉弁の開弁時間を長くする方向に可変制御することを特徴とする燃焼機器。A hot water heat exchanger that heats water guided from the hot water supply passage using the heat of hot water burner combustion and flows out to the hot water supply passage, and a bypass that short-circuits the hot water passage on the inlet side and the hot water supply passage on the outlet side of the hot water heat exchanger A passage, a bypass passage opening / closing valve for opening and closing the bypass passage, a hot water supply heat exchanger outlet-side hot water temperature sensor for detecting a hot water temperature on the outlet side of the hot water heat exchanger, and a main body of the appliance of the combustion device are led out to the outside An intake extension pipe for taking outside air into the appliance, an exhaust extension pipe for discharging exhaust gas of hot water burner combustion to the outside having a portion arranged in the vicinity of the intake extension pipe, and the intake extension In a combustion apparatus having a juxtaposed distance setting means for setting a distance at which the pipe and the exhaust extension pipe are juxtaposed , the bypass passage opens and closes at the start of re-heating as the juxtaposition distance set in the juxtaposed distance setting means becomes longer Those who increase the valve opening time Burning appliance characterized by variably controlling the. 給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、給湯熱交換器の出側の湯水温度を検出する給湯熱交換器出側湯温センサとを有する燃焼機器において、給湯停止時の給湯熱交換器出側の検出温度を基準として該給湯熱交換器出側検出温度よりも予め与えられた温度だけ高い閉弁温度と該閉弁温度よりも予め与えられた温度だけ高い開弁温度とが格納されるデータ格納部と;出湯が開始された後に給湯熱交換器出側湯温センサの実測出側湯温と前記データ格納部に格納されている温度データを比較し、実測出側湯温が開弁温度以上であると判断したときにバイパス通路開閉弁への開弁信号を出力してバイパス通路開閉弁を開弁させ、実測出側湯温が閉弁温度以下であると判断したときにバイパス通路開閉弁への閉弁信号を出力するバイパス通路開閉弁開閉制御部と;バイパス通路開閉弁が開弁する度にその開弁してからの経過時間を計測する時間計測部と;予め定めた開弁リミット時間が与えられ、上記時間計測部の時間情報に基づき、バイパス通路開閉弁が開弁してからその開弁状態が維持されているにも拘わらず給湯熱交換器の実測出側湯温が上記閉弁温度以下に下がらずに上記開弁リミット時間に達したときにバイパス通路開閉弁を閉弁させるバイパス通路開閉弁強制閉弁部と;を有する燃焼機器。A hot water heat exchanger that heats water guided from the hot water supply passage using the heat of hot water burner combustion and flows out to the hot water supply passage, and a bypass that short-circuits the hot water passage on the inlet side and the hot water supply passage on the outlet side of the hot water heat exchanger In a combustion apparatus having a passage, a bypass passage opening / closing valve for opening / closing the bypass passage, and a hot water supply heat exchanger outlet side hot water temperature sensor for detecting a hot water temperature on the outlet side of the hot water heat exchanger, A valve closing temperature that is higher than a detected temperature on the outlet side of the hot water supply heat exchanger by a predetermined temperature on the basis of a detected temperature on the outlet side of the heat exchanger, and a valve opening temperature that is higher than the valve closing temperature by a predetermined temperature. A comparison between the measured storage temperature of the outlet hot water sensor of the hot water supply heat exchanger and the temperature data stored in the data storage unit, When it is judged that the temperature is higher than the valve opening temperature Outputs the valve opening signal to the bypass passage opening / closing valve, opens the bypass passage opening / closing valve, and outputs the valve closing signal to the bypass passage opening / closing valve when it is determined that the actually measured hot water temperature is equal to or lower than the valve closing temperature. A bypass passage opening / closing valve opening / closing control unit; a time measuring unit for measuring an elapsed time after the bypass passage opening / closing valve is opened each time the valve is opened; Based on the time information of the measuring section, the measured hot water temperature of the hot water heat exchanger does not drop below the above-mentioned valve closing temperature even though the open state of the bypass passage opening / closing valve has been maintained since it opened. burning appliance having: a bypass passage on-off valve forced closing portion for closing the bypass passage on-off valve upon reaching the opening limit time. 給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、給湯熱交換器の出側の湯水温度を検出する給湯熱交換器出側湯温センサとを有する燃焼機器において、給湯停止時の給湯熱交換器出側の検出温度を基準として該給湯熱交換器出側検出温度よりも予め与えられた温度だけ高い閉弁温度と該閉弁温度よりも予め与えられた温度だけ高い開弁温度とが格納されるデータ格納部と;出湯が開始された後に給湯熱交換器出側湯温センサの実測出側湯温と前記データ格納部に格納されている温度データを比較し、実測出側湯温が開弁温度以上であると判断したときにバイパス通路開閉弁への開弁信号を出力してバイパス通路開閉弁を開弁させ、実測出側湯温が閉弁温度以下であると判断したときにバイパス通路開閉弁への閉弁信号を出力するバイパス通路開閉弁開閉制御部と;出湯が開始される度にその出湯が開始されてからの経過時間を計測する時間計測部と;予め定めた開弁リミット時間が与えられ、上記時間計測部の時間情報に基づき、出湯が開始されてからバイパス通路開閉弁の開弁状態が維持されているにも拘わらず給湯熱交換器の実測出側湯温が上記閉弁温度以下に下がらずに上記開弁リミット時間に達したときにバイパス通路開閉弁を閉弁させるバイパス通路開閉弁強制閉弁部と;を有する燃焼機器。A hot water heat exchanger that heats water guided from the hot water supply passage using the heat of hot water burner combustion and flows out to the hot water supply passage, and a bypass that short-circuits the hot water passage on the inlet side and the hot water supply passage on the outlet side of the hot water heat exchanger In a combustion apparatus having a passage, a bypass passage opening / closing valve for opening / closing the bypass passage, and a hot water supply heat exchanger outlet side hot water temperature sensor for detecting a hot water temperature on the outlet side of the hot water heat exchanger, A valve closing temperature that is higher than a detected temperature on the outlet side of the hot water supply heat exchanger by a predetermined temperature on the basis of a detected temperature on the outlet side of the heat exchanger, and a valve opening temperature that is higher than the valve closing temperature by a predetermined temperature. A comparison between the measured storage temperature of the outlet hot water sensor of the hot water supply heat exchanger and the temperature data stored in the data storage unit, When it is judged that the temperature is higher than the valve opening temperature Outputs the valve opening signal to the bypass passage opening / closing valve, opens the bypass passage opening / closing valve, and outputs the valve closing signal to the bypass passage opening / closing valve when it is determined that the actually measured hot water temperature is equal to or lower than the valve closing temperature. A bypass passage opening / closing valve opening / closing control unit; a time measuring unit that measures an elapsed time from the start of the hot water every time the hot water is started; a predetermined valve opening limit time, and the time measuring unit On the basis of the time information of the above, the measured hot water temperature of the hot water heat exchanger does not drop below the valve closing temperature although the open state of the bypass passage on / off valve is maintained after the start of hot water. burning appliance having: a bypass passage on-off valve forced closing portion for closing the bypass passage on-off valve upon reaching the opening limit time. 給湯バーナ燃焼の給排気を行う燃焼ファンと;燃焼機器の器具の本体から外部へ導出され燃焼ファンの駆動により外部の空気を器具内に取り込む吸気延長管路と;この吸気延長管路の近傍に並設され燃焼ファンの駆動により給湯バーナ燃焼の排気を外部へ排出する排気延長管路と;上記吸気延長管路と排気延長管路の長さに応じ定められた燃焼ファンの回転制御モードを上記延長管路の長さに基づいて切り換え設定するためのファン回転制御モード切り換え手段と;上記ファン回転制御モード切り換え手段の切り換えモード情報を取り込み、この情報に基づいて吸気延長管路と排気延長管路の長さが長くなるに従ってバイパス通路開閉弁強制閉弁部に与えられている開弁リミット時間を長くする方向に可変設定する開弁リミット時間設定部と;が設けられていることを特徴とする請求項2又は請求項3記載の燃焼機器。  A combustion fan for supplying and exhausting hot water burner combustion; an intake extension pipe that is led out from the main body of the appliance of the combustion equipment and takes outside air into the appliance by driving the combustion fan; and in the vicinity of the intake extension pipe An exhaust extension line that discharges exhaust gas from hot water burner combustion to the outside by driving the combustion fan; the combustion fan rotation control mode determined according to the lengths of the intake extension line and the exhaust extension line Fan rotation control mode switching means for switching setting based on the length of the extension pipe; taking in switching mode information of the fan rotation control mode switching means, and taking in the intake extension pipe and the exhaust extension pipe based on this information A valve opening limit time setting unit that variably sets the valve opening limit time given to the bypass passage on / off valve forced closing unit as the length of the valve increases. Combustion equipment according to claim 2 or claim 3, wherein the is provided. 給湯熱交換器の給水通路と、給湯熱交換器の給湯通路を短絡する開閉弁を持たない常時バイパス通路が設けられている構成としたことを特徴とする請求項2又は請求項3又は請求項4記載の燃焼機器。  The water supply passage of the hot water supply heat exchanger and the bypass passage that does not have an on-off valve that short-circuits the hot water supply passage of the hot water supply heat exchanger are provided. 4. Combustion equipment according to 4. 給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、上記バイパス通路と並列に設けられ前記給湯熱交換器の入側の給水通路と出側の給湯通路を短絡する常時バイパス通路と、該常時バイパス通路の開閉を行う第2のバイパス通路開閉弁と、燃焼機器の器具の本体から外部へ導出され外部の空気を器具内に取り込む吸気延長管路と、この吸気延長管路の近傍に並設される部分を有し給湯バーナ燃焼の排気を外部へ排出する排気延長管路とを備え、上記第2のバイパス通路開閉弁は出湯開始時に予め定められた給湯設定温度より低い湯温の湯が出湯するときのみ閉弁リミット時間設定部により設定された閉弁リミット時間を越えない予め定められた期間だけ閉弁制御される常開弁と成し、上記閉弁リミット時間設定部は前記吸気延長管路と排気延長管路の並設長さのデータに基づき上記閉弁リミット時間を予め与えられる手法に従い可変設定する構成としたことを特徴とする請求項1乃至請求項5のいずれか1つに記載の燃焼機器。  A hot water heat exchanger that heats water guided from the hot water supply passage using the heat of hot water burner combustion and flows out to the hot water supply passage, and a bypass that short-circuits the hot water passage on the inlet side and the hot water supply passage on the outlet side of the hot water heat exchanger A bypass passage opening / closing valve that opens and closes the bypass passage, a bypass passage that is provided in parallel with the bypass passage and that short-circuits the water supply passage on the inlet side and the hot water supply passage on the outlet side of the hot water supply heat exchanger, A second bypass passage opening / closing valve that always opens and closes the bypass passage, an intake extension pipe that is led out from the main body of the appliance of the combustion equipment and takes in external air into the appliance, and is arranged in the vicinity of the intake extension pipe. The second bypass passage opening / closing valve has a hot water temperature lower than a predetermined hot water supply set temperature at the start of hot water supply. When you go out The valve closing limit time setting unit is a normally open valve that is controlled to close only for a predetermined period not exceeding the valve closing limit time set by the valve closing limit time setting unit, and the valve closing limit time setting unit includes the intake extension pipe and the exhaust gas. The combustion according to any one of claims 1 to 5, wherein the valve closing limit time is variably set according to a method given in advance based on data on lengths of extension pipes arranged in parallel. machine. 給湯熱交換器の入側の給水通路と出側の給湯通路を短絡する常時バイパス通路と、該常時バイパス通路の開閉を行う第2のバイパス通路開閉弁とが設けられ、給湯停止時の給湯熱交換器出側の検出温度を基準として該給湯熱交換器出側検出温度よりも予め与えられた温度だけ低い開弁温度と該開弁温度よりも予め与えられた温度だけ低い閉弁温度とが格納されるデータ格納部と;出湯が開始された後に給湯熱交換器出側湯温センサの実測出側湯温と前記データ格納部に格納されている温度データを比較し、実測出側湯温が閉弁温度以下であると判断したときに第2のバイパス通路開閉弁への閉弁信号を出力して第2のバイパス通路開閉弁を閉弁させ、実測出側湯温が開弁温度以上であると判断したときに第2のバイパス通路開閉弁への開弁信号を出力する第2のバイパス通路開閉弁開閉制御部と;出湯が開始される度にその出湯が開始されてからの経過時間を計測する、あるいは、第2のバイパス通路開閉弁が閉弁する度にその閉弁してからの経過時間を計測する時間計測部と;予め定めた閉弁リミット時間が与えられ、上記時間計測部の計測時間が上記閉弁リミット時間に達したときに第2のバイパス通路開閉弁が閉弁していると判断した場合に第2のバイパス通路開閉弁を開弁させる第2のバイパス通路開閉弁強制開弁部と;給湯バーナ燃焼の給排気を行う燃焼ファンと;燃焼機器の器具の本体から外部へ導出され燃焼ファンの駆動により外部の空気を器具内に取り込む吸気延長管路と;この吸気延長管路の近傍に並設され燃焼ファンの駆動により給湯バーナ燃焼の排気を外部へ排出する排気延長管路と;上記吸気延長管路と排気延長管路の長さに応じ定められた燃焼ファンの回転制御モードを上記延長管路の長さに基づいて切り換え設定するためのファン回転制御モード切り換え手段と;上記ファン回転制御モード切り換え手段の切り換えモード情報を取り込み、この情報に基づいて吸気延長管路と排気延長管路の長さが長くなるに従って上記第2のバイパス通路開閉弁強制開弁部に与えられている閉弁リミット時間を短くする方向に可変設定する閉弁リミット時間設定部と;が設けられていることを特徴とする請求項1乃至請求項5のいずれか1つに記載の燃焼機器。  A constant bypass passage that short-circuits the inlet water supply passage and the outlet hot water passage of the hot water heat exchanger, and a second bypass passage opening / closing valve that opens and closes the constant bypass passage are provided, and the hot water supply heat when the hot water supply is stopped Based on the detected temperature on the outlet side of the exchanger, a valve opening temperature that is lower than the detected temperature on the outlet side of the hot water heat exchanger by a predetermined temperature and a valve closing temperature that is lower than the valve opening temperature by a predetermined temperature. A stored data storage unit; comparing the measured outlet temperature of the hot water supply heat exchanger outlet-side hot water temperature sensor with the temperature data stored in the data storage unit after the start of the hot water; Is determined to be equal to or lower than the valve closing temperature, a valve closing signal is output to the second bypass passage opening / closing valve to close the second bypass passage opening / closing valve, and the actually measured outlet side hot water temperature is equal to or higher than the valve opening temperature. Opening signal to the second bypass passage on-off valve when it is determined that A second bypass passage opening / closing valve opening / closing control section for outputting the output; measuring the elapsed time since the start of the hot water every time when the hot water is started, or whenever the second bypass passage opening / closing valve is closed A time measuring unit for measuring an elapsed time after the valve is closed; a predetermined valve closing limit time is given, and a second time when the measuring time of the time measuring unit reaches the valve closing limit time; A second bypass passage on / off valve forced opening portion for opening the second bypass passage on / off valve when it is determined that the bypass passage on / off valve is closed; a combustion fan for supplying and exhausting hot water burner combustion; An intake extension pipe that is led out from the main body of the appliance of the combustion equipment and takes external air into the appliance by driving the combustion fan; hot water burner combustion is provided in the vicinity of the intake extension pipe and driven by the combustion fan The exhaust of the outside Exhaust exhaust pipe to be discharged; fan rotation for switching and setting the rotation control mode of the combustion fan determined according to the length of the intake extension pipe and the exhaust extension pipe based on the length of the extension pipe Control mode switching means; taking in the switching mode information of the fan rotation control mode switching means, and based on this information, the second bypass passage opening / closing valve is forced as the length of the intake extension pipe and the exhaust extension pipe increases. 6. A valve closing limit time setting unit that variably sets the valve closing limit time given to the valve opening unit in a direction to shorten the valve closing time is provided. Combustion equipment as described in. 燃焼ファンが燃焼室の排気側に設けられ、この燃焼ファンの駆動により給湯バーナ燃焼の排気を吸い出す構成としたことを特徴とする請求項1乃至請求項7のいずれか1つに記載の燃焼機器。  The combustion apparatus according to any one of claims 1 to 7, wherein a combustion fan is provided on an exhaust side of the combustion chamber, and exhaust of hot water burner combustion is sucked by driving the combustion fan. .
JP13946396A 1996-05-09 1996-05-09 Combustion equipment Expired - Fee Related JP3798068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13946396A JP3798068B2 (en) 1996-05-09 1996-05-09 Combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13946396A JP3798068B2 (en) 1996-05-09 1996-05-09 Combustion equipment

Publications (2)

Publication Number Publication Date
JPH09303871A JPH09303871A (en) 1997-11-28
JP3798068B2 true JP3798068B2 (en) 2006-07-19

Family

ID=15245824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13946396A Expired - Fee Related JP3798068B2 (en) 1996-05-09 1996-05-09 Combustion equipment

Country Status (1)

Country Link
JP (1) JP3798068B2 (en)

Also Published As

Publication number Publication date
JPH09303871A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
JP3798068B2 (en) Combustion equipment
JPH07234014A (en) Hot water supplying apparatus
JP2006029740A (en) Combustion equipment
JP3738082B2 (en) Combustion equipment
JP3558439B2 (en) Safe combustion device
JP6896273B2 (en) Water heater
JPS6014039A (en) Notifying method of preset hot-water quantity in hot-water supply apparatus
JPH06257852A (en) Hot-water supplier
JP3579484B2 (en) Combustion equipment
JP3756999B2 (en) Combustion equipment
JP3756988B2 (en) Combustion equipment
JP3244995B2 (en) Gas water heater with combustion abnormality detection function
JPH1194244A (en) Combustion device
JP3776983B2 (en) Combustion equipment
JP3754494B2 (en) Combustion equipment
JP3776985B2 (en) Combustion equipment
JPH11193956A (en) Heat insulating device and method for bath
JP3736897B2 (en) Combined water heater
JPH1123058A (en) Combustion machine
JP3748681B2 (en) One can two water bath hot water heater
JP3271830B2 (en) Water heater and method for setting initial water flow of water control valve
JP3792316B2 (en) Combustion equipment
JPH025988B2 (en)
JPH1026416A (en) Bath burner with hot water feeder
JPH08247453A (en) Combustion device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees