JP3736897B2 - Combined water heater - Google Patents

Combined water heater Download PDF

Info

Publication number
JP3736897B2
JP3736897B2 JP10332596A JP10332596A JP3736897B2 JP 3736897 B2 JP3736897 B2 JP 3736897B2 JP 10332596 A JP10332596 A JP 10332596A JP 10332596 A JP10332596 A JP 10332596A JP 3736897 B2 JP3736897 B2 JP 3736897B2
Authority
JP
Japan
Prior art keywords
hot water
combustion
bath
temperature
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10332596A
Other languages
Japanese (ja)
Other versions
JPH09269148A (en
Inventor
寿久 斉藤
清 福澤
喜久雄 岡本
久恭 渡辺
晃太郎 木村
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP10332596A priority Critical patent/JP3736897B2/en
Publication of JPH09269148A publication Critical patent/JPH09269148A/en
Application granted granted Critical
Publication of JP3736897B2 publication Critical patent/JP3736897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、給湯機能と風呂機能を備えた複合給湯器に関するものである。
【0002】
【従来の技術】
図4には、給湯機能と風呂機能とを備えた複合給湯器のモデル例が示されている。同図において、器具は給湯燃焼室31および風呂燃焼室32を有し、両燃焼室31,32に共通の排気口42が設けられている。給湯燃焼室31の下方側には給湯バーナ11が、風呂燃焼室32の下方側には風呂バーナ12がそれぞれ配置されており、給湯バーナ11および風呂バーナ12の下方側には両者に共通の給排気用の燃焼ファン10が配置され、燃焼ファン10にはファンの回転情報を検出するファン回転検出センサ45が配設されている。給湯バーナ11と風呂バーナ12にはガス供給通路34を介して燃料ガスが分配供給されている。
【0003】
ガス供給通路34には、通路の開閉を行う電磁弁35と、バーナへのガス供給量を開弁量によって制御する比例弁22と、給湯バーナ11のガス供給用となる通路の開閉を行う電磁弁50と、風呂バーナ12のガス供給用となる通路の開閉を行う電磁弁49とが組み込まれている。また、給湯バーナ11および風呂バーナ12の上方側にはそれぞれ燃料ガスの点火を行うイグナイタ電極26,27、バーナの火炎を検出するフレームロッド電極28,29が配設されている。
【0004】
給湯燃焼室31の上方側には給湯熱交換器13が、風呂燃焼室32の上方側には風呂熱交換器(追い焚き熱交換器)14がそれぞれ配置されており、給湯熱交換器13の入側には給水管15が接続され、給湯熱交換器13の出側には給湯管16が接続されている。風呂熱交換器14は往管18の途中に介設されており、往管18の一端は浴槽39のアダプタ24に、他端は循環ポンプ36の吐出口側にそれぞれ接続されている。循環ポンプ36の吸込口側には流水スイッチ33および風呂温度検出用のサーミスタ38を介装した戻り管17の一端が接続され、戻り管17の他端は浴槽39のアダプタ24に接続されている。また、給湯管16と戻り管17とは注湯制御弁19および浴槽水位検出用の水位センサ(圧力センサ)43を介設したバイパス管25によって連接されている。
【0005】
また、給水管15には、入水流量を検出する流量センサ20と、入水の流量を開弁量によって可変調整する水量調整手段(水量調整弁)21とが介設されており、給湯管16の途中には給湯温度検出用の出湯サーミスタ37が、給湯管16の出口側には給湯栓23が設けられている。また、給湯バーナ11の下方側には(例えば、給湯バーナ11にガスを供給するノズルヘッダー(図示せず)に組み込んで)、器具内温度検出用の器具内温度センサ6が設けられている。
【0006】
この種の器具には制御装置40が設けられており、この制御装置40には、通常、給湯温度の設定や、風呂温度の設定や、浴槽水位の設定や、設定温度や設定浴槽水位の表示等を行うリモコン47が接続されている。
【0007】
制御装置40は、シーケンスプログラムに従って、リモコン47からの出力信号や、流量センサ20やサーミスタ37,38等の各種のセンサのセンサ出力に基づき、比例弁22や水量調整手段21の開弁量制御や、電磁弁35,49,50や注湯制御弁19の開閉制御や、循環ポンプ36の駆動制御等を行い、湯張りや追い焚きや給湯や保温等の器具運転動作の制御を行う。
【0008】
例えば、給湯管16の先端側に設けられる給湯栓23が開けられると、給水管15から水が入り込み、この水の流れが流量センサ20により検出されたときに、制御装置40は、燃焼ファン10を回転し、電磁弁35,50と比例弁22を開け、イグナイタ電極26を駆動して給湯バーナ11の点火を行う。そして、フレームロッド電極28が炎を検知したことを確認して、出湯温度が設定温度になるように、比例弁22の開弁駆動電流を可変してガス供給量(比例弁22の開弁量)の制御や、このガス供給量に見合う空気を供給すべく燃焼ファン10の回転制御や、水量調整手段21による給湯の流量制御等を行う。
【0009】
湯の使用が終わって給湯栓23が閉められると、給湯熱交換器13への通水が停止し、流量センサ20からの信号により水の流れの停止が検出されたときに、電磁弁50が閉じられ、給湯バーナ燃焼が停止し、その後、燃焼室内の排気ガスの排出がほぼ終了するポストパージ期間が経過したときに、燃焼ファン10の回転が停止され、次の出湯に備えられる。
【0010】
また、湯張り時には、注湯制御弁19を開け、上記同様に給湯熱交換器13で水を温め、この湯をバイパス管25を介して風呂側に供給し、戻り管17を通る経路と往管18を通る経路との2経路で浴槽39に落とし込み、水位センサ43が設定浴槽水位を検出したときに注湯制御弁19を閉じ、電磁弁35,50を閉じて給湯バーナ11の燃焼を停止し、湯張り動作を終了する。
【0011】
追い焚き時には、循環ポンプ36を駆動し、浴槽39内の湯水を戻り管17から往管18を通り浴槽39に戻る循環通路で循環させ、浴槽39内の湯水を攪拌し、流水スイッチ33で流水が検出されたときに、燃焼ファン10を回転し、電磁弁35,49と比例弁22を開け、イグナイタ電極27を駆動して風呂バーナ12の点火を行う。そして、通常、図4のように風呂バーナ12と給湯バーナ11とに共通の比例弁22が設けられている器具では、風呂バーナ12のみを燃焼させるときには、風呂バーナ12の燃焼能力が予め設定される定常設定燃焼能力(通常は最大燃焼能力)となるように比例弁22の開弁量を制御し風呂バーナ12の燃焼を行わせ、風呂バーナ12と給湯バーナ11とを共に燃焼させるときには、給湯バーナ11の燃焼動作を優先させ給湯バーナ11の燃焼能力に合わせて比例弁22の開弁量を制御し風呂バーナ12および給湯バーナ11の燃焼を行わせ、サーミスタ38で設定の風呂温度が検出されたときに、電磁弁49を閉じ風呂バーナ12の燃焼を停止し、循環ポンプ36を停止し、追い焚きの動作を終了する。
【0012】
この追い焚き運転の動作終了後は所定時間、例えば、4時間の間、保温の動作となり、所定の時間間隔、例えば、30分毎に循環ポンプ36を駆動して浴槽39の湯の循環による攪拌を行った後にサーミスタ38で浴槽湯温を検出し、風呂設定温度よりも低下しているときには追い焚きを行い浴槽湯温を風呂設定温度に保つ。
【0013】
なお、本明細書中では、給湯バーナ11がバーナ燃焼する動作を給湯機能の動作とし、風呂バーナ12がバーナ燃焼する動作を風呂機能の動作として区別する。
【0014】
また、給湯機能と風呂機能とを備えた複合給湯器として図5に示すように、給湯バーナ11と風呂バーナ12とにそれぞれ個別の燃焼ファン10a,10bが設置されている構成のものもある。このように、バーナ11,12のそれぞれに個別の燃焼ファン10a,10bが設置されている器具では、排気ガスの逆流を防止する点から、どちらか一方のバーナの燃焼が行われ、他方のバーナの燃焼が停止しているときにも、燃焼中のバーナ側の燃焼ファンと共に燃焼停止中のバーナ側の燃焼ファンを回転させ、排気ガスが燃焼停止側の燃焼室に逆流するのを防止している。なお、図5の器具構成は前述した図4の器具構成と同様であるのでその説明は省略する。
【0015】
また、図4および図5の複合給湯器は、給湯バーナ11と風呂バーナ12とに共通の比例弁22が設けられている構成のものであったが、給湯バーナ11と風呂バーナ12とにそれぞれ別個の比例弁が設けられる構成の複合給湯器もある。
【0016】
【発明が解決しようとする課題】
ところで、給湯栓23の閉栓後つまり給湯燃焼停止後、給湯熱交換器13内に残留した湯は、図3の実線カーブAに示すように、止湯後すぐに後沸き(給湯熱交換器13に保有されている熱量が給湯熱交換器13に残留している湯に伝わって湯温が上昇する現象)によって設定給湯温度より高い湯温(オーバーシュート)の湯となるが、給湯熱交換器13の冷却に伴い残留湯は冷却を始め、後沸き時間経過後には設定給湯温度より低い湯温(アンダーシュート)の湯となり、その後も徐々に冷めて行く。
【0017】
上記のことから、給湯燃焼停止後すぐに再出湯が行われるときには上記残留湯によるオーバーシュートの湯が出る。また、給湯燃焼停止後、例えばT分後(例えば5分後)という長い時間が経過してから再出湯が行われると、給湯熱交換器13のアンダーシュートの残留湯が出湯する。このように、給湯燃焼停止後、再出湯までの時間の経過に応じてオーバーシュートやアンダーシュートの湯が短時間ではあるが最初に出湯し続け、その後設定給湯温度の湯が出るために、湯の使用者に湯温変動の不快感を与えてしまうという問題がある。
【0018】
そこで、本出願人は、再出湯湯温の安定化を行う機能(以下、Q機能と記す)を提案(未公開)している。例えば、図3の実線カーブAに示すような給湯燃焼停止後における給湯熱交換器13の残留湯の温度特性を演算や実験等により推定検出して予め制御装置40に与えておき、再出湯開始時に、上記推定温度特性に基づいた湯温の降下量Δkをより早く補償するために立ち上げガス量を増加し、Q機能を行うようにしている。
【0019】
上記複合給湯器に用いられた提案のQ機能の方式は、次のような改善すべき点があることが本出願人らの実験により分かった。例えば、図4に示すような複合給湯器において、再出湯待機時間中に風呂機能が動作し燃焼ファン10が回転駆動すると、風呂燃焼室32だけでなく給湯燃焼室31内にも通風が生じ、この通風により給湯熱交換器13内の残留湯の冷却が促進される冷却促進現象が起こり、図3に示すような給湯熱交換器13内の残留湯の温度特性Aが変動してしまう虞がある。
【0020】
また、給湯バーナ11が大型でその保有熱量が大きい場合には、給湯燃焼停止直後に風呂機能が動作すると、上記通風により給湯バーナ11の保有熱が給湯熱交換器13に伝わり給湯熱交換器13内の残留湯が加熱される後沸き上昇現象が起こり、上記同様に給湯熱交換器13内の残留湯の温度特性Aが変動してしまう。また、大型の給湯バーナ11でも給湯燃焼停止時から長い時間が経過してから風呂機能が動作したときには、給湯バーナ11は冷めているために上記冷却促進現象が起こり、やはり残留湯の温度特性Aが変動してしまう虞がある。
【0021】
上記のように、複合給湯器においては、再出湯待機中に風呂機能が動作し燃焼ファン10がファン回転駆動すると、そのファン回転量の大きさ等に応じて図3の実線カーブAに示すような残留湯の温度特性が変動してしまい、Q機能を行っているにもかかわらず、再出湯時に、アンダーシュートやオーバーシュートの残った湯が出湯し、湯の使用者に湯温変動の不快感を与えてしまうという虞がある。
【0022】
また、図5に示すような複合給湯器においても、前記の如く、再出湯待機中に風呂機能が動作すると排気ガスの逆流を防止する点から風呂側の燃焼ファン10bだけでなく、給湯側の燃焼ファン10aも駆動しなければならないので、再出湯時に湯の使用者に湯温変動の不快感を与えてしまう虞がある。
【0023】
本発明は上記課題を解決するためになされたものであり、その目的は、再出湯待機中に風呂機能が動作しても、再出湯の際に湯温変動の少ない湯を供給する複合給湯器の改良に関するものである。
【0024】
【課題を解決するための手段】
上記目的を達成するために、本発明の次のように構成されている。すなわち、第1の発明は、給湯熱交換器の加熱燃焼を行う給湯バーナと、追い焚き熱交換器の加熱燃焼を行う風呂バーナと、前記給湯バーナ燃焼と風呂バーナ燃焼の給排気を行う共通の又は個別の燃焼ファンとを備え、給湯バーナの排気ガスと風呂バーナの排気ガスとが共通の排気口から排出されるタイプの複合給湯器において、再出湯湯温安定化可能時間として予め設定される給湯燃焼停止時から最長再出湯開始までの設定待機時間中に風呂バーナの燃焼が行われたときには、風呂バーナの燃焼能力を通常運転の定常設定燃焼能力よりも低下し、かつ、前記給湯バーナ燃焼と風呂バーナ燃焼の給排気を行う共通の燃焼ファンが設けられている場合はその共通の燃焼ファンのファン回転量を減少させ、前記給湯バーナ燃焼と風呂バーナ燃焼の給排気を行う個別の燃焼ファンが設けられている場合には風呂バーナ側の燃焼ファンと排気ガスの逆流防止のための給湯バーナ側の燃焼ファンとの両方の燃焼ファンのファン回転量を減少させる風呂能力低下制御部が設けられていることを特徴として構成されている。
【0025】
第2の発明は、第1の発明と同様な構成を有し、風呂バーナの燃焼能力の一定低下量のデータが予め与えられ、風呂能力低下制御部は設定待機時間中に風呂バーナの燃焼が行われたときに、その風呂バーナの燃焼能力を定常設定燃焼能力よりも前記一定低下量だけ低下制御する構成としたことを特徴として構成されている。
【0026】
第3の発明は、第1の発明と同様な構成を有し、給湯燃焼停止時から時間の経過に伴う給湯熱交換器内湯温の推定を行う湯温推定部と、給湯燃焼停止時からの経過時間を計測する時間計測部とを備え、風呂能力低下制御部は設定待機時間中に風呂バーナの燃焼が行われたときに、その風呂バーナの燃焼開始時における給湯熱交換器内湯温の推定温度が給湯設定温度からずれるずれ量の大きさに応じて風呂バーナの燃焼能力を連続的又は段階的に低下する構成としたことを特徴として構成されている。
【0027】
第4の発明は、第1又は第2の発明と同様な構成を有し、給湯燃焼停止時から時間の経過に伴う給湯熱交換器内湯温の推定を行う湯温推定部と、給湯燃焼停止時からの経過時間を計測する時間計測部とを備え、風呂能力低下制御部は設定待機時間中に風呂バーナの燃焼が行われたときに、その風呂バーナの燃焼開始時における給湯熱交換器内湯温の推定温度が給湯設定温度よりも高いオーバーシュートの大きさに応じて風呂バーナの燃焼能力を低下し、給湯熱交換器内湯温の推定温度が給湯設定温度よりも低いアンダーシュート状態のときは風呂バーナの燃焼能力を定常設定燃焼能力よりも一定低下量だけ一律に低下制御する構成としたことを特徴として構成されている。
【0028】
第5の発明は、第1の発明と同様な構成を有し、給湯燃焼停止前の共通又は給湯側の燃焼ファンの送風量を検出する送風量検出部が設けられ、風呂能力低下制御部は前記送風量検出部で検出される送風量の大きさに応じて風呂バーナの燃焼能力を定常設定燃焼能力よりも低下制御する構成としたことを特徴として構成されている。
【0029】
第6の発明は、第1又は第2又は第3又は第4又は第5の発明と同様な構成を有し、設定待機時間の終点からその手前側に解除区間が設定され、設定待機時間の開始から前記解除区間の開始までの時間内に風呂バーナの使用がないことが検知されたときに、それ以降の給湯燃焼停止中における風呂バーナ燃焼に際しての風呂能力低下制御部の制御動作を停止する能力低下制御停止部が設けられていることを特徴として構成されている。
【0030】
第7の発明は、第6の発明と同様な構成を有し、器具内温度を検出する器具内温度センサが設けられ、この器具内温度センサによって検出される器具内検出温度が予め与えられる器具内基準温度よりも低下したときにはその温度低下量に応じて連続的に又は段階的に解除区間の時間幅を小さくする方向に補正する解除区間設定部が設けられていることを特徴として構成されている。
【0031】
第8の発明は、第6の発明と同様な構成を有し、器具内温度を検出する器具内温度センサと、器具内温度によって可変する解除区間のデータが器具内温度に対応させて与えられているメモリと、器具内温度センサによって検出される器具内検出温度を取り込み前記メモリの記憶データから器具内検出温度に対応する解除区間を設定する解除区間設定部が設けられていることを特徴として構成されている。
【0032】
上記構成の本発明において、給湯バーナの燃焼が停止して(給湯燃焼停止時)から設定待機時間を経過するまでの間(設定待機時間中)に再出湯が開始されず風呂バーナの燃焼が行われたときには、風呂能力低下制御部が風呂バーナの燃焼能力を通常運転の定常設定燃焼能力よりも低下制御する。
【0033】
このように、風呂燃焼能力を低下制御することによって、燃焼ファン(風呂バーナと給湯バーナとに共通の燃焼ファンが設けられる場合には共通の燃焼ファン、風呂バーナと給湯バーナとに別個の燃焼ファンが設けられている場合には風呂バーナ側の燃焼ファンと、排気ガスの逆流防止のための給湯バーナ側の燃焼ファン)のファン回転量を減少させ、共通の、あるいは給湯バーナ側の燃焼ファンのファン回転駆動による送風に起因した給湯熱交換器内の残留湯の冷却促進現象を抑制したり、給湯バーナが大型でその保有熱量が大きく、給湯燃焼停止直後の燃焼ファン回転駆動による送風に起因した給湯熱交換器内の残留湯の後沸き上昇現象を抑制し、再出湯湯温の安定化を行う。
【0034】
また、上記風呂燃焼能力の低下制御状態で風呂バーナを燃焼させているとき、再出湯が開始されたときには風呂バーナの燃焼動作は通常運転動作に復帰し、また、低下制御状態の風呂バーナ燃焼中に再出湯が開始されずに給湯燃焼停止時からの経過時間が設定待機時間を越えてしまったときには、給湯熱交換器の残留湯は冷え切ってしまいコールドスタートとなるために、再出湯湯温の安定化動作を継続する必要がなく、上記風呂燃焼能力の低下制御動作は停止され、風呂バーナの燃焼動作は通常運転動作に復帰する。
【0035】
第2の発明においては、設定待機時間中に再出湯が開始されずに風呂バーナの燃焼が行われたときには、風呂能力低下制御部が風呂バーナの燃焼能力を通常運転の定常設定燃焼能力よりも一定量だけ低下制御し、つまり、燃焼ファンの回転量を低下制御し、燃焼ファンの駆動による送風に起因した給湯熱交換器内の残留湯の冷却促進現象や後沸き上昇現象を抑制し、再出湯湯温の安定化を行う。
【0036】
第3の発明においては、給湯バーナの燃焼が停止すると、時間計測部が給湯燃焼停止時からの経過時間を計測し、設定待機時間中に再出湯が開始されず風呂バーナの燃焼が開始されたとき(風呂動作開始時)には、湯温推定部が風呂動作開始時における給湯熱交換器内の湯の湯温を推定検出する。風呂能力低下制御部は、給湯設定温度に対する給湯熱交換器内の推定湯温のずれ量の大きさに応じて定常設定燃焼能力よりも風呂バーナの燃焼能力を連続的に又は段階的に低下制御し、再出湯湯温の安定化を行う。
【0037】
第4の発明においては、第3の発明同様にして風呂動作開始時における給湯熱交換器内の湯温が推定検出されると、風呂能力低下制御部は、給湯設定温度に対して給湯熱交換器内の推定湯温が高い方向にずれているときにはこのオーバーシュートの大きさに応じて風呂バーナの燃焼能力を低下し、給湯設定温度に対して給湯熱交換器内の推定湯温が低い方向にずれているとき(アンダーシュート状態のとき)には風呂バーナの燃焼能力を一定量だけ低下制御し、再出湯湯温の安定化を行う。
【0038】
第5の発明においては、給湯バーナの燃焼が停止すると、送風量検出部は、給湯バーナと風呂バーナとに共通の燃焼ファンが備えられている場合には共通の燃焼ファンの駆動による給湯燃焼停止前の送風量を検出し、あるいは、給湯バーナと風呂バーナとに別個の燃焼ファンが備えられている場合には給湯バーナ側の燃焼ファンの駆動による給湯燃焼停止前の送風量を検出する。設定待機時間中に再出湯が開始されず風呂バーナの燃焼が開始されたときには、風呂能力低下制御部は、上記検出された給湯燃焼停止前の送風量の大きさに応じて風呂バーナの燃焼能力を定常設定燃焼能力よりも低下制御し、再出湯湯温の安定化を行う。
【0039】
また、第6の発明においては、給湯燃焼停止時から解除区間の開始までの時間内に風呂バーナの使用がないことが検知されたときには、解除区間内で燃焼ファンが回転駆動を開始しても通風によって給湯熱交換器の湯の冷却が促進される度合が小さいことから、上記各発明のような風呂燃焼能力の低下制御を行う必要がないとして能力低下制御停止部が風呂能力低下制御部の制御動作を停止させる。
【0040】
第7の発明においては、器具内の温度センサが器具内温度を検出し、器具内検出温度が器具内基準温度よりも低下したときに、解除区間設定部は、器具内基準温度に対する器具内検出温度の低下量に応じて連続的に又は段階的に解除区間の時間幅を短くする方向に補正する。そして、上記第6の発明同様に、給湯燃焼停止時から補正された解除区間(補正が行われていないときには補正されていない解除区間)の開始までの時間内に風呂バーナの使用がないことが検知されたときには、能力低下制御停止部が風呂能力低下制御部の制御動作を停止させる。
【0041】
第8の発明においては、器具内温度センサが器具内温度を検出し、解除区間設定部は、器具内検出温度を取り込み、器具内検出温度をメモリの解除区間のデータに照合し、器具内検出温度に対応する解除区間を、例えば、器具内温度のサンプリングの度に検出し更新設定する。そして、上記第6の発明同様に、給湯燃焼停止時から上記設定の解除区間の開始までの時間内に風呂バーナの使用がないことが検知されたときには、能力低下制御停止部が風呂能力低下制御部の制御動作を停止させる。
【0042】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。以下に説明する各実施の形態例の複合給湯器は、図4や図5に示す複合給湯器を対象にしており、図4や図5の説明は従来例で前述しているために省略する。図1には、以下に説明する各実施の形態例の特徴的な再出湯湯温の安定化手段の構成(制御装置40の構成)が示されており、第1の実施の形態例は、風呂能力低下制御部1と、湯温推定部2と、時間計測部3と、能力低下制御停止部5と、メモリ8と、給湯燃焼制御部46と、風呂燃焼制御部48とを有して構成されている。
【0043】
風呂燃焼制御部48は、従来例で前述した追い焚きや保温動作の制御動作を行う構成を有し、例えば、リモコン47で追い焚きが指令されたときには、前記の如く、循環ポンプ36を駆動し、浴槽39内の湯水を戻り管17から往管18を通り浴槽39に戻る循環通路で循環させ、浴槽39内の湯水を撹拌し、流水スイッチ33で流水が検出されたときに、燃焼ファン10を回転し、電磁弁35,49と比例弁22を開け、イグナイタ電極27を駆動して風呂バーナ12の点火を行う。そして、サーミスタ38で設定の風呂温度が検出されたときに、電磁弁49を閉じ風呂バーナ12の燃焼を停止させ、循環ポンプ36を停止する。
【0044】
給湯燃焼制御部46は、従来例で前述した給湯や湯張りの動作における制御動作を行う構成を有する。例えば、流量センサ20が流水を検知したときには電磁弁35,50を開け、燃焼ファン10(10a,10b)を回転駆動しイグナイタ電極26を駆動して給湯バーナ11の点火を行い、給湯バーナ11の燃焼を開始させ、入水温度が設定給湯温度となるようにフィードフォワード演算後に出湯温度が設定給湯温度となるように比例演算等を行って比例弁22の開弁量を可変制御し、給湯バーナ11の燃焼能力を制御し、流量センサ20が流水停止を検知したときには電磁弁50を閉じ、給湯バーナ11の燃焼を停止させる。また、前記提案のQ機能を行う場合には、再出湯開始時に比例弁22の開弁量補正制御、あるいは、その他の適宜の手段によりQ機能を行わせる。
【0045】
また、本実施の形態例では、給湯燃焼制御部46は、流量センサ20が流水停止を検知すると給湯燃焼停止信号を時間計測部3および湯温推定部2に出力し、流量センサ20が流水を検知すると給湯燃焼開始信号を時間計測部3および湯温推定部2に出力する構成をも有している。
【0046】
時間計測部3はタイマ(以下Qタイマと記す)を有して構成されており、前記給湯燃焼制御部46の給湯燃焼停止信号を受けると、給湯燃焼が停止し再出湯待機状態となったと判断しQタイマをタイマ駆動させ給湯燃焼停止時からの経過時間TQ の計測を開始し、同時に再出湯待機開始信号を風呂能力低下制御部1および能力低下制御停止部5に出力する。また、前記給湯燃焼制御部46の給湯燃焼開始信号を受けると、給湯燃焼が開始され再出湯が開始されたと判断しQタイマを停止させると共に再出湯開始信号を能力低下制御停止部5に出力し、Qタイマをリセットし次のタイマ駆動に備える。
【0047】
湯温推定部2はメモリを内蔵しており、給湯燃焼中に前記給湯燃焼制御部46から給湯バーナ11の給湯燃焼能力をサンプリングし内蔵のメモリに記憶する。また、湯温推定部2のメモリには、給湯燃焼停止前の給湯燃焼能力に基づいて、あるいは外気温等の他の湯温推定条件も考慮して、図3に示すような後沸きピーク温度KP を算出するための演算式、給湯燃焼停止時から後沸きのピークとなるまでの後沸きピーク時間TP を算出するための演算式、また、後沸きピーク温度KP とその時間TP に基づいて、あるいは外気温等の他の湯温推定条件も考慮して、同図の実線カーブAに示されるような給湯燃焼停止後の給湯熱交換器13の残留湯の湯温特性データ(給湯燃焼停止時からの経過時間TQ と残留湯湯温との関係データ)を作成するための演算式が実験等により求め与えられている。
【0048】
湯温推定部2は給湯燃焼制御部46の給湯燃焼停止信号を受けると、内蔵メモリの給湯燃焼停止直前の燃焼能力および後沸きピーク温度算出用演算式および後沸きピーク時間算出用演算式に基づいて後沸きピーク温度KP と後沸きピーク時間TP を求め、このKP およびTP および残留湯温度特性データ作成用演算式に基づいて残留湯温度特性データを演算作成し記憶する。
【0049】
また、湯温推定部2は給湯燃焼制御部46の給湯燃焼開始信号を受けると、次の給湯燃焼停止時の残留湯温度特性データの作成に備えるために内蔵メモリにおける給湯燃焼能力のサンプリング値および残留湯温度特性データをクリアにし、上記の如く、給湯燃焼能力のサンプリングを行う。
【0050】
メモリ8には、再出湯湯温の安定化可能時間としての設定待機時間TR (例えば510 秒)、設定待機時間TR の終点から手前側に設けられる解除区間TS (例えば150 秒)、風呂燃焼能力補正データが予め与えられている。風呂燃焼能力補正データは、給湯燃焼停止中の風呂燃焼開始時における給湯熱交換器13の推定湯温(残留湯湯温)が設定給湯温度に対してずれるずれ量(変動量)に応じて風呂燃焼能力を低下補正させる風呂燃焼能力補正量のデータであり、このデータは、実験や演算等により求められた残留湯の湯温のずれ量に対して連続的又は段階的に与えられた表データやグラフデータである場合と、残留湯の湯温のずれ量に基づいて風呂燃焼能力補正量を算出するための演算式データである場合とがあり、そのいずれであってもよい。
【0051】
風呂能力低下制御部1は、給湯燃焼が停止したこを示す時間計測部3の再出湯待機開始信号を受けると能力低下制御待機状態となり、この状態で、風呂バーナ12側のフレームロッド電極29が火炎を検知すると、風呂バーナ12の燃焼が行われたと判断して下記の能力低下制御動作を開始する構成となっている。
【0052】
なお、風呂バーナ12の燃焼が給湯燃焼停止以前から給湯燃焼停止以降も引き続き行われる場合にも、給湯燃焼停止時に下記の能力低下制御動作を開始する。
【0053】
風呂能力低下制御部1は風呂バーナ12の燃焼が検知されると、給湯燃焼停止時から風呂動作開始時までの風呂制御待機時間TH を前記時間計測部3から検出し、この風呂制御待機時間TH を前記湯温推定部2で作成記憶された残留湯温度特性データに照合し、風呂動作開始時における給湯熱交換器13の湯温(残留湯の湯温)を推定検出する。そして、風呂能力低下制御部1はリモコン47で設定された設定給湯温度を取り込み、この設定給湯温度から前記残留湯の湯温を差し引き設定給湯温度に対する残留湯の湯温の変動量ΔUを算出する。
【0054】
この変動量ΔUは、設定給湯温度に対する残留湯の湯温のずれの大きさ(ずれ量)を表すと共に、その正負符号によりずれ方向を表すものである。本実施の形態例では、変動量ΔUが正であるときには設定給湯温度に対して残留湯の湯温は低い方向にずれており、変動量ΔUが負であるときには設定給湯温度に対して残留湯の湯温は高い方向にずれていることを示す。
【0055】
風呂能力低下制御部1は、上記の如く残留湯の変動量ΔUを算出後に、変動量ΔUを前記メモリ8の風呂燃焼能力補正データに照合し、風呂燃焼能力を低下制御するために変動量ΔUに対応する風呂燃焼能力補正量を検出し、風呂燃焼制御部48に出力し、風呂燃焼能力補正量に基づいて風呂燃焼制御部48に風呂燃焼能力の低下制御を行わせる。
【0056】
上記風呂燃焼能力補正量は、残留湯の変動量ΔUが示す残留湯のずれ量に応じて、通常運転の定常設定風呂燃焼能力を連続的又は段階的に低下補正させるもので、風呂燃焼制御部48は、風呂燃焼能力補正量の信号を受けると、この補正量に対応する開弁駆動電流で比例弁22の開弁量を絞り調整して風呂燃焼能力を低下させ、かつ、低下制御された風呂燃焼能力の燃焼に見合う空気量が風呂バーナ12に供給されるように燃焼ファン(図4では風呂バーナ12と給湯バーナ11とに共通の燃焼ファン10、図5では風呂バーナ12側の燃焼ファン10bおよび排気ガスの逆流を防止するために給湯バーナ11側の燃焼ファン10a)のファン回転量を低下制御する。
【0057】
上記の如く、給湯燃焼停止中の設定待機時間内に風呂動作が行われたときに、風呂燃焼能力を低下制御して燃焼ファンのファン回転量を低下制御することによって、燃焼ファンの回転駆動に起因する前記残留湯冷却促進現象や後沸き上昇現象を抑制することができ、再出湯湯温の安定化が行われる。
【0058】
なお、給湯燃焼停止時から再出湯開始時あるいは設定待機時間までの間に何度も風呂バーナ12の燃焼の開始・停止が繰り返されるときには風呂バーナ12の燃焼開始の度に上記能力低下制御動作を行う。
【0059】
能力低下制御停止部5は、給湯燃焼停止を示す前記時間計測部3の再出湯待機開始信号を受けると、前記時間計測部3のQタイマの計測時間(給湯燃焼停止時からの経過時間)TQ のサンプリングを開始し、また、前記メモリ8から設定待機時間TR (例えば510 秒)および解除区間TS (例えば150 秒)を読み出し、前記TR からTS を差し引いた能力低下制御待機時間(例えば360 秒)を算出する。
【0060】
能力低下制御停止部5は、給湯燃焼停止時からの経過時間TQ が前記解除区間内に入ったことを示す能力低下制御待機時間を越えるまで、フレームロッド電極29が風呂バーナ12の火炎を検出せず風呂バーナ12の燃焼が行われなかったことを検知したときには、前記解除区間内に、風呂バーナ12の燃焼が開始され燃焼ファン10(10a)が回転駆動しても燃焼ファンの回転駆動に起因する冷却促進現象の度合は小さく、風呂燃焼能力の低下制御を行わなくても再出湯湯温の安定化を成すことができると判断して、前記風呂能力低下制御部1に能力低下制御待機状態解除用の解除信号を出力する。風呂能力低下制御部1では、解除信号を受けて能力低下制御待機状態を解除し、これ以降にフレームロッド電極29が風呂バーナ12の燃焼開始を検知しても前記能力低下制御動作は行われない。
【0061】
また、能力低下制御停止部5は、給湯燃焼停止中における前記解除区間の以前に風呂燃焼能力の低下制御が開始・継続されている状態で、再出湯が開始されずに給湯燃焼停止時からの経過時間TQ が再出湯湯温安定化可能時間である設定待機時間TR を越えたときには、給湯熱交換器13の残留湯は冷え切ってしまいコールドスタートとなるために風呂燃焼能力の低下制御による再出湯湯温の安定化動作を継続する必要がないと判断し、低下制御停止用の停止信号を風呂能力低下制御部1に出力する。
【0062】
風呂能力低下制御部1では、上記停止信号を受けると低下制御停止信号を風呂燃焼制御部48に出力し、風呂燃焼制御部48における風呂燃焼能力の低下制御動作を終了させ、通常運転動作に復帰させる。
【0063】
また、能力低下制御停止部5は、給湯燃焼開始を示す再出湯開始信号を時間計測部3から受け取ると、低下制御停止用の停止信号を風呂能力低下制御部1に出力し、風呂能力低下制御部1は能力低下制御待機状態であるときにはその状態を解除し、前記風呂燃焼能力補正量の出力後(能力低下制御中)であるときには低下制御停止信号を風呂燃焼制御部48に出力し、風呂燃焼制御部48における風呂燃焼能力の低下制御動作を終了させ、通常運転動作に復帰させる。
【0064】
次に、上記構成の再出湯湯温の安定化手段における動作例を図2のフローチャートに基づいて簡単に説明する。まず、ステップ101 で、給湯バーナ11の燃焼停止が検知されると、ステップ102 で、時間計測部3のQタイマを駆動させて給湯燃焼停止時からの経過時間TQ の計測を開始し、同時に、風呂能力低下制御部1を低下制御待機状態にする。ステップ103 で、風呂バーナ12の燃焼が開始されたか否かを判断し、風呂バーナ12の燃焼が開始されたと判断したときにはステップ104 で、風呂能力低下制御部1による風呂燃焼能力の低下制御が行われ、再出湯湯温の安定化を行う。
【0065】
ステップ105 では、再出湯が開始されたか否かを判断し、再出湯が開始されたと判断したときには、ステップ106 で、風呂燃焼制御部48の風呂能力低下制御動作は停止され、通常運転に復帰する。
【0066】
また、前記ステップ105 で、再出湯は開始されていないと判断されたときには、ステップ108 で、給湯燃焼停止時からの経過時間TQ が設定待機時間TR (例えば510 秒)を越えているか否かを判断する。TQ がTR を越えていると判断したときには、前記ステップ106 に進み、風呂能力低下制御による再出湯湯温の安定化を継続する必要がないと判断し、風呂能力低下制御動作を終了させ、通常運転に復帰し、反対に、TQ がTR を越えていないと判断したときには、前記ステップ104 における風呂燃焼能力の低下制御動作を継続して行う。
【0067】
また、前記ステップ103 で、風呂バーナ12の燃焼が開始されていないと判断したときには、ステップ107 で、再出湯が開始されたか否かを判断する。再出湯が開始されたと判断したときには、ステップ110 で、風呂能力低下制御部1の低下制御待機状態を解除し、以後、風呂バーナ12の燃焼が開始されても風呂燃焼能力の低下制御は行われない。
【0068】
上記ステップ107 で、再出湯が開始されていないと判断したときには、ステップ109 で、給湯燃焼停止時からの経過時間TQ が、設定待機時間TR (例えば510 秒)から解除区間TS (例えば150 秒)を差し引いた能力低下制御待機時間(360 秒)を越えたか否かを判断する。TQ がTR −TS を越えたと判断したときには、前記ステップ110 で、以降、風呂バーナ12の燃焼が開始されても前記燃焼ファンの回転駆動に起因する冷却促進現象の影響は小さく、風呂燃焼能力の低下制御を行わなくても再出湯湯温の安定化を達成することができると判断し、風呂能力低下制御部1の低下制御待機状態を解除する。反対に、TQ がTR −TS を越えていないと判断したときには、前記ステップ103 以降の動作を行う。
【0069】
本実施の形態例によれば、給湯燃焼停止中における解除区間の開始以前に風呂バーナ12の燃焼が行われたときには、風呂燃焼能力を低下制御するので、給湯燃焼停止中の風呂バーナ12の燃焼動作における燃焼ファンのファン回転量が燃焼能力の低下分だけ低下し、ファン回転駆動に起因する給湯熱交換器13の残留湯の冷却促進現象や後沸き上昇現象を抑制することができ、給湯燃焼停止中に風呂バーナ12の燃焼が行われても、再出湯時におけるアンダーシュートやオーバーシュートの湯が出湯するような湯温変動を抑えることができる。したがって、湯の使用者は、再出湯開始時に急激な湯温変動を受けることがないので、快適に湯を使用することができる。
【0070】
なお、本実施の形態例では、給湯燃焼停止中の解除区間以前に風呂バーナ12の燃焼が行われたときに、風呂動作開始時における給湯設定温度に対する給湯熱交換器13の残留湯の湯温のずれ量(変動量)に応じて風呂燃焼能力を低下制御したが、残留湯の湯温のずれ量によらず予め設定された風呂燃焼能力の一定低下量だけ一律に低下制御(例えば風呂燃焼可能下限能力に制御)し、それに伴い燃焼ファンのファン回転量も低下制御し、ファン回転駆動に起因する冷却促進現象や後沸き上昇現象を抑制し、再出湯湯温の安定化を行うようにしてもよい。この場合にはメモリ8に、風呂燃焼能力補正データとして予め実験や演算等により求められた唯一の風呂燃焼能力補正量が与えられる。
【0071】
また、風呂動作開始時の給湯熱交換器13の残留湯の湯温が給湯設定温度より高いオーバーシュートの場合、つまり、前記風呂能力低下制御部1が算出した残留湯の湯温の変動量ΔUが負であるときにはそのオーバーシュートのずれ量の大きさに応じて風呂燃焼能力を低下制御し、風呂動作開始時の残留湯の湯温が給湯設定温度より低いアンダーシュートの場合、つまり、前記残留湯の湯温の変動量ΔUが正であるときには風呂燃焼能力を一定低下量だけ一律に低下制御するようにしてもよい。
【0072】
この場合には、メモリ8の風呂燃焼能力補正データは、変動量ΔUが負であるときには変動量ΔUの大きさに応じて連続的又は段階的に風呂燃焼能力補正量が与えられ、変動量ΔUが正であるときには変動量ΔUの大きさに因らず一定量の風呂燃焼能力補正量が与えられるものである。
【0073】
また、風呂動作開始時の給湯熱交換器13の残留湯の湯温が給湯設定温度より高いオーバーシュートの場合には、風呂燃焼能力を一定低下量だけ一律に低下制御し、残留湯湯温が給湯設定温度より低いアンダーシュートの場合には、そのアンダーシュートのずれ量に応じて風呂燃焼能力を低下制御するようにしてもよい。
【0074】
上記のように、給湯燃焼停止中における風呂燃焼能力の低下制御の手法は様々な手法を採り得るが、最も効果的に再出湯湯温の安定化を行うためには、前記の如く、残留湯の湯温のずれ量に因らず、風呂燃焼能力を風呂燃焼可能下限能力に一律に低下制御すればよい。しかし、風呂燃焼能力の低下分だけ、風呂が沸くまでに時間を要し使い勝手が悪くなったり、風呂燃焼室内の通風量が減少することによって露点温度が上昇し、風呂バーナの燃焼中にも風呂熱交換器に結露が生じ風呂熱交換器の劣化を早めてしまい器具の耐久性を悪化させてしまう等の問題が生じてくる。
【0075】
そのため、例えば、上記の如く、湯温のずれ量に応じて風呂燃焼能力を通常運転の定常設定燃焼能力より小さく風呂燃焼可能下限能力より大きい燃焼能力に低下制御することで、再出湯湯温の安定化を効果的に行いながら、上記低下制御による問題を軽減させることができる。
【0076】
以下に第2の実施の形態例を図1に基づいて説明する。本実施の形態例の最も特徴的なことは、第1の実施の形態例における湯温推定部2の代わりに送風量検出部4が設けられることであり、送風量検出部4が検出する給湯燃焼停止前の燃焼ファンの回転駆動による送風量の大きさに応じて風呂燃焼能力の低下制御を行うことである。
【0077】
ところで、器具が浴室のシャワーに湯を供給するときには、湯の使用者はその湯を頭や胸等の湯温変動を特に敏感に感じ取る体の部分に受けることが多いことから、シャワー使用中の再出湯時に湯温変動が大きいと、湯の使用者はその湯温変動を敏感に感じ取り非常に不快な思いをする。そこで、本発明者は、湯をシャワーで使用する、あるいは台所(例えば食器の洗浄のため)等で使用する等、湯の使用目的に応じて可変する給湯燃焼能力つまり燃焼ファンの送風量に基づき湯の使用目的を推定し、その湯の使用目的に応じた大きさで、給湯燃焼停止中の風呂燃焼能力の低下制御を行い、再出湯湯温の安定化を行う器具を第2の実施の形態例で提供するものである。
【0078】
なお、第2の実施の形態例の説明において、前記第1の実施の形態例における風呂能力低下制御部1およびメモリ8以外の構成は第1の実施の形態例と同様であるので、その重複説明は省略する。
【0079】
送風量検出部4はメモリを内蔵し、給湯燃焼が開始され給湯燃焼制御部46が給湯燃焼開始信号を出力すると、給湯バーナ11と風呂バーナ12とに共通の燃焼ファン10が備えられている場合には共通の燃焼ファン10のファン回転検出センサ45、給湯バーナ11と風呂バーナ12とに別個の燃焼ファン10a,10bが備えられている場合には給湯バーナ11側の燃焼ファン10aのファン回転検出センサ45aで検出される燃焼ファン10(10a)のファン回転数のサンプリングを開始し、順次内蔵メモリに記憶する。
【0080】
また、給湯燃焼が停止され給湯燃焼制御部46が給湯燃焼停止信号を出力すると、送風量検出部4は給湯燃焼停止直前のファン回転数を給湯燃焼停止前の燃焼ファンの送風量として検出し、それ以外の内蔵メモリに記憶されたファン回転数のサンプリング値をクリアする。
【0081】
上記検出された給湯燃焼停止前の送風量によって、湯の使用目的を推定することができる。例えば、給湯燃焼停止前の送風量が大きいとき、つまり、給湯燃焼能力が大きいときには、湯がシャワーで使用され再出湯時にも引き続きシャワーで使用されると推定することができ、また、送風量が小さいとき、つまり、給湯燃焼能力が小さいときには湯が台所等のシャワー以外で使用され再出湯時にも引き続きその場所で使用されると推定することができる。
【0082】
メモリ8には、前記第1の実施の形態例同様に、設定待機時間TR (例えば510 秒)および解除区間TS (例えば150 秒)が与えられる。また、風呂燃焼能力を低下制御するための風呂燃焼能力補正データとして、送風量の大きさに連続的又は段階的に対応させた風呂燃焼能力補正量のデータ(表データやグラフデータ)が予め実験や演算等により求め与えられている。あるいは送風量の大きさに基づいて風呂燃焼能力補正量を演算するための演算式データが与えられている。
【0083】
風呂能力低下制御部1は、第1の実施の形態例同様に、給湯燃焼停止を示す時間計測部3の再出湯待機開始信号を受けると能力低下制御待機状態となり、この状態で、風呂バーナ12側のフレームロッド電極29が火炎を検知すると、風呂バーナ12の燃焼が行われたと判断して下記の能力低下制御動作を開始する構成を有する。
【0084】
風呂バーナ12の燃焼が検知されると、風呂能力低下制御部1は、前記送風量検出部4で検出された給湯燃焼停止前の送風量を取り込み、この送風量を前記メモリ8の風呂燃焼能力補正データに照合し、送風量の大きさに対応する風呂燃焼能力補正量を検出し、この検出した風呂燃焼能力補正量の信号を風呂燃焼制御部48に出力する。風呂燃焼制御部48では第1の実施の形態例同様に、前記風呂燃焼能力補正量分だけ風呂燃焼能力を定常設定燃焼能力よりも低下制御し、かつ、低下制御された風呂燃焼能力に見合うように燃焼ファンのファン回転数を低下制御し、燃焼ファンの回転駆動に起因する前記残留湯冷却促進現象や後沸き上昇現象を抑制させる。
【0085】
第2の実施の形態例によれば、給湯燃焼停止前の燃焼ファンの送風量に応じて給湯燃焼停止中に風呂バーナ12を燃焼させるときの風呂燃焼能力を低下制御する構成としたことによって、前記第1の実施の形態例同様に優れた効果を奏することができる。
【0086】
また、給湯燃焼停止前の送風量に基づいて湯をシャワーで使用していると推定されるときには、給湯燃焼停止中の風呂燃焼能力の低下量を台所等で使用するときより大きくし燃焼ファンのファン回転量つまり送風量を小さくするので、ファン回転駆動に起因する冷却促進現象や後沸き上昇現象がより抑制され、シャワー使用時には台所等で使用するときよりもさらに湯温変動の少ない湯を供給し、湯の使用者は、シャワー使用時にはより湯温変動の少ない湯を受けるので、湯温変動に敏感な体の部分に湯を受けても快適に湯を使用することができる。
【0087】
さらに、給湯燃焼停止後に風呂バーナ12の燃焼が開始されるときには、風呂バーナ12の燃焼開始前に風呂燃焼能力を低下抑制させるための補正量を検出しておくことができ、風呂動作開始時に補正量検出動作を行わない分だけ速やかに風呂燃焼能力の低下制御を行わせることができる。
【0088】
以下に第3の実施の形態例を図1に基づいて説明する。本実施の形態例が前記第1又は第2の実施の形態例と異なる最も特徴的なことは、解除区間設定部7が設けられることである。なお、本実施の形態例の説明において、前記第1又は第2の実施の形態例における能力低下制御停止部5およびメモリ8以外の構成は第1又は第2の実施の形態例の構成と同様であるため、その重複説明は省略する。
【0089】
メモリ8には、前記の如く、設定待機時間TR (例えば510 秒)、解除区間TS (例えば150 秒)、風呂燃焼能力補正データが予め与えられており、また、本実施の形態例では、器具内基準温度および解除区間補正データが予め実験や演算等にとり求め与えられている。上記解除区間補正データは、上記器具内基準温度に対する器具内温度の降下量が大きくなるに伴い、解除区間を短縮させる方向に解除区間を補正するための補正区間のデータであり、補正区間が上記器具内温度の降下量に連続的又は段階的に対応した表データやグラフデータとして、あるいは演算式データとして与えられている。
【0090】
解除区間設定部7は、給湯燃焼が停止し給湯燃焼制御部46が給湯燃焼停止信号を出力すると、器具内温度センサ6における検出器具内温度の取り込みを開始し、この検出器具内温度と前記メモリ8の器具内基準温度とを比較し、検出器具内温度が器具内基準温度より低いときには、器具内基準温度から検出器具内温度を差し引き、器具内基準温度に対する検出器具内温度の降下量を算出する。
【0091】
解除区間TS は器具内温度が器具内基準温度以上であると想定して設定されたものであり、器具内温度が器具内基準温度より下がってしまったときには、その低下分だけ燃焼ファンの回転駆動に起因する冷却促進現象が大きく現れてしまう。その大きく現れる冷却促進現象分を抑制するために、器具内基準温度に対する器具内温度の降下分だけ解除区間TS を短縮する方向に補正する必要が生じてくる。
【0092】
そこで、解除区間設定部7は、前記の如く、検出器具内温度が器具内基準温度より下がりその降下量が算出されると、降下量の大きさに応じて解除区間を短縮する補正を行う必要があると判断し、算出降下量を前記メモリ8の解除区間補正データに照合し算出降下量に対応する補正区間を検出し、前記メモリ8の解除区間TS を読み出し解除区間TS を補正区間分だけ短縮する方向に補正し、補正解除区間TSSを能力低下制御停止部5に出力する。
【0093】
なお、上記器具内温度センサ6における検出器具内温度の取り込み、および検出器具内温度と器具内基準温度との比較動作は、給湯燃焼停止開始時から補正解除区間TSS(補正が行われていないときには解除区間TS )の開始時まで繰り返し行われ、検出器具内温度と器具内基準温度との比較の結果、器具内基準温度に対して検出器具内温度が低下しているときには、補正解除区間は検出・継続される。
【0094】
能力低下制御停止部5は、解除区間設定部7の補正解除区間TSS(例えば140 秒)を受けると、設定待機時間TR (例えば510 秒)から補正解除区間TSSを差し引いて補正能力低下制御待機時間(例えば370 秒)を算出し、以前に算出した能力低下制御待機時間(例えば360 秒)を補正能力低下制御待機時間(370 秒)に置き換え、能力低下制御待機時間の変更を行う。
【0095】
また、能力低下制御停止部5は第1又は第2の実施の形態例同様に時間計測部3の計測時間をサンプリングし、給湯燃焼停止時からの経過時間TQ が能力低下制御待機時間を越えると、前記解除区間設定部7の解除区間補正動作を終了させる。
【0096】
第3の実施の形態例によれば、器具内温度が器具内基準温度より下がっているために冷却促進現象が想定されたものより大きく現れる場合にも、器具内基準温度に対する器具内温度の降下量に応じて解除区間を短縮補正するので、冷却促進現象が想定されたものより大きくなった影響時間部分を解除区間から外すことができ、器具内温度の大きな降下があっても確実に再出湯湯温の安定化を行うことができる。
【0097】
以下に第4の実施の形態例を図1に基づいて説明する。本実施の形態例が前記第1又は第2の実施の形態例と異なる特徴的なことは、解除区間が予め固定的に与えられるのではなく、解除区間設定部7が器具内温度に応じて解除区間を自ら設定するようにしたことである。なお、上記第1又は第2の実施の形態例における能力低下制御停止部5およびメモリ8以外の構成は上記第1又は第2の実施の形態例と同様であるため、その重複説明は省略する。
【0098】
メモリ8には、前記第1又は第2の実施の形態例と同様に設定待機時間TR 、風呂燃焼能力補正データが予め与えられており、本実施の形態例では、器具内温度が下がるにつれて解除区間が短くなる解除区間のデータが実験や演算等により求められ器具内温度に連続的又は段階的に対応させた表データやグラフデータとして、あるいは演算式データとして与えられている。
【0099】
解除区間設定部7は、給湯燃焼が停止し給湯燃焼制御部46が給湯燃焼停止信号を出力すると、器具内温度センサ6が検出する器具内温度のサンプリングを開始し、この器具内温度のサンプリング値を前記メモリ8の解除区間データに照合し、サンプリング値に対応する解除区間を検出設定し、能力低下制御停止部5に出力する。なお、解除区間は器具内温度のサンプリングの度に検出されて更新設定される。
【0100】
能力低下制御停止部5は、上記解除区間設定部7で検出設定された解除区間を受け取ると、設定待機時間TR から解除区間を差し引き能力低下制御待機時間を算出し、以前に能力低下制御待機時間が算出されているときには前の能力低下制御待機時間を新たに算出した能力低下制御待機時間に置き換え、能力低下制御待機時間の変更を行う。
【0101】
また、能力低下制御停止部5は、第1又は第2の実施の形態例と同様に時間計測部3の計測時間をサンプリングし、給湯燃焼停止時からの経過時間TQ が検出された解除区間内に入ったことを示す能力低下制御待機時間を越えると、解除区間の設定を行う必要がないと判断して解除区間設定終了用の信号を解除区間設定部7に出力し、解除区間の設定動作を終了させる。
【0102】
上記以外の能力低下制御停止部5の構成は、第1又は第2の実施の形態例と同様であるのでその説明は省略する。
【0103】
第4の実施の形態例によれば、器具内温度に対応させて解除区間を設定するので、前記第3の実施の形態例同様の優れた効果を奏することができる。
【0104】
なお、本発明は、上記各実施の形態例に限定されるものではなく、様々な実施の態様を採り得る。例えば、上記各実施の形態例では、給湯燃焼制御部46は流量センサ20が流水停止・流水開始を検知したときに給湯燃焼が停止あるいは開始したと判断し、給湯燃焼停止を知らせる信号あるいは給湯燃焼開始を知らせる信号を出力していたが、フレームロッド電極28等の他のセンサ出力情報や、給湯バーナ11のガス供給通路の電磁弁50の開・閉弁信号により給湯燃焼の開始・停止信号を判断し、上記の如く、給湯燃焼の開始・停止を示す信号を出力してもよい。
【0105】
また、上記第1の実施の形態例における湯温推定部2は、給湯燃焼停止後における給湯熱交換器の残留湯の温度特性データを算出作成していたが、給湯燃焼能力、外気温等の各パラメータ条件に応じて予め実験等により求められた実験データを残留湯の温度特性データとして与えておいてもよい。
【0106】
さらに、上記各実施の形態例では湯温推定部2および時間計測部3を設け、給湯燃焼停止後における給湯熱交換器の残留湯の湯温を推定検出していたが、給湯熱交換器内の残留湯温を実測する温度センサを設け、その温度センサを用いて給湯熱交換器内の残留湯温を実測するようにしてもよい。この場合には湯温推定部2および時間計測部3を省略してもよく、制御回路の構成を簡易化することが可能である。
【0107】
さらに、上記第2の実施の形態例における送風量検出部4は、ファン回転検出センサから燃焼ファンのファン回転数をサンプリングして送風量を間接的に検出していたが、燃焼ファンの回転駆動電流値に基づいて送風量を推定検出してもよい。あるいは、風量センサが設けられる器具では風量センサのセンサ出力に基づいて燃焼ファンの送風量を直接的に検出してもよい。このように検出された送風量に基づいて、前記第2の実施の形態例同様に、湯の使用目的を推定することができる。
【0108】
さらにまた、第2の実施の形態例では、燃焼ファンの送風量に基づいて給湯供給した湯の使用目的を推定し、その使用目的に応じた大きさで風呂燃焼能力を低下制御していたが、給湯燃焼能力に対応している比例弁の開弁量(つまり比例弁駆動電流)に基づいて湯の使用目的を推定(例えば比例弁の開弁量が大きいときにはシャワー使用中、比例弁の開弁量が小さいときには台所等で使用中と推定)し、その使用目的に応じた大きさで風呂燃焼能力を低下制御してもよい。
【0109】
【発明の効果】
本発明によれば、給湯燃焼停止中の設定待機時間内に風呂バーナの燃焼が行われたときには風呂バーナの燃焼能力を通常運転の定常設定燃焼能力よりも低下制御するので、風呂バーナの燃焼能力に応じて制御される燃焼ファンのファン回転量が低下制御されてファン回転駆動に起因する給湯熱交換器の湯温の冷却促進現象や後沸き上昇現象を抑制することができ、給湯燃焼停止中に風呂バーナの燃焼が行われても、再出湯開始時に大きなアンダーシュートやオーバーシュートの湯が出湯するような湯温変動を小さくすることができる。したがって、湯の使用者は再出湯時に急激な湯温変動を受けることがないので、快適に湯を使用することができる。
【0110】
また、解除区間を設けた構成にあっては、給湯燃焼停止時から解除区間の開始までに風呂バーナの燃焼が行われないときには、解除区間内に風呂バーナの燃焼が開始されても風呂燃焼能力の低下制御を行わないので、風呂燃焼能力の低下制御に起因する使い勝手が悪くなるという問題や、器具の耐久性の悪化の問題等を軽減させることができ、かつ、再出湯湯温の安定化を成すことができる。
【図面の簡単な説明】
【図1】本発明の複合給湯器における再出湯湯温の安定化手段の構成例を示すブロック図である。
【図2】第1の実施の形態例における再出湯湯温の安定化手段の動作例を示すフローチャートである。
【図3】給湯停止後の給湯熱交換器内の残留湯における湯温の温度特性の一例を示す説明図である。
【図4】複合給湯器のモデル例を示す説明図である。
【図5】その他の複合給湯器のモデル例を示す説明図である。
【符号の説明】
1 風呂能力低下制御部
2 湯温推定部
3 時間計測部
4 送風量検出部
5 能力低下制御停止部
6 器具内温度センサ
7 解除区間設定部
8 メモリ
10 燃焼ファン
12 風呂バーナ
13 給湯熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite water heater having a hot water supply function and a bath function.
[0002]
[Prior art]
FIG. 4 shows a model example of a composite water heater having a hot water supply function and a bath function. In the figure, the appliance has a hot water combustion chamber 31 and a bath combustion chamber 32, and a common exhaust port 42 is provided in both combustion chambers 31, 32. A hot water supply burner 11 is disposed below the hot water combustion chamber 31, and a bath burner 12 is disposed below the bath combustion chamber 32. The hot water burner 11 and the bath burner 12 are respectively provided with a common water supply. A combustion fan 10 for exhaust is disposed, and a fan rotation detection sensor 45 that detects rotation information of the fan is disposed in the combustion fan 10. Fuel gas is distributed and supplied to the hot water burner 11 and the bath burner 12 through a gas supply passage 34.
[0003]
The gas supply passage 34 includes an electromagnetic valve 35 that opens and closes the passage, a proportional valve 22 that controls the amount of gas supplied to the burner by the valve opening amount, and an electromagnetic that opens and closes the passage that supplies gas to the hot water supply burner 11. A valve 50 and an electromagnetic valve 49 for opening and closing a passage for supplying gas to the bath burner 12 are incorporated. Further, igniter electrodes 26 and 27 for igniting the fuel gas and frame rod electrodes 28 and 29 for detecting the flame of the burner are arranged above the hot water supply burner 11 and the bath burner 12, respectively.
[0004]
A hot water supply heat exchanger 13 is disposed above the hot water combustion chamber 31, and a bath heat exchanger (reheating heat exchanger) 14 is disposed above the bath combustion chamber 32. A water supply pipe 15 is connected to the inlet side, and a hot water supply pipe 16 is connected to the outlet side of the hot water heat exchanger 13. The bath heat exchanger 14 is provided in the middle of the outgoing pipe 18, and one end of the outgoing pipe 18 is connected to the adapter 24 of the bathtub 39 and the other end is connected to the discharge port side of the circulation pump 36. One end of a return pipe 17 with a flowing water switch 33 and a thermistor 38 for detecting bath temperature is connected to the suction port side of the circulation pump 36, and the other end of the return pipe 17 is connected to the adapter 24 of the bathtub 39. . The hot water supply pipe 16 and the return pipe 17 are connected by a bypass pipe 25 having a hot water control valve 19 and a water level sensor (pressure sensor) 43 for detecting a bath water level.
[0005]
The water supply pipe 15 is provided with a flow rate sensor 20 for detecting the incoming water flow rate, and a water amount adjusting means (water amount adjusting valve) 21 for variably adjusting the incoming water flow rate according to the valve opening amount. A hot water thermistor 37 for detecting the hot water temperature is provided in the middle, and a hot water tap 23 is provided on the outlet side of the hot water pipe 16. Further, an in-appliance temperature sensor 6 for detecting the in-appliance temperature is provided below the hot-water supply burner 11 (for example, incorporated in a nozzle header (not shown) for supplying gas to the hot-water supply burner 11).
[0006]
This kind of appliance is provided with a control device 40, which usually has a hot water temperature setting, bath temperature setting, bath water level setting, set temperature and set bath water level display. A remote controller 47 is connected.
[0007]
The control device 40 controls the valve opening amount of the proportional valve 22 and the water amount adjusting means 21 based on the output signal from the remote controller 47 and the sensor outputs of various sensors such as the flow sensor 20 and the thermistors 37 and 38 according to the sequence program. Then, opening / closing control of the solenoid valves 35, 49, 50 and the pouring control valve 19, driving control of the circulation pump 36, and the like are performed, and appliance operation operations such as hot water filling, reheating, hot water supply and heat insulation are controlled.
[0008]
For example, when the hot water tap 23 provided on the distal end side of the hot water supply pipe 16 is opened, water enters from the water supply pipe 15, and when the flow of the water is detected by the flow sensor 20, the control device 40 sets the combustion fan 10 , The solenoid valves 35 and 50 and the proportional valve 22 are opened, the igniter electrode 26 is driven, and the hot water supply burner 11 is ignited. After confirming that the flame rod electrode 28 has detected the flame, the gas supply amount (the valve opening amount of the proportional valve 22) is varied by changing the valve opening drive current of the proportional valve 22 so that the tapping temperature becomes the set temperature. ), Rotation control of the combustion fan 10 to supply air commensurate with the gas supply amount, flow rate control of hot water supply by the water amount adjusting means 21, and the like.
[0009]
When the hot water tap 23 is closed after the use of hot water is finished, water flow to the hot water heat exchanger 13 is stopped, and when the stop of the water flow is detected by a signal from the flow sensor 20, the solenoid valve 50 is When the post-purge period during which the hot water supply burner combustion is stopped and the exhaust gas exhaust in the combustion chamber is almost finished has elapsed, the rotation of the combustion fan 10 is stopped and the next hot water is prepared.
[0010]
In addition, when filling the hot water, the pouring control valve 19 is opened, the water is heated by the hot water supply heat exchanger 13 in the same manner as described above, and this hot water is supplied to the bath side via the bypass pipe 25, and the route passing through the return pipe 17 When the water level sensor 43 detects the set bath water level, the hot water control valve 19 is closed and the solenoid valves 35 and 50 are closed to stop the hot water burner 11 from burning. Then, the hot water filling operation is finished.
[0011]
At the time of reheating, the circulation pump 36 is driven, the hot water in the bathtub 39 is circulated in the circulation passage from the return pipe 17 through the forward pipe 18 to the bathtub 39, the hot water in the bathtub 39 is stirred, and the running water switch 33 Is detected, the combustion fan 10 is rotated, the solenoid valves 35 and 49 and the proportional valve 22 are opened, the igniter electrode 27 is driven, and the bath burner 12 is ignited. In general, in an appliance provided with a proportional valve 22 common to the bath burner 12 and the hot water supply burner 11 as shown in FIG. 4, when only the bath burner 12 is burned, the combustion capacity of the bath burner 12 is set in advance. When the burner 12 is burned by controlling the valve opening amount of the proportional valve 22 so as to achieve a steady set combustion capacity (usually the maximum combustion capacity), both the hot burner 12 and the hot water burner 11 are burned together. The combustion operation of the burner 11 is prioritized and the opening amount of the proportional valve 22 is controlled according to the combustion capacity of the hot water supply burner 11 to cause the bath burner 12 and the hot water supply burner 11 to burn, and the set bath temperature is detected by the thermistor 38. When this happens, the solenoid valve 49 is closed, the combustion of the bath burner 12 is stopped, the circulation pump 36 is stopped, and the reheating operation is finished.
[0012]
After completion of this chasing operation, the heat insulation operation is performed for a predetermined time, for example, 4 hours, and the circulation pump 36 is driven every 30 minutes for a predetermined time interval, for example, 30 minutes. After the operation, the thermistor 38 detects the bath water temperature. When the temperature is lower than the bath set temperature, the bath temperature is replenished to keep the bath water temperature at the bath set temperature.
[0013]
In the present specification, the operation in which the hot water supply burner 11 burns is referred to as a hot water supply function, and the operation in which the bath burner 12 is burned is distinguished as a bath function.
[0014]
Further, as shown in FIG. 5, there is a configuration in which individual combustion fans 10 a and 10 b are installed in the hot water supply burner 11 and the bath burner 12, respectively, as a composite water heater having a hot water supply function and a bath function. As described above, in the appliance in which the individual combustion fans 10a and 10b are installed in the burners 11 and 12, either one of the burners is burned in order to prevent the backflow of the exhaust gas, and the other burner is used. Even when the combustion of the combustion is stopped, the combustion fan on the burner side where combustion is stopped is rotated together with the combustion fan on the burner side to prevent exhaust gas from flowing back into the combustion chamber on the combustion stop side. Yes. The instrument configuration in FIG. 5 is the same as the instrument configuration in FIG.
[0015]
4 and 5 has a configuration in which a proportional valve 22 common to the hot water supply burner 11 and the bath burner 12 is provided, the hot water supply burner 11 and the bath burner 12 are respectively provided. Some composite water heaters are configured with a separate proportional valve.
[0016]
[Problems to be solved by the invention]
By the way, after the hot-water tap 23 is closed, that is, after the hot-water supply combustion is stopped, the hot water remaining in the hot-water supply heat exchanger 13 is boiled immediately after the hot water is stopped (hot water supply heat exchanger 13) as shown by a solid curve A in FIG. The amount of heat stored in the hot water is transferred to the hot water remaining in the hot water supply heat exchanger 13 and the hot water temperature rises), resulting in a hot water temperature (overshoot) higher than the set hot water temperature. Residual hot water begins to cool with the cooling of 13, and after the post-boiling time has passed, it becomes hot water having a hot water temperature (undershoot) lower than the set hot water temperature, and gradually cools thereafter.
[0017]
From the above, when re-bathing is performed immediately after the hot water supply combustion is stopped, overshoot hot water is generated by the residual hot water. When hot water is discharged again after a long period of time, for example, after T minutes (for example, after 5 minutes), after hot water combustion is stopped, the remaining hot water in the undershoot of the hot water heat exchanger 13 is discharged. In this way, the hot water of overshoot or undershoot continues for a short time as the time elapses from the hot water combustion stop until the re-heating, but the hot water at the set hot water temperature comes out after that. This causes the user to feel uncomfortable with fluctuations in hot water temperature.
[0018]
In view of this, the present applicant has proposed (unpublished) a function (hereinafter referred to as Q function) for stabilizing the re-depot temperature. For example, the temperature characteristics of the remaining hot water in the hot water heat exchanger 13 after the hot water combustion stop as shown by the solid curve A in FIG. Sometimes, the startup gas amount is increased to perform the Q function in order to compensate for the hot water temperature drop Δk based on the estimated temperature characteristic earlier.
[0019]
The applicant's experiment has found that the proposed Q function method used in the above-mentioned combined water heater has the following points to be improved. For example, in a combined water heater as shown in FIG. 4, when the bath function operates during the re-hot water waiting time and the combustion fan 10 is driven to rotate, ventilation is generated not only in the bath combustion chamber 32 but also in the hot water supply combustion chamber 31. This ventilation causes a cooling promotion phenomenon in which the cooling of the remaining hot water in the hot water supply heat exchanger 13 is promoted, and the temperature characteristic A of the remaining hot water in the hot water supply heat exchanger 13 as shown in FIG. is there.
[0020]
If the hot water supply burner 11 is large and has a large amount of heat, if the bath function operates immediately after the hot water supply combustion is stopped, the stored heat of the hot water supply burner 11 is transmitted to the hot water supply heat exchanger 13 by the ventilation, and the hot water supply heat exchanger 13 After the residual hot water in the inside is heated, a boiling rise phenomenon occurs, and the temperature characteristic A of the residual hot water in the hot water supply heat exchanger 13 changes as described above. Further, even in the case of a large hot water supply burner 11, when the bath function is activated after a long time has passed since the hot water supply combustion was stopped, the hot water supply burner 11 is cooled, so that the above-mentioned cooling promotion phenomenon occurs, and the temperature characteristics A of the residual hot water May fluctuate.
[0021]
As described above, in the combined water heater, when the bath function operates during standby for re-heating, and the combustion fan 10 is driven to rotate the fan, the solid line curve A in FIG. Although the temperature characteristics of the remaining hot water fluctuate and the Q function is being performed, the hot water with undershoot or overshoot is discharged when the hot water is discharged again. There is a risk of giving pleasure.
[0022]
Further, in the composite water heater as shown in FIG. 5 as well, not only the combustion fan 10b on the side of the bath but also the hot water side of the hot water side from the viewpoint of preventing the backflow of the exhaust gas when the bath function is operated during the re-heating standby as described above. Since the combustion fan 10a must also be driven, there is a risk that the user of hot water may feel uncomfortable with fluctuations in hot water temperature when re-watering.
[0023]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a composite water heater that supplies hot water with less fluctuation in hot water temperature when re-bathing even if the bath function operates during re-bathing standby. It is about improvement.
[0024]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows. That is, the first invention includes a hot water supply burner that performs heating and combustion in a hot water supply heat exchanger, a bath burner that performs heating and combustion in a reheating heat exchanger, and a common supply and exhaust for performing the hot water supply burner combustion and bath burner combustion. Alternatively, in a combined water heater that includes an individual combustion fan and exhausts the exhaust gas of the hot water supply burner and the exhaust gas of the bath burner from a common exhaust port, the temperature is set in advance as a temperature that can be stabilized again. When the burner burns during the set standby time from when hot water combustion stops until the start of the longest re-watering, the burn capacity of the bath burner is lower than the normal set combustion capacity of normal operation In addition, when a common combustion fan for supplying and exhausting the hot water supply burner combustion and the bath burner combustion is provided, the fan rotation amount of the common combustion fan is reduced, and the hot water supply burner combustion and the bath burner combustion are reduced. If separate combustion fans that supply and exhaust air are provided, the fan rotation amount of both the combustion fan on the bath burner side and the combustion fan on the hot water supply burner side to prevent backflow of exhaust gas is reduced. The bath capacity lowering control unit is provided.
[0025]
The second invention has a configuration similar to that of the first invention, data of a constant decrease in the combustion capacity of the bath burner is given in advance, and the bath capacity decrease control unit performs combustion of the bath burner during the set standby time. When performed, the combustion burner of the bath burner is configured to be controlled to be lower than the steady set combustion capability by the constant reduction amount.
[0026]
A third invention has a configuration similar to that of the first invention, and includes a hot water temperature estimation unit that estimates the hot water temperature in the hot water heat exchanger as time elapses from when hot water combustion is stopped, and from when hot water combustion is stopped. A time measurement unit that measures the elapsed time, and the bath capacity decline control unit estimates the hot water temperature in the hot water supply heat exchanger at the start of combustion of the bath burner during the set standby time. According to the present invention, the combustion capacity of the bath burner is reduced continuously or stepwise according to the amount of deviation from the hot water supply set temperature.
[0027]
4th invention has the structure similar to 1st or 2nd invention, the hot water temperature estimation part which estimates the hot water temperature in a hot water supply heat exchanger with progress of time from the time of hot water combustion stop, and hot water combustion stop And a bath capacity lowering control unit that measures the elapsed time from the time when the bath burner is combusted during the set standby time. When the estimated temperature of the hot water is lower than the hot water supply set temperature and the combustion capacity of the bath burner is reduced according to the size of the overshoot, and when the estimated hot water temperature in the hot water heat exchanger is lower than the hot water set temperature The bath burner is configured such that the combustion capacity of the bath burner is uniformly controlled to be lower by a fixed amount than the steady setting combustion capacity.
[0028]
5th invention has the structure similar to 1st invention, the ventilation volume detection part which detects the ventilation volume of the combustion fan by the common or hot water supply side before hot water supply combustion stop is provided, and a bath capability fall control part is The configuration is such that the combustion capacity of the bath burner is controlled to be lower than the steady setting combustion capacity in accordance with the magnitude of the blast volume detected by the blast volume detector.
[0029]
6th invention has the structure similar to 1st, 2nd, 3rd, 4th or 5th invention, the cancellation | release area is set to the near side from the end point of setting waiting time, and setting waiting time of When it is detected that the bath burner is not used within the time from the start to the start of the release section, the control operation of the bath capacity lowering control unit during the bath burner combustion after the hot water supply combustion stop is stopped A capability reduction control stop unit is provided.
[0030]
The seventh invention has a configuration similar to that of the sixth invention, and is provided with an in-appliance temperature sensor for detecting the in-appliance temperature, and the in-appliance detection temperature detected by the in-appliance temperature sensor is given in advance. When the temperature falls below the internal reference temperature, a release section setting unit is provided that corrects in a direction to reduce the time width of the release section continuously or stepwise according to the amount of temperature decrease. Yes.
[0031]
The eighth invention has a configuration similar to that of the sixth invention, and is provided with an in-appliance temperature sensor for detecting the in-appliance temperature and data of a release section that varies depending on the in-appliance temperature, corresponding to the in-appliance temperature. And a release section setting unit that takes in the temperature detected in the appliance detected by the temperature sensor in the appliance and sets a release section corresponding to the temperature detected in the instrument from the stored data of the memory. It is configured.
[0032]
In the present invention having the above-described configuration, the reheating of hot water is not started until the set standby time elapses (during the set standby time) after combustion of the hot water supply burner stops (when hot water supply combustion stops), and the burner burns. When it is broken, the bath capacity reduction control unit controls the combustion capacity of the bath burner to be lower than the normally set combustion capacity of the normal operation.
[0033]
In this way, by controlling the lowering of the bath combustion capacity, a combustion fan (in the case where a common combustion fan is provided for the bath burner and the hot water supply burner, a common combustion fan, and a separate combustion fan for the bath burner and the hot water supply burner). Is reduced, the fan rotation amount of the combustion fan on the bath burner side and the combustion fan on the hot water supply burner side to prevent the backflow of exhaust gas) is reduced. Suppressing the cooling promotion phenomenon of the remaining hot water in the hot water heat exchanger due to the air blown by the fan rotation drive, or the large hot water burner and its large amount of heat, caused by the air blow by the combustion fan rotation drive immediately after the hot water combustion stop Suppresses the post-boiling rise phenomenon of the remaining hot water in the hot water heat exchanger and stabilizes the temperature of the re-exposed hot water.
[0034]
In addition, when the bath burner is combusted in the above-described reduced state of the bath combustion capacity, the combustion operation of the bath burner returns to the normal operation when the re-heating is started, and the burner in the reduced control state is being burned. If the elapsed time from the hot water combustion stop exceeds the set standby time without restarting the hot water, the hot water remaining in the hot water heat exchanger cools down and a cold start occurs. It is not necessary to continue the stabilization operation, the bath combustion capacity lowering control operation is stopped, and the combustion operation of the bath burner returns to the normal operation.
[0035]
In the second aspect of the invention, when the bath burner is burned without starting re-bathing during the set standby time, the bath capacity lowering control unit sets the combustion capacity of the bath burner to be higher than the normally set combustion capacity of the normal operation. Reduce the amount of rotation of the combustion fan by a certain amount, that is, control the decrease of the rotation amount of the combustion fan, and suppress the phenomenon of promoting the cooling of the residual hot water in the hot water heat exchanger and the phenomenon of rising after boiling Stabilize the hot spring temperature.
[0036]
In the third invention, when combustion of the hot water supply burner is stopped, the time measuring unit measures the elapsed time from when the hot water supply combustion is stopped, and the hot water discharge is not started during the set standby time, and the combustion of the bath burner is started. When the bath operation starts (at the start of the bath operation), the hot water temperature estimation unit estimates and detects the hot water temperature in the hot water supply heat exchanger at the start of the bath operation. The bath capacity reduction control unit controls the combustion capacity of the bath burner continuously or stepwise from the steady setting combustion capacity according to the amount of deviation of the estimated hot water temperature in the hot water heat exchanger relative to the hot water set temperature. And stabilize the temperature of the hot spring water again.
[0037]
In the fourth invention, when the hot water temperature in the hot water supply heat exchanger at the start of the bath operation is estimated and detected in the same manner as in the third invention, the bath capacity lowering control unit performs hot water supply heat exchange with respect to the hot water supply set temperature. When the estimated hot water temperature in the furnace is shifted in the higher direction, the combustion capacity of the bath burner is reduced according to the magnitude of this overshoot, and the estimated hot water temperature in the hot water heat exchanger is lower than the hot water set temperature. When it is shifted to (when undershooting), the combustion capacity of the bath burner is controlled to decrease by a certain amount, and the temperature of the re-exposed hot water is stabilized.
[0038]
In a fifth aspect of the present invention, when combustion of the hot water supply burner is stopped, the air flow rate detection unit stops hot water supply combustion by driving the common combustion fan when the hot water supply burner and the bath burner are provided with a common combustion fan. The previous air flow rate is detected, or when the hot water supply burner and the bath burner are provided with separate combustion fans, the air flow rate before the hot water supply combustion is stopped by driving the combustion fan on the hot water supply burner side is detected. When re-bathing is not started during the set standby time and the combustion of the bath burner is started, the bath capacity lowering control unit determines the combustion capacity of the bath burner according to the detected amount of blown air before stopping hot water supply combustion. Is controlled to be lower than the steady setting combustion capacity, and the temperature of re-drained water is stabilized.
[0039]
In addition, in the sixth invention, when it is detected that the bath burner is not used within the time from the hot water combustion stop to the start of the release section, the combustion fan starts rotating in the release section. Since the degree to which cooling of hot water in the hot water supply heat exchanger is promoted by ventilation is small, it is not necessary to perform the decrease control of the bath combustion capacity as in the above inventions, and the capacity decrease control stop unit is Stop the control operation.
[0040]
In the seventh invention, when the temperature sensor in the instrument detects the temperature in the instrument, and the detected temperature in the instrument is lower than the reference temperature in the instrument, the release section setting unit detects in the instrument relative to the reference temperature in the instrument. Correction is made in a direction to shorten the time width of the release section continuously or stepwise according to the amount of temperature decrease. And like the said 6th invention, there is no use of the bath burner within the time until the start of the cancellation | release area (the cancellation | release area which is not correct | amended when correction | amendment is not performed) after the hot water supply combustion stop. When detected, the capacity decrease control stop unit stops the control operation of the bath capacity decrease control unit.
[0041]
In the eighth invention, the in-appliance temperature sensor detects the in-appliance temperature, and the release section setting unit takes in the in-appliance detection temperature, collates the in-appliance detection temperature with the data in the release section of the memory, and detects in the apparatus. The release section corresponding to the temperature is detected and updated and set, for example, every time the temperature in the appliance is sampled. As in the case of the sixth invention, when it is detected that the bath burner is not used within the time from the hot water combustion stop to the start of the set release period, the capacity decrease control stop unit performs the bath capacity decrease control. The control operation of the unit is stopped.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. The composite water heater of each embodiment described below is intended for the composite water heater shown in FIG. 4 and FIG. 5, and the description of FIG. 4 and FIG. . FIG. 1 shows a configuration of the re-heated hot water temperature stabilization means (configuration of the control device 40) of each embodiment described below. The first embodiment is shown in FIG. It has a bath capacity decrease control unit 1, a hot water temperature estimation unit 2, a time measurement unit 3, a capacity decrease control stop unit 5, a memory 8, a hot water supply combustion control unit 46, and a bath combustion control unit 48. It is configured.
[0043]
The bath combustion control unit 48 has a configuration for performing the reheating and heat retaining operation control operations described above in the conventional example.For example, when reheating is instructed by the remote controller 47, the circulation pump 36 is driven as described above. The hot water in the bathtub 39 is circulated in a circulation passage from the return pipe 17 through the forward pipe 18 to the bathtub 39, the hot water in the bathtub 39 is stirred, and when the flowing water is detected by the flowing water switch 33, the combustion fan 10 , The solenoid valves 35 and 49 and the proportional valve 22 are opened, the igniter electrode 27 is driven, and the bath burner 12 is ignited. When the set bath temperature is detected by the thermistor 38, the solenoid valve 49 is closed to stop the combustion of the bath burner 12, and the circulation pump 36 is stopped.
[0044]
The hot water supply combustion control unit 46 has a configuration for performing control operations in the hot water supply and hot water filling operations described above in the conventional example. For example, when the flow sensor 20 detects flowing water, the solenoid valves 35 and 50 are opened, the combustion fan 10 (10a, 10b) is driven to rotate, the igniter electrode 26 is driven to ignite the hot water supply burner 11, and the hot water supply burner 11 Combustion is started, and after the feed forward calculation so that the incoming water temperature becomes the set hot water supply temperature, the proportional calculation is performed so that the hot water temperature becomes the set hot water temperature to variably control the valve opening amount of the proportional valve 22, and the hot water supply burner 11 When the flow rate sensor 20 detects the stop of running water, the solenoid valve 50 is closed and combustion of the hot water supply burner 11 is stopped. Further, when the proposed Q function is performed, the Q function is performed by the valve opening amount correction control of the proportional valve 22 or other appropriate means at the start of re-heating.
[0045]
In this embodiment, the hot water supply combustion control unit 46 outputs a hot water supply combustion stop signal to the time measurement unit 3 and the hot water temperature estimation unit 2 when the flow sensor 20 detects the stop of flowing water, and the flow rate sensor 20 supplies the flowing water. When detected, it also has a configuration for outputting a hot water combustion start signal to the time measuring unit 3 and the hot water temperature estimating unit 2.
[0046]
The time measuring unit 3 includes a timer (hereinafter referred to as a Q timer), and upon receiving the hot water combustion stop signal from the hot water combustion control unit 46, it is determined that the hot water combustion is stopped and the hot water standby state is entered. The elapsed time T from when the hot water supply combustion is stopped by driving the timer Q Q Measurement is simultaneously started, and at the same time, a re-watering standby start signal is output to the bath capacity decrease control unit 1 and the capacity decrease control stop unit 5. When the hot water supply combustion start signal from the hot water supply combustion control unit 46 is received, it is determined that the hot water supply combustion is started and re-heated hot water is started, and the Q timer is stopped and a re-heated hot water start signal is output to the capacity reduction control stop unit 5. The Q timer is reset to prepare for the next timer drive.
[0047]
The hot water temperature estimation unit 2 has a built-in memory, and samples the hot water combustion ability of the hot water burner 11 from the hot water combustion control unit 46 during hot water combustion and stores it in the built-in memory. In addition, the memory of the hot water temperature estimation unit 2 has a post-boiling peak temperature as shown in FIG. 3 based on the hot water combustion ability before the hot water combustion is stopped or in consideration of other hot water temperature estimation conditions such as the outside air temperature. K P Formula for calculating the post-boiling peak time T from the hot water combustion stop to the post-boiling peak P And the post-boiling peak temperature K P And its time T P In consideration of other hot water temperature estimation conditions such as the outside air temperature, the hot water temperature characteristic data of the hot water remaining in the hot water heat exchanger 13 after the hot water supply combustion stop as shown by the solid curve A in FIG. Elapsed time T from hot water combustion stop Q The calculation formula for creating the relationship data between the temperature and the residual hot water temperature is obtained through experiments and the like.
[0048]
When the hot water temperature estimation unit 2 receives the hot water combustion stop signal from the hot water combustion control unit 46, the hot water temperature estimation unit 2 is based on the combustion capacity immediately before the hot water combustion stop of the built-in memory, the calculation formula for calculating the post-boiling peak temperature, and the calculation formula for calculating the post-boiling peak time. After boiling peak temperature K P And after-boiling peak time T P This K P And T P The residual hot water temperature characteristic data is calculated and stored based on the calculation formula for generating the residual hot water temperature characteristic data.
[0049]
When the hot water temperature estimation unit 2 receives the hot water combustion start signal from the hot water combustion control unit 46, the hot water combustion capability sampling value in the built-in memory and The residual hot water temperature characteristic data is cleared, and the hot water supply combustion capacity is sampled as described above.
[0050]
The memory 8 stores a set waiting time T as a time during which the re-draining water temperature can be stabilized. R (For example, 510 seconds), set waiting time T R Release section T provided on the near side from the end point of S (For example, 150 seconds), bath combustion capacity correction data is provided in advance. The bath combustion capacity correction data is based on the amount of deviation (variation) in which the estimated hot water temperature (residual hot water temperature) of the hot water heat exchanger 13 at the start of bath combustion when hot water combustion is stopped deviates from the set hot water temperature. This is the data of the bath combustion capacity correction amount that corrects the decrease in combustion capacity, and this data is a table data given continuously or stepwise with respect to the amount of deviation of the remaining hot water temperature obtained by experiments or calculations. Or the graph data, and the calculation formula data for calculating the bath combustion capacity correction amount based on the deviation amount of the hot water temperature of the residual hot water, either of which may be used.
[0051]
When the bath capacity lowering control unit 1 receives the re-hot water standby start signal from the time measuring unit 3 indicating that hot water combustion has stopped, the bath capacity lowering control unit 1 enters the capacity lowering control standby state. When a flame is detected, it is determined that the combustion of the bath burner 12 has been performed, and the following capability reduction control operation is started.
[0052]
Even when the combustion of the bath burner 12 is continued from before the hot water supply combustion stop to after the hot water supply combustion stop, the following capability lowering control operation is started when the hot water supply combustion is stopped.
[0053]
When the bath capacity lowering control unit 1 detects the combustion of the bath burner 12, the bath control waiting time T from the hot water combustion stop to the start of the bath operation is detected. H Is detected from the time measuring unit 3, and this bath control standby time T is detected. H Is compared with the residual hot water temperature characteristic data created and stored in the hot water temperature estimation unit 2, and the hot water temperature of the hot water supply heat exchanger 13 at the start of the bath operation (the hot water temperature of the residual hot water) is detected. Then, the bath capacity lowering control unit 1 takes in the set hot water temperature set by the remote controller 47 and subtracts the hot water temperature of the residual hot water from the set hot water temperature to calculate the fluctuation amount ΔU of the hot water temperature of the residual hot water with respect to the set hot water temperature. .
[0054]
This fluctuation amount ΔU represents the magnitude (deviation amount) of the deviation of the remaining hot water temperature relative to the set hot water supply temperature, and represents the deviation direction by its positive / negative sign. In the present embodiment, when the fluctuation amount ΔU is positive, the hot water temperature of the residual hot water is deviated from the set hot water supply temperature, and when the fluctuation amount ΔU is negative, the residual hot water is different from the set hot water temperature. It shows that the hot water temperature is shifted in the higher direction.
[0055]
After calculating the remaining hot water fluctuation amount ΔU as described above, the bath capacity lowering control unit 1 collates the fluctuation amount ΔU with the bath combustion capacity correction data in the memory 8 to control the lowering of the bath combustion capacity. The bath combustion capacity correction amount corresponding to the above is detected and output to the bath combustion control section 48, and the bath combustion control section 48 is controlled to lower the bath combustion capacity based on the bath combustion capacity correction amount.
[0056]
The bath combustion capacity correction amount is a correction for decreasing the normal set bath combustion capacity in a normal operation continuously or stepwise in accordance with the residual hot water displacement amount indicated by the residual hot water fluctuation amount ΔU. When 48 receives a bath combustion capacity correction amount signal, the valve opening current of the proportional valve 22 is throttled and adjusted by the valve opening drive current corresponding to this correction amount to reduce the bath combustion capacity, and the decrease control is performed. Combustion fan (combustion fan 10 common to bath burner 12 and hot water supply burner 11 in FIG. 4, combustion fan on the side of bath burner 12 in FIG. 5) so that the amount of air commensurate with the combustion of the bath combustion capacity is supplied to bath burner 12 In order to prevent the backflow of 10b and exhaust gas, the fan rotation amount of the combustion fan 10a) on the hot water supply burner 11 side is controlled to decrease.
[0057]
As described above, when the bath operation is performed within the set standby time when the hot water supply combustion is stopped, the bath combustion capacity is controlled to decrease and the fan rotation amount of the combustion fan is controlled to decrease. The resulting residual hot water cooling acceleration phenomenon and post-boiling rise phenomenon can be suppressed, and the temperature of the re-dried hot water is stabilized.
[0058]
When the start and stop of the combustion of the bath burner 12 are repeated many times between the time when the hot water supply combustion is stopped and the time when the hot water discharge starts or until the set standby time, the above-described capability reduction control operation is performed each time the combustion of the bath burner 12 is started. Do.
[0059]
Upon receiving the re-hot water standby start signal from the time measuring unit 3 indicating that the hot water supply combustion is stopped, the capacity reduction control stop unit 5 measures the time measured by the Q timer of the time measuring unit 3 (elapsed time from when hot water combustion stops) T Q Sampling, and the set waiting time T from the memory 8 R (For example, 510 seconds) and release interval T S (For example, 150 seconds) R To T S The ability reduction control waiting time (for example, 360 seconds) is calculated by subtracting.
[0060]
The capacity reduction control stop unit 5 is configured to have an elapsed time T since the hot water combustion stop. Q When it is detected that the flame burner 12 has not been burned without the flame rod electrode 29 detecting the flame of the bath burner 12 until the capacity reduction control standby time indicating that it has entered the release section is exceeded, Even when the combustion of the bath burner 12 is started and the combustion fan 10 (10a) is rotationally driven within the release section, the degree of the cooling promotion phenomenon caused by the rotational drive of the combustion fan is small, and the bath combustion capacity lowering control is performed. If it is not necessary, it is determined that the temperature of the re-watering hot water can be stabilized, and a release signal for releasing the ability reduction control standby state is output to the bath ability reduction control unit 1. The bath capacity lowering control unit 1 receives the release signal and cancels the capacity lowering control standby state, and after that, even if the flame rod electrode 29 detects the start of combustion of the bath burner 12, the capacity lowering control operation is not performed. .
[0061]
In addition, the capacity reduction control stop unit 5 is in a state where the decrease control of the bath combustion capacity is started / continued before the release section during the hot water combustion stop, and the reheated hot water is not started and the hot water combustion is stopped. Elapsed time T Q Is the set waiting time T, which is the time that can stabilize the temperature of re-draining hot water R When the temperature exceeds the value, the remaining hot water in the hot water heat exchanger 13 will be cooled down and a cold start will occur, so it is determined that there is no need to continue the stabilization operation of the hot water temperature by reducing the bath combustion capacity. A stop signal for control stop is output to the bath capacity lowering control unit 1.
[0062]
Upon receiving the above stop signal, the bath capacity lowering control unit 1 outputs a lower control stop signal to the bath combustion control unit 48, ends the bath combustion capacity lowering control operation in the bath combustion control unit 48, and returns to the normal operation operation. Let
[0063]
In addition, when the reductive hot water start signal indicating the start of hot water supply combustion is received from the time measuring unit 3, the capacity decrease control stop unit 5 outputs a stop signal for decreasing control stop to the bath capacity decrease control unit 1, and bath capacity decrease control. The unit 1 cancels the state when it is in the standby state for the capacity reduction control, and outputs a reduction control stop signal to the bath combustion control unit 48 after the output of the bath combustion capacity correction amount (during the capacity reduction control). The bath combustion capacity lowering control operation in the combustion control unit 48 is terminated, and the normal operation operation is restored.
[0064]
Next, an example of operation in the re-heated hot water temperature stabilization means having the above-described configuration will be briefly described based on the flowchart of FIG. First, when the combustion stop of the hot water supply burner 11 is detected in step 101, the elapsed time T from the time of the hot water supply combustion stop is driven in step 102 by driving the Q timer of the time measuring unit 3. Q At the same time, the bath capacity lowering control unit 1 is put into a lowering control standby state. In step 103, it is determined whether or not the combustion of the bath burner 12 has been started. When it is determined that the combustion of the bath burner 12 has been started, in step 104, the bath combustion capacity lowering control is performed by the bath capacity lowering control unit 1. Stabilize the hot water temperature.
[0065]
In step 105, it is determined whether or not re-bathing has started. If it is determined that re-bathing has started, the bath capacity reduction control operation of the bath combustion control unit 48 is stopped and the normal operation is resumed in step 106. .
[0066]
On the other hand, if it is determined in step 105 that re-heating is not started, an elapsed time T from the time when hot water combustion is stopped is determined in step 108. Q Is set waiting time T R It is determined whether or not (for example, 510 seconds) has been exceeded. T Q Is T R If it is determined that the temperature has exceeded, the routine proceeds to step 106, where it is determined that there is no need to continue the stabilization of the re-draining water temperature by the bath capacity lowering control, the bath capacity lowering control operation is terminated, and the normal operation is resumed. On the other hand, T Q Is T R If it is determined that the value does not exceed the value, the bath combustion capacity reduction control operation in step 104 is continued.
[0067]
If it is determined in step 103 that combustion of the bath burner 12 has not started, it is determined in step 107 whether re-bathing has started. When it is determined that re-bathing has started, the lowering standby state of the bath capacity lowering control unit 1 is canceled in step 110, and thereafter the bath combustion capacity lowering control is performed even if the combustion of the bath burner 12 is started. Absent.
[0068]
When it is determined in step 107 that re-heating is not started, the elapsed time T from the time of stopping hot water combustion is determined in step 109. Q Is set waiting time T R (For example, 510 seconds) from release section T S It is determined whether or not the capacity degradation control waiting time (360 seconds) minus (for example, 150 seconds) has been exceeded. T Q Is T R -T S If it is determined that the temperature exceeds the range, the cooling acceleration phenomenon due to the rotational drive of the combustion fan is small even if the combustion of the bath burner 12 is started in step 110, and the reduction control of the bath combustion capacity is not performed. However, it is determined that stabilization of the re-depot hot water temperature can be achieved, and the lowering control standby state of the bath capacity lowering control unit 1 is released. Conversely, T Q Is T R -T S If it is determined that the value does not exceed, the operation after step 103 is performed.
[0069]
According to the present embodiment, when the bath burner 12 is combusted before the start of the release section during hot water combustion stop, the bath combustion capacity is controlled to decrease, so the combustion of the bath burner 12 during hot water combustion stop is performed. The amount of fan rotation of the combustion fan during operation decreases by the amount of decrease in the combustion capacity, and it is possible to suppress the hot water cooling promotion phenomenon and the post-boiling rise phenomenon due to the fan rotation drive, and hot water combustion Even if the bath burner 12 is burned during the stop, it is possible to suppress fluctuations in the hot water temperature such that undershoot or overshoot hot water is discharged during re-heating. Therefore, the user of hot water can use the hot water comfortably because he / she does not receive a rapid fluctuation of the hot water temperature at the start of re-heating.
[0070]
In the present embodiment, when the bath burner 12 is combusted before the release section in which the hot water supply combustion is stopped, the hot water temperature of the hot water remaining in the hot water heat exchanger 13 with respect to the hot water set temperature at the start of the bath operation. Although the bath combustion capacity is controlled to decrease according to the amount of deviation (fluctuation amount), it is uniformly reduced by a certain amount of preset decrease in bath combustion capacity regardless of the amount of deviation of the remaining hot water temperature (for example, bath combustion) The lower limit capacity is controlled), and the fan rotation amount of the combustion fan is also controlled to decrease, thereby suppressing the cooling promotion phenomenon and the post-boiling rise phenomenon caused by the fan rotation drive, and stabilizing the re-bath hot water temperature. May be. In this case, the memory 8 is provided with a unique bath combustion capacity correction amount obtained in advance by experiments and calculations as bath combustion capacity correction data.
[0071]
Further, when the hot water temperature of the hot water supply heat exchanger 13 at the start of the bath operation is an overshoot higher than the hot water supply set temperature, that is, the fluctuation amount ΔU of the residual hot water temperature calculated by the bath capacity lowering control unit 1. Is negative, the bath combustion capacity is controlled to decrease according to the amount of deviation of the overshoot, and when the hot water temperature of the residual hot water at the start of the bath operation is lower than the hot water supply set temperature, that is, the residual When the fluctuation amount ΔU of the hot water temperature is positive, the bath combustion capacity may be uniformly controlled to be lowered by a certain amount.
[0072]
In this case, the bath combustion capacity correction data in the memory 8 is given a bath combustion capacity correction amount continuously or stepwise according to the magnitude of the fluctuation amount ΔU when the fluctuation amount ΔU is negative, and the fluctuation amount ΔU. When is positive, a fixed amount of bath combustion capacity correction is provided regardless of the magnitude of the fluctuation amount ΔU.
[0073]
In addition, when the hot water temperature of the hot water supply heat exchanger 13 at the start of the bath operation is overshoot higher than the hot water set temperature, the bath combustion capacity is uniformly reduced by a certain amount and the residual hot water temperature is reduced. In the case of an undershoot lower than the hot water supply set temperature, the bath combustion capacity may be controlled to decrease according to the amount of deviation of the undershoot.
[0074]
As described above, various methods can be used to control the decrease in bath combustion capacity while hot water supply combustion is stopped, but in order to stabilize the re-exposed hot water temperature most effectively, as described above, residual hot water is used. Regardless of the amount of hot water temperature difference, the bath combustion capacity may be uniformly reduced to the lower limit capacity for bath combustion. However, it takes time for the bath to boil due to the decline in the bath combustion capacity, making it unusable or reducing the ventilation rate in the bath combustion chamber, increasing the dew point temperature, and even during the burning of the bath burner Condensation occurs in the heat exchanger, causing problems such as deteriorating the bath heat exchanger and deteriorating the durability of the appliance.
[0075]
Therefore, for example, as described above, the bath combustion capacity is controlled to decrease to a combustion capacity that is smaller than the normal setting combustion capacity of the normal operation and larger than the lower limit of the combustion capacity of the bath according to the amount of deviation of the hot water temperature. While performing stabilization effectively, the problem by the said fall control can be reduced.
[0076]
A second embodiment will be described below with reference to FIG. The most characteristic feature of the present embodiment is that a ventilation amount detection unit 4 is provided instead of the hot water temperature estimation unit 2 in the first embodiment, and the hot water supply detected by the ventilation amount detection unit 4 is provided. This is to perform a decrease control of the bath combustion capacity according to the amount of air blown by the rotational drive of the combustion fan before the combustion is stopped.
[0077]
By the way, when the appliance supplies hot water to the shower in the bathroom, the user of the hot water often receives the hot water on the body of the body, such as the head and chest, which is particularly sensitive to it, If the temperature fluctuation is large at the time of re-bathing, the user of the hot water feels the temperature fluctuation sensitively and feels very uncomfortable. Therefore, the inventor uses hot water in a shower, or uses it in a kitchen (for example, for washing dishes), etc. Estimate the purpose of use of hot water, and control the lowering of the bath combustion capacity during the hot water combustion stop with a size corresponding to the purpose of use of the hot water, and stabilize the temperature of the re-exposed hot water. It is provided as an example.
[0078]
In the description of the second embodiment, since the configuration other than the bath capacity lowering control unit 1 and the memory 8 in the first embodiment is the same as that of the first embodiment, the duplication thereof will be described. Description is omitted.
[0079]
The blower amount detection unit 4 has a built-in memory, and when the hot water supply combustion is started and the hot water supply combustion control unit 46 outputs a hot water supply combustion start signal, the hot water supply burner 11 and the bath burner 12 are provided with a common combustion fan 10 Is provided with a common fan rotation detection sensor 45, and when the hot water burner 11 and the bath burner 12 are provided with separate combustion fans 10a, 10b, the rotation of the combustion fan 10a on the hot water burner 11 side is detected. Sampling of the fan rotation speed of the combustion fan 10 (10a) detected by the sensor 45a is started and sequentially stored in the built-in memory.
[0080]
When the hot water supply combustion is stopped and the hot water supply combustion control unit 46 outputs a hot water supply combustion stop signal, the blast amount detection unit 4 detects the fan rotation speed immediately before the hot water supply combustion stop as the blast amount of the combustion fan before the hot water supply combustion stop, Clears the sampling value of the fan speed stored in the other internal memory.
[0081]
The purpose of hot water use can be estimated from the detected amount of blown air before stopping hot water supply combustion. For example, when the amount of air blown before the hot water supply combustion stop is large, that is, when the hot water supply combustion capacity is large, it can be estimated that hot water is used in the shower and will continue to be used in the shower even during re-watering. When it is small, that is, when the hot water supply / combustion capacity is small, it can be estimated that hot water is used in places other than a shower in a kitchen or the like and is continuously used in that place even when re-watering.
[0082]
In the memory 8, as in the first embodiment, the set waiting time T R (For example, 510 seconds) and release interval T S (Eg 150 seconds) is given. In addition, bath combustion capacity correction data (table data and graph data) corresponding to the size of the air flow continuously or step by step has been previously tested as bath combustion capacity correction data for controlling the decrease in bath combustion capacity. Or given by calculation. Alternatively, calculation formula data for calculating the bath combustion capacity correction amount based on the size of the blown air amount is given.
[0083]
Similar to the first embodiment, the bath capacity lowering control unit 1 enters the capacity lowering control standby state upon receiving a re-hot water standby start signal from the time measuring unit 3 indicating hot water combustion stop, and in this state, the bath burner 12 When the flame rod electrode 29 on the side detects a flame, it is determined that the bath burner 12 has been burned, and the following capability lowering control operation is started.
[0084]
When the combustion of the bath burner 12 is detected, the bath capacity reduction control unit 1 takes in the air volume before the hot water supply combustion stop detected by the air volume detection unit 4 and uses this air volume as the bath combustion capacity of the memory 8. The correction value is collated, a bath combustion capacity correction amount corresponding to the magnitude of the blown air volume is detected, and a signal of the detected bath combustion capacity correction amount is output to the bath combustion control unit 48. As in the first embodiment, the bath combustion control section 48 controls the bath combustion capacity to be lower than the steady setting combustion capacity by the amount corresponding to the bath combustion capacity correction amount, and matches the bath combustion capacity that has been controlled to decrease. In addition, the fan rotation speed of the combustion fan is controlled to be reduced, and the residual hot water cooling acceleration phenomenon and the post-boiling increase phenomenon due to the rotational drive of the combustion fan are suppressed.
[0085]
According to the second embodiment, by adopting a configuration in which the bath combustion ability when burning the bath burner 12 during the hot water supply combustion stop is controlled to be lowered according to the blowing amount of the combustion fan before the hot water supply combustion stop, As in the first embodiment, excellent effects can be obtained.
[0086]
Also, when it is estimated that hot water is used in the shower based on the amount of air blown before the hot water supply combustion is stopped, the amount of decrease in the bath combustion capacity during the hot water supply combustion stop is larger than when used in the kitchen, etc. Since the fan rotation amount, that is, the air flow rate is reduced, the cooling promotion phenomenon and the post-boiling rise phenomenon caused by the fan rotation drive are further suppressed, and hot water with less fluctuations in hot water temperature is supplied when using the shower than when using it in the kitchen, etc. In addition, since the user of the hot water receives hot water with less fluctuation in hot water temperature when using the shower, the user can use the hot water comfortably even if he / she receives hot water on a body part sensitive to fluctuations in hot water temperature.
[0087]
Furthermore, when the combustion of the bath burner 12 is started after the hot water supply combustion is stopped, the correction amount for suppressing the decrease in the bath combustion capacity can be detected before the start of the combustion of the bath burner 12, and the correction is made at the start of the bath operation. It is possible to control the decrease in the bath combustion capacity as quickly as the amount detection operation is not performed.
[0088]
A third embodiment will be described below with reference to FIG. The most characteristic feature of the present embodiment differs from the first or second embodiment in that a release section setting unit 7 is provided. In the description of the present embodiment, the configuration other than the capability reduction control stop unit 5 and the memory 8 in the first or second embodiment is the same as the configuration of the first or second embodiment. Therefore, the duplicate description is omitted.
[0089]
In the memory 8, as described above, the set waiting time T R (For example, 510 seconds), release interval T S (For example, 150 seconds), bath combustion capacity correction data is provided in advance, and in the present embodiment, the in-appliance reference temperature and the release interval correction data are obtained in advance through experiments and calculations. The release section correction data is correction section data for correcting the release section in a direction to shorten the release section as the amount of decrease in the appliance temperature with respect to the reference temperature in the appliance increases. It is given as table data or graph data corresponding to the amount of decrease in the temperature in the appliance continuously or stepwise, or as arithmetic expression data.
[0090]
When the hot water supply combustion is stopped and the hot water supply combustion control unit 46 outputs a hot water supply combustion stop signal, the release section setting unit 7 starts taking in the detection tool internal temperature in the internal temperature sensor 6, and the detected internal temperature and the memory When the detected internal temperature is lower than the internal reference temperature, the detected internal temperature is subtracted from the internal reference temperature to calculate the amount of decrease in the detected internal temperature relative to the internal reference temperature. To do.
[0091]
Canceled section T S Is set on the assumption that the temperature inside the appliance is equal to or higher than the reference temperature inside the appliance. When the temperature inside the appliance drops below the reference temperature inside the appliance, the decrease is caused by the rotational drive of the combustion fan. The cooling acceleration phenomenon appears greatly. In order to suppress the amount of the cooling acceleration phenomenon that appears greatly, the release interval T is equal to the decrease in the internal temperature of the appliance relative to the internal temperature of the appliance. S It becomes necessary to correct in the direction of shortening.
[0092]
Therefore, as described above, the release section setting unit 7 needs to perform correction for shortening the release section according to the magnitude of the amount of drop when the detected in-appliance temperature falls below the reference temperature in the equipment and the amount of drop is calculated. The calculated descent amount is compared with the release interval correction data in the memory 8 to detect a correction interval corresponding to the calculated descent amount, and the release interval T in the memory 8 is detected. S Read-out period T S Is corrected in the direction of shortening by the correction interval, and the correction cancellation interval T SS Is output to the capability reduction control stop unit 5.
[0093]
It should be noted that the detection of the internal temperature of the detection appliance in the internal temperature sensor 6 and the comparison operation between the internal temperature of the detection appliance and the reference temperature in the appliance are the correction cancellation interval T from the start of hot water combustion stop. SS (When no correction is performed, the release section T S ) Is repeated until the start time of), and if the detected internal temperature is lower than the internal reference temperature as a result of comparison between the detected internal temperature and the internal reference temperature, the correction cancellation interval is detected and continued. The
[0094]
The capability reduction control stop unit 5 is a correction cancellation interval T of the cancellation interval setting unit 7. SS (For example, 140 seconds), the set waiting time T R (For example, 510 seconds) from correction cancellation interval T SS Is subtracted to calculate the correction capability decrease control standby time (for example, 370 seconds), replace the previously calculated capability decrease control standby time (for example, 360 seconds) with the correction capability decrease control standby time (370 seconds), and Change the time.
[0095]
In addition, the capability reduction control stop unit 5 samples the measurement time of the time measurement unit 3 in the same manner as in the first or second embodiment, and the elapsed time T from the hot water combustion stop. Q When the capacity reduction control standby time is exceeded, the cancellation interval correction operation of the cancellation interval setting unit 7 is terminated.
[0096]
According to the third embodiment, since the internal temperature of the appliance is lower than the reference temperature in the appliance, the decrease in the internal temperature of the appliance relative to the reference temperature in the appliance even when the cooling acceleration phenomenon appears larger than the assumed temperature. Since the release section is shortened and corrected according to the amount, the influence time part that is larger than the one that the cooling promotion phenomenon is assumed can be removed from the release section, and even if there is a large drop in the temperature inside the appliance, Hot water temperature can be stabilized.
[0097]
Hereinafter, a fourth embodiment will be described with reference to FIG. The difference between the present embodiment and the first or second embodiment is that the release section is not fixedly provided in advance, and the release section setting unit 7 depends on the temperature in the appliance. This means that the release section is set by itself. Note that the configuration other than the capacity reduction control stop unit 5 and the memory 8 in the first or second embodiment is the same as that in the first or second embodiment, and therefore, redundant description thereof is omitted. .
[0098]
The memory 8 has a set waiting time T as in the first or second embodiment. R The bath combustion capacity correction data is given in advance, and in the present embodiment, the data of the release section in which the release section becomes shorter as the appliance temperature decreases is obtained by experiment or calculation, etc. It is given as table data or graph data corresponding to each other step by step or as arithmetic expression data.
[0099]
When the hot water supply combustion is stopped and the hot water supply combustion control unit 46 outputs a hot water supply combustion stop signal, the release section setting unit 7 starts sampling the internal temperature of the appliance detected by the internal temperature sensor 6, and the sampling value of the internal temperature of the appliance Is compared with the release interval data in the memory 8 to detect and set the release interval corresponding to the sampling value, and output it to the ability reduction control stop unit 5. Note that the release section is detected and updated every time the temperature in the appliance is sampled.
[0100]
When receiving the release section detected and set by the release section setting unit 7, the capability reduction control stop unit 5 receives the set standby time T R Subtracting the release section from, calculate the ability reduction control standby time, and if the ability reduction control standby time has been calculated before, replace the previous ability reduction control standby time with the newly calculated ability reduction control standby time, and the ability reduction control Change the waiting time.
[0101]
The capability reduction control stop unit 5 samples the measurement time of the time measurement unit 3 in the same manner as in the first or second embodiment, and the elapsed time T from the hot water combustion stop. Q When the capacity reduction control waiting time indicating that the vehicle has entered the release section has been exceeded, it is determined that it is not necessary to set the release section, and a release section setting end signal is output to the release section setting unit 7 Then, the setting operation of the release section is finished.
[0102]
Since the structure of the capability reduction control stop part 5 other than the above is the same as that of the first or second embodiment, its description is omitted.
[0103]
According to the fourth embodiment, since the release section is set corresponding to the temperature in the appliance, the same excellent effects as those of the third embodiment can be obtained.
[0104]
The present invention is not limited to the above embodiments, and can take various forms. For example, in each of the above embodiments, the hot water combustion control unit 46 determines that the hot water combustion has stopped or started when the flow sensor 20 detects the stop of flowing water or the start of flowing water, and a signal or hot water combustion informing that the hot water combustion has stopped. Although a signal indicating the start was output, the hot water combustion start / stop signal is generated by other sensor output information such as the frame rod electrode 28 and the open / close signal of the solenoid valve 50 in the gas supply passage of the hot water burner 11. The signal indicating the start / stop of hot water supply combustion may be output as described above.
[0105]
Further, the hot water temperature estimation unit 2 in the first embodiment calculates and creates the temperature characteristic data of the residual hot water of the hot water heat exchanger after the hot water combustion is stopped, but the hot water combustion capacity, the outside air temperature, etc. You may give the experimental data previously calculated | required by experiment etc. according to each parameter condition as temperature characteristic data of residual hot water.
[0106]
Further, in each of the above embodiments, the hot water temperature estimating unit 2 and the time measuring unit 3 are provided to detect and detect the hot water temperature of the hot water in the hot water heat exchanger after the hot water combustion is stopped. A temperature sensor for actually measuring the remaining hot water temperature may be provided, and the temperature sensor may be used to measure the residual hot water temperature in the hot water supply heat exchanger. In this case, the hot water temperature estimation unit 2 and the time measurement unit 3 may be omitted, and the configuration of the control circuit can be simplified.
[0107]
Further, the air flow rate detection unit 4 in the second embodiment described above indirectly detects the air flow rate by sampling the fan rotation speed of the combustion fan from the fan rotation detection sensor. The air flow may be estimated and detected based on the current value. Alternatively, in an appliance provided with an air volume sensor, the air flow rate of the combustion fan may be directly detected based on the sensor output of the air volume sensor. Based on the air flow detected in this way, the purpose of hot water use can be estimated as in the second embodiment.
[0108]
Furthermore, in the second embodiment, the purpose of use of hot water supplied by hot water supply is estimated based on the amount of air blown from the combustion fan, and the bath combustion capacity is controlled to decrease by a size corresponding to the purpose of use. The purpose of hot water usage is estimated based on the valve opening amount (that is, the proportional valve drive current) corresponding to the hot water combustion capacity (for example, when the proportional valve opening amount is large, the proportional valve is opened during shower use). When the valve amount is small, it is estimated that the valve is being used in the kitchen or the like), and the bath combustion capacity may be controlled to decrease by a size corresponding to the purpose of use.
[0109]
【The invention's effect】
According to the present invention, when the combustion of the bath burner is performed within the set standby time when the hot water supply combustion is stopped, the combustion capability of the bath burner is controlled to be lower than the steady setting combustion capability of normal operation. The fan rotation amount of the combustion fan controlled according to the temperature is controlled to decrease, so that the hot water temperature cooling promotion phenomenon and the post-boiling rise phenomenon caused by the fan rotation drive can be suppressed, and hot water combustion is stopped Even when the bath burner is burned, fluctuations in hot water temperature such as large undershoot or overshoot hot water at the start of re-heating can be reduced. Therefore, the user of hot water can use the hot water comfortably because he / she does not receive a sudden hot water temperature fluctuation at the time of re-heating.
[0110]
In addition, in the configuration in which the release section is provided, when the combustion of the bath burner is not performed from the time when the hot water combustion is stopped to the start of the release section, even if the combustion of the bath burner is started in the release section, the bath combustion capability Since the deterioration control of the bath is not performed, it is possible to alleviate the problem of poor usability due to the decrease control of the bath combustion capacity, the deterioration of the durability of the appliance, etc. Can be made.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of the configuration of a means for stabilizing the re-watering hot water temperature in a composite water heater of the present invention.
FIG. 2 is a flowchart showing an example of the operation of the means for stabilizing the re-hot water temperature in the first embodiment.
FIG. 3 is an explanatory diagram showing an example of temperature characteristics of hot water in residual hot water in a hot water heat exchanger after hot water supply is stopped.
FIG. 4 is an explanatory view showing a model example of a composite water heater.
FIG. 5 is an explanatory view showing a model example of another composite water heater.
[Explanation of symbols]
1 Bath capacity decline controller
2 Hot water temperature estimation part
3 Time measurement part
4 Airflow detection unit
5 Capacity reduction control stop part
6 In-apparatus temperature sensor
7 Release section setting section
8 memory
10 Combustion fan
12 Bath burner
13 Hot water heat exchanger

Claims (8)

給湯熱交換器の加熱燃焼を行う給湯バーナと、追い焚き熱交換器の加熱燃焼を行う風呂バーナと、前記給湯バーナ燃焼と風呂バーナ燃焼の給排気を行う共通の又は個別の燃焼ファンとを備え、給湯バーナの排気ガスと風呂バーナの排気ガスとが共通の排気口から排出されるタイプの複合給湯器において、再出湯湯温安定化可能時間として予め設定される給湯燃焼停止時から最長再出湯開始までの設定待機時間中に風呂バーナの燃焼が行われたときには、風呂バーナの燃焼能力を通常運転の定常設定燃焼能力よりも低下し、かつ、前記給湯バーナ燃焼と風呂バーナ燃焼の給排気を行う共通の燃焼ファンが設けられている場合はその共通の燃焼ファンのファン回転量を減少させ、前記給湯バーナ燃焼と風呂バーナ燃焼の給排気を行う個別の燃焼ファンが設けられている場合には風呂バーナ側の燃焼ファンと排気ガスの逆流防止のための給湯バーナ側の燃焼ファンとの両方の燃焼ファンのファン回転量を減少させる風呂能力低下制御部が設けられていることを特徴とする複合給湯器。A hot water supply burner that performs heating combustion of the hot water supply heat exchanger, a bath burner that performs heating combustion of the reheating heat exchanger, and a common or individual combustion fan that performs supply and exhaust of the hot water supply burner combustion and bath burner combustion In a combined water heater where the exhaust gas from the hot water supply burner and the exhaust gas from the bath burner are discharged from a common exhaust port, the longest hot water discharge from the time when hot water combustion is stopped is preset as the re-heated hot water temperature stabilization time When the bath burner is burned during the set standby time until the start, the combustion capability of the bath burner is lower than the steady setting combustion capability of normal operation , and the hot water supply burner combustion and the bath burner combustion supply / exhaust are reduced. If a common combustion fan is provided, the fan rotation amount of the common combustion fan is reduced, and the individual combustion fans that supply and exhaust the hot water supply burner combustion and the bath burner combustion are reduced. Bath capacity reduction control unit fan Ru reduces the amount of rotation of both the combustion fan and the combustion fan of the hot water supply burner side for the reverse flow preventing combustion fan and the exhaust gas bath burner side if the emissions are provided A combined water heater characterized by being provided. 風呂バーナの燃焼能力の一定低下量のデータが予め与えられ、風呂能力低下制御部は設定待機時間中に風呂バーナの燃焼が行われたときに、その風呂バーナの燃焼能力を定常設定燃焼能力よりも前記一定低下量だけ低下制御する構成とした請求項1記載の複合給湯器。The data of a constant decrease in the combustion capacity of the bath burner is given in advance, and when the bath burner burns during the set standby time, the bath capacity decrease control unit sets the combustion capacity of the bath burner from the steady setting combustion capacity. The combined water heater as claimed in claim 1, wherein the lowering control is performed by the constant reduction amount. 給湯燃焼停止時から時間の経過に伴う給湯熱交換器内湯温の推定を行う湯温推定部と、給湯燃焼停止時からの経過時間を計測する時間計測部とを備え、風呂能力低下制御部は設定待機時間中に風呂バーナの燃焼が行われたときに、その風呂バーナの燃焼開始時における給湯熱交換器内湯温の推定温度が給湯設定温度からずれるずれ量の大きさに応じて風呂バーナの燃焼能力を連続的又は段階的に低下する構成とした請求項1記載の複合給湯器。A hot water temperature estimation unit that estimates the hot water temperature in the hot water heat exchanger as time elapses from when hot water combustion stops and a time measurement unit that measures the elapsed time since hot water combustion stop, When the bath burner is burned during the set standby time, the estimated temperature of the hot water in the hot water heat exchanger at the start of the combustion of the bath burner depends on the amount of deviation from the hot water set temperature. The composite water heater according to claim 1, wherein the combustion capacity is configured to decrease continuously or stepwise. 給湯燃焼停止時から時間の経過に伴う給湯熱交換器内湯温の推定を行う湯温推定部と、給湯燃焼停止時からの経過時間を計測する時間計測部とを備え、風呂能力低下制御部は設定待機時間中に風呂バーナの燃焼が行われたときに、その風呂バーナの燃焼開始時における給湯熱交換器内湯温の推定温度が給湯設定温度よりも高いオーバーシュートの大きさに応じて風呂バーナの燃焼能力を低下し、給湯熱交換器内湯温の推定温度が給湯設定温度よりも低いアンダーシュート状態のときは風呂バーナの燃焼能力を定常設定燃焼能力よりも一定低下量だけ一律に低下制御する構成とした請求項1又は請求項2記載の複合給湯器。A hot water temperature estimation unit that estimates the hot water temperature in the hot water heat exchanger as time elapses from when hot water combustion stops and a time measurement unit that measures the elapsed time since hot water combustion stop, When a bath burner is burned during the set standby time, the estimated temperature of the hot water temperature in the hot water heat exchanger at the start of combustion of the bath burner is higher than the hot water set temperature. When the estimated hot water temperature in the hot water supply heat exchanger is lower than the hot water set temperature, the bath burner's combustion capacity is uniformly reduced by a fixed amount lower than the steady set combustion capacity. The composite water heater according to claim 1 or 2, which is configured. 給湯燃焼停止前の共通又は給湯側の燃焼ファンの送風量を検出する送風量検出部が設けられ、風呂能力低下制御部は前記送風量検出部で検出される送風量の大きさに応じて風呂バーナの燃焼能力を定常設定燃焼能力よりも低下制御する構成とした請求項1記載の複合給湯器。An air flow rate detection unit for detecting the air flow rate of the combustion fan on the common or hot water supply side before the hot water supply combustion stop is provided, and the bath capacity reduction control unit takes a bath according to the size of the air flow rate detected by the air flow rate detection unit. The composite water heater according to claim 1, wherein the burner combustion capacity is controlled to be lower than the steady setting combustion capacity. 設定待機時間の終点からその手前側に解除区間が設定され、設定待機時間の開始から前記解除区間の開始までの時間内に風呂バーナの使用がないことが検知されたときに、それ以降の給湯燃焼停止中における風呂バーナ燃焼に際しての風呂能力低下制御部の制御動作を停止する能力低下制御停止部が設けられている請求項1乃至請求項5のいずれか1つに記載の複合給湯器。When a release section is set on the near side from the end point of the set standby time, and it is detected that the bath burner is not used within the time from the start of the set standby time to the start of the release section, the subsequent hot water supply The composite water heater according to any one of claims 1 to 5, further comprising a capability reduction control stop unit that stops a control operation of the bath capability reduction control unit during the combustion of the bath burner while combustion is stopped. 器具内温度を検出する器具内温度センサが設けられ、この器具内温度センサによって検出される器具内検出温度が予め与えられる器具内基準温度よりも低下したときにはその温度低下量に応じて連続的に又は段階的に解除区間の時間幅を小さくする方向に補正する解除区間設定部が設けられている請求項6記載の複合給湯器。An in-appliance temperature sensor for detecting the in-appliance temperature is provided, and when the in-appliance detection temperature detected by the in-appliance temperature sensor is lower than a pre-applied reference temperature, the temperature is continuously changed according to the amount of temperature decrease. Alternatively, the combined water heater according to claim 6, wherein a release section setting unit that corrects the time width of the release section in a stepwise manner is provided. 器具内温度を検出する器具内温度センサと、器具内温度によって可変する解除区間のデータが器具内温度に対応させて与えられているメモリと、器具内温度センサによって検出される器具内検出温度を取り込み前記メモリの記憶データから器具内検出温度に対応する解除区間を設定する解除区間設定部が設けられている請求項6記載の複合給湯器。An internal temperature sensor for detecting the internal temperature of the apparatus, a memory in which data of a release section that varies depending on the internal temperature of the apparatus is provided corresponding to the internal temperature of the apparatus, and an internal detection temperature detected by the internal temperature sensor. The combined water heater according to claim 6, further comprising a release section setting unit that sets a release section corresponding to the detected temperature in the appliance from the stored data in the memory.
JP10332596A 1996-03-29 1996-03-29 Combined water heater Expired - Fee Related JP3736897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10332596A JP3736897B2 (en) 1996-03-29 1996-03-29 Combined water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10332596A JP3736897B2 (en) 1996-03-29 1996-03-29 Combined water heater

Publications (2)

Publication Number Publication Date
JPH09269148A JPH09269148A (en) 1997-10-14
JP3736897B2 true JP3736897B2 (en) 2006-01-18

Family

ID=14351038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10332596A Expired - Fee Related JP3736897B2 (en) 1996-03-29 1996-03-29 Combined water heater

Country Status (1)

Country Link
JP (1) JP3736897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863724B2 (en) * 2016-12-02 2021-04-21 株式会社ガスター Hot water supply system

Also Published As

Publication number Publication date
JPH09269148A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
US8662022B2 (en) Water heater
JP3736897B2 (en) Combined water heater
JP3154911B2 (en) Hot air heater
JP4102339B2 (en) Combustion device
JP3683400B2 (en) Combined water heater
JP4234690B2 (en) Combustion equipment
JP3834352B2 (en) Combined water heater
JP3558448B2 (en) Combustion equipment
JP4102351B2 (en) Combustion device
JP3754474B2 (en) Combined water heater
JP2004011937A (en) Combustion apparatus
JP3460890B2 (en) Combustion equipment
JP2001027446A (en) Bath apparatus
JP3150234B2 (en) Circulating bath kettle controller
JP3123355B2 (en) Automatic bath equipment
JP3738063B2 (en) Water heater
JP2857324B2 (en) Combustion equipment
JP3756998B2 (en) Hot water heater and combustion control method during re-watering
JP3273005B2 (en) Water heater
KR0132537B1 (en) Hot air heater
JP3271830B2 (en) Water heater and method for setting initial water flow of water control valve
JP3240203B2 (en) Water heater and its combustion control method
JP3801312B2 (en) Hot water control device for water heater
JP3273004B2 (en) Water heater
JP3754494B2 (en) Combustion equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees