JP3797478B2 - Alloy hot-dip galvanized steel sheet - Google Patents

Alloy hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP3797478B2
JP3797478B2 JP2001336631A JP2001336631A JP3797478B2 JP 3797478 B2 JP3797478 B2 JP 3797478B2 JP 2001336631 A JP2001336631 A JP 2001336631A JP 2001336631 A JP2001336631 A JP 2001336631A JP 3797478 B2 JP3797478 B2 JP 3797478B2
Authority
JP
Japan
Prior art keywords
height distribution
steel sheet
surface height
dip galvanized
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001336631A
Other languages
Japanese (ja)
Other versions
JP2003138364A (en
Inventor
寿人 野呂
正泰 名越
章一郎 平
芳春 杉本
理孝 櫻井
馨 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001336631A priority Critical patent/JP3797478B2/en
Publication of JP2003138364A publication Critical patent/JP2003138364A/en
Application granted granted Critical
Publication of JP3797478B2 publication Critical patent/JP3797478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プレス成形時における摺動性に優れた合金化溶融亜鉛めっき鋼板に関するものである。
【0002】
【従来の技術】
合金化溶融亜鉛めっき鋼板は、亜鉛めっき鋼板と比較して溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で利用されている。その一方で、プレス成形性の点で冷延鋼板に劣る事が、該鋼板の解決すべき課題となっている。合金化溶融亜鉛めっき鋼板は、プレス金型での摺動抵抗が冷延鋼板に比べて大きい。そのため、金型に接したビード部などの摺動抵抗が大きい部分では合金化溶融亜鉛めっき鋼板がプレス金型に流入しにくく、めっきの金型への凝着や鋼板の破断を起こしやすい。
【0003】
合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛めっきを施した後、加熱処理によって、鋼板中のFeとめっき層中のZnを拡散させる合金化反応を引き起こす事により、Fe-Zn合金相を形成させためっき鋼板である。このFe-Zn合金相は、通常、Γ相、δ1相、ζ相から成っており、単一の合金相では、Fe濃度が高い順、即ち、Γ相、δ1相、ζ相の順に高い硬度ならびに高い融点を有している。摺動性の観点からは、硬質で融点が高く、凝着の起こりにくい高Fe濃度の皮膜が有効であるため、プレス成形性を重視する合金化溶融亜鉛めっき鋼板は、製造時、皮膜中の平均Fe濃度が高めになるように制御されている。
【0004】
しかしながら、高Fe濃度の皮膜では、めっき―鋼板界面に硬くて脆いΓ相が形成されやすく、加工時に界面から剥離する現象、いわゆるパウダリングを生じやすいという問題がある。このため、特開平1-319661号公報、特開平4-202786号公報などに示されているように、摺動性と耐パウダリング性を両立させる手段として、上層に第二層として硬質のFe系合金を電気めっきなどのプロセスにより付与する方法が実用化されている。但し、この方法には製造コストが高いという問題がある。
【0005】
亜鉛系めっき鋼板使用時のプレス成形性を向上させるその他の方法としては、高粘度の潤滑油を塗布する方法が広く用いられている。しかし、この方法では、潤滑油が高粘度であるために塗装工程で脱脂不良による塗装欠陥が発生したり、プレス時の油切れによってプレス性能が不安定になる等の問題が生じる場合がある。
【0006】
以上の背景から、合金化溶融亜鉛めっき自体のプレス成形性を改善する技術が強く求められている。
そのような合金化溶融亜鉛めっき自体のプレス成形性を改善する方法の一つとして、めっき層の表面に固体潤滑作用のある皮膜を形成させる方法が知られている。例えば、特開昭53-60332号公報や特開平2-190483号公報には、亜鉛系めっき鋼板の表面に電界処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、亜鉛酸化物を主体とする酸化膜を形成させて溶接性または加工性を向上させる技術が開示されている。
【0007】
特開平4-88196号公報には、亜鉛系めっき鋼板の表面にリン酸ナトリウム5〜60g/lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行うか、または、上記水溶液を塗布することにより、P酸化物を主体とする酸化膜を形成して、プレス成形性及び化成処理性を向上させる技術が開示されている。
【0008】
特開平3-191093号公報には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術が開示されている。
【0009】
プレス成形性の改善には、合金化溶融亜鉛めっき鋼板そのものの表面粗さの制御も重要であることが知られている。例えば、特開平6-15302号公報には低粗度の圧延ロールで調質圧延してめっき鋼板の表面粗さを調整することにより摺動性を改善する技術が開示されている。また、特開2000-64013号公報には、めっき付着量とめっき層中のFe濃度を限定した上でめっき層の中心線平均粗さを0.5〜0.8μmの範囲とすることにより、摺動特性に優れ、パウダリングとスリップ傷の抑制に効果のある技術が開示されている。特開2000-219948号公報には、めっき層中のFe濃度とめっき表面の中心線平均粗さを限定した上で、中心線平均粗さとζ相の存在量の積で上限規定する方法も開示されている。
【0010】
特開2000-160358号公報には、前述の二つの技術を複合したもの、即ち、亜鉛系めっき層の上にFe系酸化物を主体とする酸化膜を形成させ、更にその算術平均粗さを1.2μm以下とすることによりプレス成形性を向上させる技術が開示されている。
【0011】
特許第2704070号公報と特開2000-226646号公報には、合金化溶融亜鉛めっき表面全体の形状に対して、非対称的な高さ方向分布とすることが有効であるとの知見が開示されている。
【0012】
【発明が解決しようとする課題】
しかしながら、上記の先行技術を合金化溶融亜鉛めっき鋼板に適用しても、プレス成形性の改善効果を安定して得ることはできない。本発明者らは、その原因について詳細な検討を行った結果、合金化溶融亜鉛めっき鋼板の表面に存在するAl酸化物が表面の反応性を鈍らせていること、および、合金化反応過程で生じた表面全体の凹凸が主たる原因であることを見出した。即ち、先行技術を合金化溶融亜鉛めっき鋼板に適用した場合、表面の反応性が低いため、電解処理、浸漬処理、塗布酸化処理および加熱処理等を行っても、所定の皮膜を表面に均一に形成することは困難であり、反応性の低い部分、即ち、Al酸化物量が多い部分では膜厚が薄くなってしまう。表面の凹凸が大きい合金化溶融亜鉛めっき鋼板において、プレス成形時にプレス金型と直接接触する表面の凸部にこのような膜厚の薄い部分が存在すると摺動抵抗が大きくなり、プレス成形性の改善効果が十分に得られない。
【0013】
先行技術には算術平均粗さRa(もしくは中心線平均粗さRa、以下Raと記載する)を規定して合金化溶融亜鉛めっき鋼板表面の摺動特性を改善しようとするものも多い。プレス金型と接触するめっき鋼板表面の三次元形状は摺動性を考える上で重要だが、周知のように、Raは鋼板表面の三次元形状の特徴を十分反映しえない。例えば、同一のRaを有する鋼板表面でも、金型と接触するその凸部の数はこれに限定されることなく様々に変化しうる。金型と接触する凸部の数が変われば、当然、各凸部にかかる面圧も変化し、摺動抵抗も変化する。従って、Raが摺動性に支配的な影響を及ぼすとは原理的に考えがたい。
【0014】
本発明は、このような事情に鑑みてなされたものであり、上記の問題を改善し、プレス成形時の摺動性に優れた合金化溶融亜鉛めっき鋼板を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明者らは、上記の問題を解決するべく鋭意研究を重ねた結果、合金化溶融亜鉛めっき鋼板表面に存在する平坦部の三次元形状を制御することで、安定して優れたプレス成形性が得られることを見出した。
既に述べた通り、プレス金型と接触するめっき鋼板表面の三次元形状は摺動性を考える上で大変重要だが、前述のRaも含めて、従来用いられて来た表面の粗さパラメータは、触針式の粗さ計で測定した二次元的な断面曲線(計測線分上での高さ分布)をベースに算出されたものが殆どであり、必ずしも、実際の三次元表面の特徴を反映したものになっていない。ましてや、金型と直接接触する凸部などの、摺動性を考える上で重要なめっき鋼板表面各部の三次元形状が摺動性にどのような影響を与えるかといったことは従来全く知られていない。
【0016】
合金化溶融亜鉛めっき鋼板表面の前記平坦部は、周囲よりも凸になっている。これは、主に合金化処理の過程で形成された表層の凸部が鋼板の調質圧延の過程で調圧ロールに押し込まれてこのような平坦部が形成されるためである。プレス成形時に実際にプレス金型と接触するのはこの平坦部が主体となるため、この平坦部における摺動抵抗を小さくできれば、摺動性を安定化させてプレス成形性を改善することができる。この平坦部の摺動抵抗を小さくするためには、めっき層と金型との凝着を防ぐのが有効であり、その方法としてめっき層の表面に硬質かつ高融点の皮膜を形成することが有効であることは既に説明した通りである。
【0017】
プレス金型と接触する平坦部での摺動抵抗を小さくするという点からは、平坦部に特定の三次元的な起伏構造を形成させる方法も大変効果的である。特に、金型と直接接触する平坦部の三次元形状を制御すると、合金化溶融亜鉛めっき鋼板全体の摺動性を大きく改善できる。平坦部の形状制御を基本とするこの方法は、固体潤滑作用を有する皮膜と組み合わせて使用することも可能である。
【0018】
本発明は、以上の知見に基づいてなされたものであり、その要旨は以下の通りである。
(1)鉄−亜鉛合金めっき表面の平坦部において、表面高さ分布のスキューネスSskが0.3以下で、かつ、該表面高さ分布のクルトシスSkuが4以上14以下であって、該平坦部は亜鉛酸化物を含む酸化物で被覆されていることを特徴とする合金化溶融亜鉛めっき鋼板(第1発明)。
(2)鉄−亜鉛合金めっき表面における前記平坦部の面積率が20〜80%であることを特徴とする前記(1)に記載の合金化溶融亜鉛めっき鋼板(第2発明)。
【0019】
(3)鉄−亜鉛合金めっき層が主としてδ1相からなり、少なくとも鋼板の片面の鉄−亜鉛合金めっき層の表層にζ相が残存することを特徴とする前記(1)または(2)に記載の合金化溶融亜鉛めっき鋼板(第3発明)
【0020】
【発明の実施の形態】
調質圧延でその頂部が平坦化された凸部を有する合金化溶融亜鉛めっき鋼板をプレス成形する場合、この平坦部の表面高さ分布のスキューネスSskを0.3以下に制御し、更に、同分布のクルトシスSkuを4以上14以下にすることにより、良好なプレス成形性を確保できる。第1発明で鉄−亜鉛合金めっき表面の平坦部の表面高さ分布のスキューネスSskと表面高さ分布のクルトシスSkuを限定するのはそのためである。
【0021】
ここで用いる表面高さ分布のスキューネスSskと同分布のクルトシスSkuは、欧州で利用されている三次元パラメータ(Birmingham set of 14 parameters)に属するもので、具体的には、以下の様に定義される。
【0022】
【数1】

Figure 0003797478
【0023】
【数2】
Figure 0003797478
【0024】
ここでSqは下記の式で定義される表面高さ分布の二乗平均平方根偏差である。
【0025】
【数3】
Figure 0003797478
【0026】
表面高さ分布の二乗平均平方根偏差Sq、表面高さ分布のスキューネスSsk、表面高さ分布のクルトシスSkuは、JIS-B0601(2001)に記載された二次元のRq(粗さ曲線の二乗平均平方根粗さ)、Rsk(粗さ曲線のスキューネス)、Rku(粗さ曲線のクルトシス)を三次元に拡張したものである。Lx、Lyはxy面を平均面として縦方向をz軸とした時のx方向、y方向の測定長さで、z = f(x,y)は表面形状曲面を表す関数である。数学的には、表面高さ分布のスキューネスSskは表面形状曲面の三次のモーメント、表面高さ分布のクルトシスSkuは四次のモーメントに相当する。
【0027】
表面高さ分布のスキューネスSskは、平均面に対する表面形状曲面の非対象性を表す三次元形状パラメータで、表面高さ分布の偏り度合いを表す。二次元のRskの場合と全く同様に、表面高さ分布のスキューネスSsk= 0の時、表面高さ分布が平均に対して対称で、表面高さ分布のスキューネスSsk < 0の時、表面高さ分布が平均に対して上側に偏っており、表面高さ分布のスキューネスSsk > 0の時、逆に、表面高さ分布が平均に対して下側に偏っていることを意味する。
【0028】
表面高さ分布のクルトシスSkuは、表面高さ分布の鋭さを表す三次元形状パラメータで、二次元のRkuの場合と全く同様に、表面高さ分布のクルトシスSku = 3の時が正規分布であることを表し、表面高さ分布のクルトシスSku < 3の時、表面高さ分布が潰れているような形状をしており、表面高さ分布のクルトシスSku > 3の時、逆に尖っていることを意味する。Skuが3より大きいほど、所々に異常に高い山と深い谷を含むような表面高さ分布になる。
【0029】
これらのパラメータの定義の詳細は、例えば、K. J. Stout, W. P. Dong, L. Blunt, E. Mainsah and P. J. Sullivan“3D Surface Topography; Measurement Interpretation and Applications, A survey and bibliography” K. J. Stout 編、Penton Press 出版(1994)、“Development of Methods for the Characterisation of Roughness in Three Dimensions”K. J. Stout編、Penton Press出版(2000)などに開示されている。
【0030】
このような欧州の三次元指標で規定する理由は、国内では、日本工業規格(JIS)も含めて、三次元形状評価・三次元粗さ解析を扱う方法論自体が未だ確立されていないからである。
【0031】
平坦部の三次元形状に関する他のパラメータについては特に規定しないが、調質圧延された合金化溶融亜鉛めっき鋼板では、通常、算術平均粗さSa、二乗平均平方根偏差Sq、最大粗さStが、それぞれ、2〜6nm、3〜9nm、30〜90nmの範囲で、本発明品では、Sa、Sq、Stがこれよりも1桁近く大きくなる場合もある。ここで、SaとStは、JIS-B0660:1998、JIS-B0601:2001(ISO4287:1997)に記載された二次元のRa(粗さ曲線の算術平均粗さ)とRy(もしくはRt:粗さ曲線の最大高さ)を三次元に拡張したものである。尚、本発明で規定する数値はこれらの数値も含めて全て平均値である。
【0032】
平坦部を本発明で規定する特徴的な三次元形状に制御することにより、良好なプレス成形性が得られる理由は下記の通りである。このように表面側に偏った幅の狭い高さ分布を持つ平坦部が金型と接触すると、平坦部の中で占める割合の大きい(平坦部の中の)凸部が摺動抵抗を分散させる効果を発揮するため、型かじりが起こりにくくなり、更に、平坦部の所々に存在する深い凹部に保持されたプレス油が前記凸部での摺動抵抗を軽減する効果を有するからである。このような高さ分布が特段の効果を発揮するのは、プレス成形過程が、金型と接触する平坦部を押し潰す動的な過程であるため、プレスの各瞬間に、潰れた平坦部の中での摺動抵抗の分散と、平坦部の中で潰れずに残る空間でのプレス油の保持、の二点を効果的に行うことが重要だからである。
【0033】
表面高さ分布のスキューネスSskの上限を0.3とするのは、前述の摺動抵抗を分散させる効果を発揮する凸部の比率を確保する必要があるためである。表面高さ分布のスキューネスSskは負であれば、なお効果的であるが、その下限は現時点で明確ではない。実績として-1.0程度までは摩擦係数の改善効果が得られることがわかっている。
【0034】
平坦部の表面高さ分布のクルトシスSkuの上限を14とするのは、高さ分布の幅がこれ以上狭くなると、平坦部の中の凹部に保持できるプレス油の量が不足して、油切れによる摩擦係数の上昇が起こるからである。また、その下限を4とするのは、高さ分布の幅がこれ以上広くなると、金型の面圧を受けとめる平坦部の中の凸部の面積率が不足して平坦部が磨耗しやすくなり、プレス前の凹部でのプレス油の保持効果を生かせなくなるからである。
【0035】
尚、特許第2704070号公報と特開2000-226646号公報には、合金化溶融亜鉛めっき表面の全体形状に対して、非対称的な高さ方向分布が有効であるとの知見が開示されているが、これらは、数10mm2に及ぶ(調質圧延で平坦化された凸部とその周辺の凹部を相当数含む)マクロ的な起伏構造全体を対象としている点で、金型と直接接触する平坦部の中での高さ分布を対象とする本発明とは異なる。
【0036】
調質圧延によって平坦化された凸部を有する合金化溶融亜鉛めっき鋼板をプレス成形する場合、平坦部の面積率を20〜80%とすることにより、個々の凸部にかかる金型の面圧を分散させて、摺動特性を改善できる。第2発明で平坦部の面積率を限定するのはそのためである。面積率が20%未満では、平坦部以外の部分と金型との接触によって押しつぶされる部分が受ける面圧が大きくなるため、摺動特性の改善を期待できない。また、面積率が80%を超えると、プレス成形時に油切れを起こしやすくなり、プレス成形性の改善効果が小さくなる。これは、平坦部を除く部分(調圧ロールの当たらない凹部)にプレス油を保持する機能があるためだと推察される。
【0037】
めっき表面の平坦部は、光学顕微鏡あるいは走査電子顕微鏡等で観察することにより容易に識別可能で、その面積率は観察画像を解析することによって求められる。
【0038】
耐パウダリング性と摺動性の両立には合金めっき層の層構造の最適化が有効である。既に述べたように、合金化溶融亜鉛めっき鋼板表面の摺動性を改善するには、めっき層の表面に硬質かつ高融点の皮膜を形成することが効果的で、めっきの結晶構造の観点からは、表層をδ1単相のめっき皮膜で覆うことが望ましい。しかしながら、表層を完全にδ1単相で覆うためには、皮膜中のFe濃度を高める合金化処理を施さなければならないため、めっき−鋼板界面に硬くて脆いΓ相が厚く形成されやすくなり、その結果、パウダリングが発生しやすくなる。一方、Γ相が厚くならないような合金化処理を施すと表層に摺動性に劣るζ相が残存しやすくなる。これを鉄−亜鉛合金めっき表面の平坦部において、表面高さ分布のスキューネス Ssk 0.3 以下で、かつ、該表面高さ分布のクルトシス Sku 4 以上 14 以下に規定(第 1 発明)、鉄−亜鉛合金めっき表面における前記平坦部の面積率を 20 80 %に規定(第 2 発明)することにより、耐パウダリング性と摺動性を両立させることが可能になって、トータルとしてのプレス成形性を向上させることができる。第3発明で鉄−亜鉛合金めっき層の結晶構造について、主としてδ1相からなり、少なくとも鋼板の片面の鉄−亜鉛合金めっき層の表層にζ相が残存することに限定するのはそのためである。また、プレス成形では、厳しい加工を受ける側の鋼板面の摺動特性を改善するだけでも相当な効果が得られる。鋼板の片面だけであっても良いとするのはそのためである。
【0039】
尚、前述の表層にζ相が残存する皮膜とは、めっき表面を走査電子顕微鏡などで観察した場合に、ζ相の晶癖(柱状の外観)を示すめっき結晶が占める表面の面積率が10%以上の皮膜のことを指す。このようなめっき皮膜を通常のX線回折法で測定した場合、ζ相に帰属する格子面間隔d=1.90Åのピークの強度の、δ1相に帰属するd=1.99Åのピークの強度に対する比は0.2以上になる。但し、ピーク強度はバックグラウンドを含まないネット強度とする。X線回折法によるこの判定法は、調質圧延の影響などのために走査電子顕微鏡などでζ相の晶癖を利用した判別が困難な場合に、特に有効である。
【0040】
金化溶融亜鉛めっき鋼板の平坦部を亜鉛酸化物を含む硬質かつ高融点の酸化物で被覆した場合、もしくは、酸化皮膜自身が第1発明で規定する表面高さ分布のスキューネス Ssk 及び該表面高さ分布のクルトシス Sku の各範囲を満足する三次元形状を有している場合、酸化皮膜の固体潤滑効果も加えた複合的な改善効果が期待できる。第1発明で鉄−亜鉛合金めっき表面の平坦部が亜鉛酸化物を含む酸化物で被覆されていることを規定するのはそのためである。ここで、亜鉛酸化物を含む酸化物に限定するのは、安価なプロセス、あるいは、製造後の経時によって、合金化溶融亜鉛めっきの表面に固体潤滑作用に優れる亜鉛酸化物を含む酸化膜を成長させることが比較的容易だからである。
【0041】
酸化物層の厚さとしては10nm以上あれば改善効果が認められるが、20nm以上とするとより効果的である。尚、酸化物層の厚さは、Arイオンスパッタリングを併用したオージェ電子分光法による深さ方向分析や、集束イオンビームで作成した断面試料の透過電子顕微鏡観察によって求めることができる。
【0042】
本発明に係る合金化溶融亜鉛めっき鋼板を製造するには、まず、亜鉛めっき浴でめっきし、合金化処理を行い、更に調質圧延を行う。この際、既に述べた合金めっき層の層構造の最適化の観点から、めっき浴中にAlを添加するのが一般的であるが、Al以外の添加元素成分は特に限定されない。例えば、Alに加えて、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有されていても、本発明の効果が損なわれるものではない。次いで調質圧延でめっき層の凸部の頂部を平坦にしてめっき表面に平坦部を形成する。その際、圧延条件を調整し、平坦部の面積率を前記で説明した範囲にする。
【0043】
次いで、鉄−亜鉛合金めっき表面の平坦部の表面高さ分布のスキューネスSskおよび該表面高さ分布のクルトシスSkuを本発明範囲内にする処理を行う。例えば、調質圧延した合金化溶融亜鉛めっき鋼板を、硫酸亜鉛、硫酸鉄、酢酸ナトリウムおよびクエン酸ナトリウムを添加した硫酸酸性溶液に浸漬、水洗、乾燥する方法において、溶液のpH、溶液温度などを調整することにより、表面高さ分布のスキューネスSskおよび該表面高さ分布のクルトシスSkuを本発明で規定する範囲内にする。より好ましい方法は、調質圧延後の合金化溶融亜鉛めっき鋼板を、上記の硫酸酸性溶液に短時間浸漬後、所定時間放置した上で水洗、乾燥する方法である。この方法によれば、放置時間を変えることにより、表面高さ分布のスキューネスSskおよび該表面高さ分布のクルトシスSkuを本発明で規定する範囲内に調整することが比較的容易である。このような方法で、係る表面高さ分布の調整が可能な理由は明らかでないが、放置時間によって亜鉛リッチ部分の選択エッチングや亜鉛酸化物の析出の程度が変化するためだと推察される
【0044】
【実施例】
以下、本発明を実施例により具体的に説明する。
[実施例1]
まず、合金化溶融亜鉛めっき鋼板の平坦部の表面高さ分布のスキューネスSskと該表面高さ分布のクルトシスSkuが、めっき鋼板全体の摩擦係数にもたらす効果について説明する。
(供試材)
表1に示すFe濃度が8.6〜10.9%で、調質圧延によって平坦部面積率を約50%に揃えた、8種類の合金化溶融亜鉛めっき鋼板の摩擦係数を測定した。ここで、供試材1〜4は調質圧延後の合金化溶融亜鉛めっき鋼板を、FeSO4・7H2O:300g/l、ZnSO4・7H2O:30g/l、酢酸ナトリウム:20g/l、およびクエン酸ナトリウム:15g/lを添加し、硫酸でpHを2.2に調整した液温50℃の硫酸酸性溶液に1秒間浸漬した後、同溶液から取り出して3秒間放置してから、水洗、乾燥させることによって、平坦部の表面高さ分布のスキューネスSskと該表面高さ分布のクルトシスSkuを本発明の範囲内に制御したサンプル(発明例)である。また、供試材5〜8はこのような処理を行っていない調質圧延ままの(即ち、通常の)合金化溶融亜鉛めっき鋼板(比較例)である。
【0045】
平坦部面積率およびめっき皮膜中Fe濃度、Al濃度は以下の方法で測定した。
(平坦部面積率測定)
500倍の走査電子顕微鏡像に写った平坦部が視野に占める面積率を画像処理によって求め、これを5視野に対して繰り返し実施した後、平均して求めた。
(めっき皮膜中Fe濃度、Al濃度)
めっき層のみを希塩酸で溶解・剥離した後、溶液を適度に希釈してICP法により求めた。
【0046】
三次元形状(表面高さ分布のスキューネスSskおよび該表面高さ分布のクルトシスSku)および摩擦係数は以下の方法で測定した。
(三次元形状測定)
エリオニクス社の電子線三次元粗さ解析装置ERA-8800FEを用いた。測定は加速電圧5kV、WD15mmにておこない、測定時の面内方向のサンプリング間隔は5nmとした。表面高さ分布のスキューネスSskならびに表面高さ分布のクルトシスSkuの値は、任意に選択した20箇所の平坦部を測定した個々の結果を平均して求めた。
尚、本装置を用いた高さ方向の校正には、米国の国立研究機関であるNISTにトレーサブルなVLSIスタンダード社の触針式、光学式表面粗さ測定機を対象としたSHS薄膜段差スタンダード(段差18nm、88nm、450nmの3種)を用いた。
【0047】
(解析ソフト)
表面高さ分布のスキューネスSskと表面高さ分布のクルトシスSkuの測定には、長岡技術科学大学の柳研究室が開発した三次元表面形状解析ソフトSUMMITを用いた。
電子線三次元粗さ解析装置を用いて三次元形状を測定する場合、測定中に電子線照射領域でカーボンコンタミネーションが成長する影響が測定データに現れる場合があり、特に、測定エリアを小さくした場合にこの影響が顕著になる。そこで、データ解析にあたっては、平坦部を測定した生データに、測定エリア長手方向の長さの半分をカットオフ波長とするSplineハイパスフィルターをかけて、コンタミネーション成長の影響を除去した。
【0048】
(摩擦係数測定)
図1に摩擦係数測定装置の概略正面図を示す。供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押し上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取り付けられている。上記押付力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取り付けられている。尚、試験は、潤滑油として、日本パーカライジング社製ノックスライト550HNを試料1の表面に塗布してから行った。
【0049】
図2、3に使用したビードの形状・寸法を示す概略斜視図を示す。ビード6の下面が試料1の表面に押付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図3に示すビード6の形状は幅10mm、試料の摺動方向長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ60mmの平面を有する。
【0050】
摩擦係数測定試験は以下に示す2条件で行った。
(条件1)図2に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。
(条件2)図3に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):20cm/minとした。
供試材とビードとの間の摩擦係数μは、式:μ = F / Nから算出した。
供試材の内容および測定結果を表1に示す。
【0051】
【表1】
Figure 0003797478
【0052】
図4に供試材平坦部の表面高さ分布のスキューネスSskとめっき鋼板表面の摩擦係数の関係を、図5に供試材平坦部の表面高さ分布のクルトシスSkuとめっき鋼板表面の摩擦係数の関係をそれぞれ示す。
【0053】
通常の合金化溶融亜鉛めっき鋼板表面の摩擦係数の下限値は、めっき皮膜中のFe濃度により若干変化するが、条件1では0.16前後、条件2では0.22前後である。参考的に、条件1の下限値を0.16、条件2の下限値を0.22として、それぞれ破線で図4および図5中に示した。
【0054】
図4および図5を総括してわかるように、表面高さ分布のスキューネスSskと表面高さ分布のクルトシスSkuがいずれも本発明の範囲内にある供試材1〜4の摩擦係数は、条件1および条件2の何れにおいても、通常の合金化溶融亜鉛めっき鋼板に較べて低いレベルにあり、優れた摺動特性が得られていることがわかる。
【0055】
[実施例2]
板厚0.8mmの冷延鋼板上に、通常の合金化溶融亜鉛めっき皮膜を形成し、供試材No.1を除く他の供試材には更に調質圧延を行った。この際、合金化条件を変更することで表層のζ相比率を変化させ、調質圧延の圧下荷重を変化させることで、表面における平坦部の面積率を変化させた。
【0056】
供試材の一部には、以下に記載する条件で酸化物形成処理を施して酸化皮膜を形成させた。
(酸化物形成処理方法)合金化溶融亜鉛めっき鋼板を、FeSO4・7H2O:300g/l、ZnSO4・7H2O:30g/l、酢酸ナトリウム:20g/l、およびクエン酸ナトリウム:15g/lを添加し、硫酸でpHを2.2に調整した液温50℃の硫酸酸性溶液に1秒間浸漬した後、該溶液から取り出して所定時間放置した上で、水洗・乾燥させた。この際、放置時間を4秒〜60秒の範囲で変化させて、平坦部に形成される亜鉛酸化物を含む酸化物層の膜厚と平坦部の表面高さ分布のスキューネスSskならびに該表面高さ分布のクルトシスSkuを調整した。
【0057】
このようにして得た供試材の平坦部の面積率、平坦部の表面高さ分布のスキューネスSsk、該表面高さ分布のクルトシスSku、酸化皮膜の厚さ、摩擦係数を測定した。平坦部の表面高さ分布のスキューネスSsk、該表面高さ分布のクルトシスSku、摩擦係数等は実施例1と同様の方法で測定した。また、酸化皮膜の厚さは下記の方法で測定した。
(酸化皮膜の厚さ測定方法)
Arイオンスパッタリングを併用したオージェ電子分光法による深さ方向分析から評価した。評価にあたっては酸素の信号強度が強度プロファイルの最大値の1/2となる深さを測定し、これを市販の標準試料(Si基板上に成長させた膜厚既知の酸化皮膜)から求めたスパッタリングレート(約4.5nm/min)で膜厚に換算した。尚、大気中で供試材表面に吸着したコンタミネーションレイヤーの影響を除去するため、測定に際しては30秒間の予備スパッタリングを実施した。
【0058】
尚、酸化皮膜を形成させた供試材の一部は、電子線三次元粗さ解析装置による表面形状測定の際に絶縁物層(酸化物層)に電荷が溜まる、所謂、チャージアップ現象を引き起こした。そのため、精確な測定を妨げるチャージアップのひどい一部のサンプルについては、事前にAuを数nm程度スパッタコーティングしてから、平坦部の表面形状測定に供した。
供試材の内容及び測定結果を表2に示す。
【0059】
【表2】
Figure 0003797478
【0060】
表2に示すように、平坦部の表面高さ分布のスキューネスSsk、表面高さ分布のクルトシスSkuおよび平坦部面積率が本発明の範囲内にある発明例3〜14の摩擦係数は、ζ/δ値が高く、皮膜の表層に明らかにζ相が存在する場合でも、通常の合金化溶融亜鉛めっき鋼板(表2の酸化処理を施していない比較例1〜4がこの範疇に含まれる)の摩擦係数の変動範囲を下回る。
また、平坦部面積率が本発明範囲を外れる発明例1、2は、平坦部面積率が本発明範囲内にある発明例に比べるとその改善効果は幾分少ないが、通常材に比べると摺動性は優れている。
【0061】
これに対して、表面高さ分布のクルトシスSkuが本発明の範囲から外れる比較例5では、平坦部の酸化皮膜による摺動性の改善効果は認められるものの、前記変動範囲内での改善程度に留まっている。
【0062】
【発明の効果】
本発明の合金化溶融亜鉛めっき鋼板は、プレス成形時の摺動抵抗が小さいため、優れたプレス成形性を示す。
【図面の簡単な説明】
【図1】摩擦係数測定装置を示す概略正面図。
【図2】図1中のビード形状・寸法を示す概略斜視図。
【図3】図1中の別のビード形状・寸法を示す概略斜視図。
【図4】平坦部の表面高さ分布のスキューネスSskと摩擦係数の関係を示す図。
【図5】平坦部の表面高さ分布のクルトシスSkuと摩擦係数の関係を示す図。
【符号の説明】
1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
P 引張荷重[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloyed hot-dip galvanized steel sheet having excellent slidability during press forming.
[0002]
[Prior art]
Alloyed hot-dip galvanized steel sheets are superior in weldability and paintability as compared with galvanized steel sheets, and are therefore used in a wide range of fields, mainly for automobile body applications. On the other hand, inferior to cold-rolled steel sheet in terms of press formability is a problem to be solved for the steel sheet. An alloyed hot-dip galvanized steel sheet has a higher sliding resistance in a press die than a cold-rolled steel sheet. For this reason, the alloyed hot-dip galvanized steel sheet is unlikely to flow into the press mold in a portion having a large sliding resistance such as a bead portion in contact with the mold, and adhesion of the plating to the mold or breakage of the steel sheet is likely to occur.
[0003]
An alloyed hot-dip galvanized steel sheet forms a Fe-Zn alloy phase by causing an alloying reaction that diffuses Fe in the steel sheet and Zn in the plating layer by heat treatment after galvanizing the steel sheet. Plated steel sheet. This Fe-Zn alloy phase is usually Γ phase, δ phase1Phase, ζ phase, and in a single alloy phase, the order of increasing Fe concentration, that is, Γ phase, δ phase1It has a high hardness and a high melting point in the order of phase and ζ phase. From the viewpoint of slidability, a high Fe concentration coating that is hard, has a high melting point, and is less likely to cause adhesion is effective. Therefore, an alloyed hot-dip galvanized steel sheet that emphasizes press formability is The average Fe concentration is controlled to be higher.
[0004]
However, a coating with a high Fe concentration has a problem that a hard and brittle Γ phase is likely to be formed at the plating-steel interface, and a phenomenon of peeling from the interface during processing, so-called powdering is likely to occur. For this reason, as shown in JP-A-1-319661, JP-A-4-202786, etc., as a means for achieving both slidability and powdering resistance, the upper layer is made of hard Fe as a second layer. A method of applying an alloy based on a process such as electroplating has been put into practical use. However, this method has a problem that the manufacturing cost is high.
[0005]
As another method for improving the press formability when using a galvanized steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, in this method, since the lubricating oil has a high viscosity, there may be a problem that a coating defect due to poor degreasing occurs in the coating process, or the press performance becomes unstable due to oil shortage during pressing.
[0006]
From the above background, there is a strong demand for a technique for improving the press formability of the galvannealed alloy itself.
As one of methods for improving the press formability of such alloyed hot dip galvanizing itself, a method of forming a film having a solid lubricating action on the surface of the plating layer is known. For example, in Japanese Patent Laid-Open Nos. 53-60332 and 2-190483, zinc oxide is obtained by subjecting the surface of a zinc-based plated steel sheet to electric field treatment, immersion treatment, coating oxidation treatment, or heat treatment. A technique for improving weldability or workability by forming a main oxide film is disclosed.
[0007]
Japanese Patent Laid-Open No. 4-88196 discloses that a plated steel sheet is immersed in an aqueous solution containing 5 to 60 g / l of sodium phosphate on the surface of a zinc-based plated steel sheet, pH 2 to 6, or is subjected to electrolytic treatment, or the above aqueous solution. A technique for improving the press formability and the chemical conversion treatment property by forming an oxide film mainly composed of P oxide by coating is disclosed.
[0008]
Japanese Patent Laid-Open No. 3-191093 discloses press formability and chemical conversion treatment by generating Ni oxide on the surface of a zinc-based plated steel sheet by electrolytic treatment, immersion treatment, coating treatment, coating oxidation treatment, or heat treatment. A technique for improving the performance is disclosed.
[0009]
It is known that control of the surface roughness of the galvannealed steel sheet itself is also important for improving the press formability. For example, Japanese Patent Laid-Open No. 6-15302 discloses a technique for improving the slidability by temper rolling with a low-roughness rolling roll and adjusting the surface roughness of the plated steel sheet. In addition, JP 2000-64013 A discloses sliding characteristics by limiting the plating adhesion amount and the Fe concentration in the plating layer and setting the center line average roughness of the plating layer in the range of 0.5 to 0.8 μm. And a technique that is effective in suppressing powdering and slip damage is disclosed. JP-A-2000-219948 also discloses a method of limiting the Fe concentration in the plating layer and the centerline average roughness of the plating surface and defining the upper limit by the product of the centerline average roughness and the abundance of the ζ phase. Has been.
[0010]
Japanese Patent Laid-Open No. 2000-160358 discloses a composite of the above two techniques, that is, an oxide film mainly composed of an Fe-based oxide is formed on a zinc-based plating layer, and the arithmetic average roughness is further determined. A technique for improving press formability by setting the thickness to 1.2 μm or less is disclosed.
[0011]
Japanese Patent No. 2704070 and Japanese Patent Application Laid-Open No. 2000-226646 disclose the knowledge that it is effective to have an asymmetric height distribution with respect to the shape of the entire surface of the galvannealed alloy. Yes.
[0012]
[Problems to be solved by the invention]
However, even if the above prior art is applied to an alloyed hot-dip galvanized steel sheet, the effect of improving press formability cannot be stably obtained. As a result of detailed examination of the cause, the present inventors have found that the Al oxide present on the surface of the alloyed hot-dip galvanized steel sheet dulls the surface reactivity, and in the alloying reaction process. It was found that the unevenness of the entire surface produced was the main cause. That is, when the prior art is applied to an alloyed hot-dip galvanized steel sheet, the surface reactivity is low, so even if electrolytic treatment, immersion treatment, coating oxidation treatment, heat treatment, etc. are performed, a predetermined film is uniformly applied to the surface. It is difficult to form, and the film thickness becomes thin in a portion with low reactivity, that is, a portion with a large amount of Al oxide. In alloyed hot-dip galvanized steel sheets with large surface irregularities, if there is such a thin part on the convex part of the surface that is in direct contact with the press mold during press molding, the sliding resistance increases and the press formability The improvement effect cannot be obtained sufficiently.
[0013]
Prior art includes arithmetic average roughness Ra (or centerline average roughness RaIn many cases, it is intended to improve the sliding characteristics of the surface of the galvannealed steel sheet by specifying Ra). The three-dimensional shape of the surface of the plated steel plate that comes into contact with the press die is important in considering the slidability, but as is well known, Ra cannot sufficiently reflect the characteristics of the three-dimensional shape of the steel plate surface. For example, even on the surface of a steel plate having the same Ra, the number of convex portions that come into contact with the mold can be variously changed without being limited thereto. If the number of convex portions in contact with the mold changes, naturally the surface pressure applied to each convex portion also changes, and the sliding resistance also changes. Therefore, it is difficult to think in principle that Ra has a dominant influence on slidability.
[0014]
This invention is made | formed in view of such a situation, and it aims at providing the alloyed hot-dip galvanized steel plate which improved said problem and was excellent in the slidability at the time of press molding.
[0015]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have stably and excellent press formability by controlling the three-dimensional shape of the flat portion present on the surface of the galvannealed steel sheet. It was found that can be obtained.
As already mentioned, the three-dimensional shape of the surface of the plated steel plate that comes into contact with the press die is very important in considering slidability, but the surface roughness parameters that have been used in the past, including Ra described above, Most of them are calculated based on a two-dimensional cross-sectional curve (height distribution on the measurement line segment) measured with a stylus type roughness meter, and do not necessarily reflect the characteristics of the actual three-dimensional surface. It is not what you did. In addition, it has been completely known how the three-dimensional shape of each surface of the plated steel sheet, which is important for considering the slidability, such as the convex part directly contacting the mold, affects the slidability. Absent.
[0016]
The flat part on the surface of the galvannealed steel sheet is more convex than the surroundings. This is because the convex portion of the surface layer formed mainly in the process of alloying is pushed into the pressure adjusting roll in the process of temper rolling of the steel sheet to form such a flat portion. Since the flat part is the main part that actually contacts the press mold during press molding, if the sliding resistance in the flat part can be reduced, the slidability can be stabilized and the press formability can be improved. . In order to reduce the sliding resistance of the flat portion, it is effective to prevent adhesion between the plating layer and the mold. As a method, a hard and high melting point film can be formed on the surface of the plating layer. As described above, it is effective.
[0017]
From the viewpoint of reducing the sliding resistance at the flat portion in contact with the press mold, a method of forming a specific three-dimensional relief structure on the flat portion is also very effective. In particular, by controlling the three-dimensional shape of the flat portion in direct contact with the mold, the slidability of the entire alloyed hot-dip galvanized steel sheet can be greatly improved. This method based on the shape control of the flat portion can also be used in combination with a film having a solid lubricating action.
[0018]
  The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) In the flat portion of the iron-zinc alloy plating surface, the skewness Ssk of the surface height distribution is 0.3 or less, and the kurtosis Sku of the surface height distribution is 4 or more and 14 or less.And the flat portion is covered with an oxide containing zinc oxide.An alloyed hot-dip galvanized steel sheet (first invention).
(2) The alloyed hot-dip galvanized steel sheet according to (1) above, wherein the area ratio of the flat portion on the iron-zinc alloy plating surface is 20 to 80% (second invention).
[0019]
  (3) The iron-zinc alloy plating layer is mainly δ1The alloyed hot-dip galvanized steel sheet according to (1) or (2) above, wherein the ζ phase remains at least on the surface of the iron-zinc alloy plating layer on one side of the steel sheet (third invention).
[0020]
DETAILED DESCRIPTION OF THE INVENTION
When press forming an alloyed hot-dip galvanized steel sheet with a convex part whose top is flattened by temper rolling, the skewness S of the surface height distribution of this flat partskIs controlled to 0.3 or less, and Kurtosis S with the same distributionkuBy setting the thickness to 4 or more and 14 or less, good press formability can be secured. In the first invention, the skewness S of the surface height distribution of the flat portion of the iron-zinc alloy plating surfaceskAnd surface height distribution kurtosis SkuThis is the reason why it is limited.
[0021]
Skewness S of surface height distribution used hereskKurtosis S with the same distributionkuBelongs to the three-dimensional parameters (Birmingham set of 14 parameters) used in Europe, and is specifically defined as follows.
[0022]
[Expression 1]
Figure 0003797478
[0023]
[Expression 2]
Figure 0003797478
[0024]
Where SqIs the root mean square deviation of the surface height distribution defined by the following equation.
[0025]
[Equation 3]
Figure 0003797478
[0026]
Root mean square deviation S of surface height distributionq, Skewness S of surface height distributionsk, Kurtosis S of surface height distributionkuExtends three-dimensional two-dimensional Rq (root mean square roughness of roughness curve), Rsk (skewness of roughness curve), and Rku (kurtosis of roughness curve) described in JIS-B0601 (2001) It is a thing. Lx, LyIs the measurement length in the x and y directions when the xy plane is the average plane and the vertical direction is the z axis, and z = f (x, y) is a function representing the surface shape curved surface. Mathematically, the skewness S of the surface height distributionskIs the third-order moment of the surface shape curved surface, the kurtosis S of the surface height distributionkuCorresponds to the fourth moment.
[0027]
Skewness S of surface height distributionskIs a three-dimensional shape parameter representing the non-objectivity of the surface shape curved surface with respect to the average surface, and represents the degree of bias of the surface height distribution. Just as in the case of two-dimensional Rsk, the skewness S of the surface height distributionsk= 0 When the surface height distribution is symmetric with respect to the average, the skewness S of the surface height distributionskWhen <0, the surface height distribution is biased upward relative to the average, and the skewness S of the surface height distributionskWhen> 0, conversely, it means that the surface height distribution is biased downward with respect to the average.
[0028]
Kurtosis S with surface height distributionkuIs a three-dimensional shape parameter that represents the sharpness of the surface height distribution, just like in the case of two-dimensional Rku, the kurtosis S of the surface height distribution.ku= 3 indicates normal distribution, surface height distribution kurtosis SkuWhen <3, the surface height distribution is crushed, and the surface height distribution kurtosis Sku> 3 means it is sharp on the contrary. SkuThe larger the is, the higher the surface height distribution is to include unusually high peaks and deep valleys.
[0029]
For details on the definition of these parameters, see, for example, KJ Stout, WP Dong, L. Blunt, E. Mainsah and PJ Sullivan “3D Surface Topography; Measurement Interpretation and Applications, A survey and bibliography” edited by KJ Stout ( 1994), “Development of Methods for the Characterization of Roughness in Three Dimensions” edited by KJ Stout, published by Penton Press (2000).
[0030]
The reason why such a European three-dimensional index is specified is that, in Japan, the methodology itself that handles three-dimensional shape evaluation and three-dimensional roughness analysis, including the Japanese Industrial Standards (JIS), has not yet been established. .
[0031]
The other parameters related to the three-dimensional shape of the flat part are not specified, but for temper-rolled alloyed hot-dip galvanized steel sheets, the arithmetic average roughness S is usually used.a, Root mean square deviation SqMaximum roughness StHowever, in the range of 2 to 6 nm, 3 to 9 nm, and 30 to 90 nm, respectively, Sa, Sq, and St may be almost one order of magnitude larger than this in the product of the present invention. Where SaAnd StIs the two-dimensional Ra (arithmetic mean roughness) and R described in JIS-B0660: 1998, JIS-B0601: 2001 (ISO4287: 1997)y(Or Rt: the maximum height of the roughness curve) is expanded to three dimensions. The numerical values defined in the present invention are all average values including these numerical values.
[0032]
The reason why good press formability can be obtained by controlling the flat portion to the characteristic three-dimensional shape defined in the present invention is as follows. When the flat portion having a narrow height distribution that is biased to the surface side in this way contacts the mold, the convex portion (in the flat portion) that occupies the flat portion disperses the sliding resistance. This is because mold galling is less likely to occur, and the press oil held in deep concave portions present in the flat portions has an effect of reducing sliding resistance at the convex portions. Such a height distribution exerts a special effect because the press molding process is a dynamic process of crushing the flat part in contact with the mold. This is because it is important to effectively perform the two points of dispersion of the sliding resistance in the inside and holding of the press oil in the space remaining without being crushed in the flat portion.
[0033]
Skewness S of surface height distributionskThe upper limit of 0.3 is because it is necessary to ensure the ratio of the convex portions that exhibit the effect of dispersing the sliding resistance. Skewness S of surface height distributionskIf is negative, it is still effective, but the lower limit is not clear at this time. As a result, it is known that the effect of improving the friction coefficient can be obtained up to about -1.0.
[0034]
Kurtosis S of flat surface height distributionkuThe upper limit of 14 is because when the width of the height distribution becomes narrower than this, the amount of press oil that can be held in the recesses in the flat portion is insufficient, and the friction coefficient increases due to oil shortage. . The lower limit is set to 4. If the width of the height distribution is wider than this, the area ratio of the convex part in the flat part that receives the surface pressure of the mold will be insufficient, and the flat part will be easily worn. This is because the holding effect of the press oil in the recess before pressing cannot be used.
[0035]
In addition, Japanese Patent No. 2704070 and Japanese Patent Laid-Open No. 2000-226646 disclose the knowledge that the asymmetric height distribution is effective for the overall shape of the galvannealed surface. But these are several tens of mm2The height in the flat part that is in direct contact with the mold in that it covers the entire macroscopic relief structure (including a considerable number of convex parts flattened by temper rolling and surrounding concave parts) This is different from the present invention for distribution.
[0036]
When press forming an alloyed hot-dip galvanized steel sheet having convex portions flattened by temper rolling, the surface pressure of the mold applied to each convex portion is controlled by setting the area ratio of the flat portions to 20 to 80%. Can be dispersed to improve the sliding characteristics. This is why the area ratio of the flat portion is limited in the second invention. If the area ratio is less than 20%, the contact pressure received by the portion that is crushed by the contact between the portion other than the flat portion and the mold increases, and therefore improvement in sliding characteristics cannot be expected. On the other hand, if the area ratio exceeds 80%, oil shortage tends to occur during press molding, and the effect of improving press moldability is reduced. This is presumed to be due to the function of holding the press oil in the portion excluding the flat portion (concave portion where the pressure adjusting roll does not contact).
[0037]
The flat portion of the plating surface can be easily identified by observing with an optical microscope or a scanning electron microscope, and the area ratio is obtained by analyzing the observation image.
[0038]
  Optimization of the layer structure of the alloy plating layer is effective for achieving both powdering resistance and sliding properties. As described above, to improve the slidability of the galvannealed steel sheet surface, it is effective to form a hard and high melting point film on the surface of the plating layer, from the viewpoint of the crystal structure of the plating. Is the surface layer δ1It is desirable to cover with a single phase plating film. However, the surface layer is completely δ1In order to cover it with a single phase, an alloying treatment that increases the Fe concentration in the coating must be performed, so that a hard and brittle Γ phase is likely to be formed thick at the plating-steel interface, resulting in powdering. It becomes easy. On the other hand, when an alloying treatment is performed so that the Γ phase does not become thick, a ζ phase having poor sliding properties tends to remain on the surface layer. thisSkewness of the surface height distribution at the flat part of the iron-zinc alloy plating surface Ssk But 0.3 And kurtosis of the surface height distribution Sku But Four more than 14 Stipulated below (No. 1 Invention), the area ratio of the flat portion on the iron-zinc alloy plating surface 20 ~ 80 % (No. 2 to inventAs a result, it is possible to achieve both powdering resistance and slidability, thereby improving the total press formability. Regarding the crystal structure of the iron-zinc alloy plating layer in the third invention,1This is why the ζ phase is limited to remain in the surface layer of the iron-zinc alloy plating layer on at least one side of the steel plate. Further, in press forming, a considerable effect can be obtained only by improving the sliding characteristics of the steel plate surface subjected to severe processing. This is why only one side of the steel sheet may be used.
[0039]
The above-mentioned film in which the ζ phase remains on the surface layer means that when the plating surface is observed with a scanning electron microscope or the like, the surface area ratio occupied by the plating crystal showing the crystal habit of the ζ phase (columnar appearance) is 10 % Or more of the film. When such a plating film is measured by a normal X-ray diffraction method, the intensity of the peak with a lattice spacing d = 1.90Å belonging to the ζ phase is δ1The ratio to the intensity of the peak at d = 1.99% belonging to the phase is 0.2 or more. However, the peak intensity is the net intensity not including the background. This determination method by the X-ray diffraction method is particularly effective when it is difficult to discriminate using the crystal habit of the ζ phase with a scanning electron microscope or the like due to the effect of temper rolling.
[0040]
  TogetherWhen the flat part of the galvannealed galvanized steel sheet is coated with a hard and high melting point oxide containing zinc oxide, or the oxide film itself is the first invention.Skewness of surface height distribution specified by Ssk And kurtosis of the surface height distribution Sku Each rangeIf it has a three-dimensional shape that satisfies the above, a combined improvement effect including the solid lubricating effect of the oxide film can be expected. 1st inventionThe flat part of the iron-zinc alloy plating surface is covered with an oxide containing zinc oxide.This is why it is prescribed. Here, the oxide containing zinc oxide is limited to an oxide process containing zinc oxide with excellent solid lubricating action on the surface of alloyed hot dip galvanized by an inexpensive process or time after manufacture. This is because it is relatively easy.
[0041]
If the thickness of the oxide layer is 10 nm or more, an improvement effect is recognized, but if the thickness is 20 nm or more, it is more effective. The thickness of the oxide layer can be determined by depth direction analysis by Auger electron spectroscopy combined with Ar ion sputtering, or by observation of a cross-sectional sample prepared with a focused ion beam by a transmission electron microscope.
[0042]
In order to produce the alloyed hot-dip galvanized steel sheet according to the present invention, first, plating is performed in a zinc plating bath, alloying treatment is performed, and temper rolling is further performed. At this time, Al is generally added to the plating bath from the viewpoint of optimizing the layer structure of the alloy plating layer described above, but the additive element components other than Al are not particularly limited. For example, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained in addition to Al, the effect of the present invention is not impaired. Subsequently, the top part of the convex part of a plating layer is made flat by temper rolling, and a flat part is formed on the plating surface. At that time, the rolling conditions are adjusted so that the area ratio of the flat portion is in the range described above.
[0043]
  Next, processing is performed to set the skewness Ssk of the surface height distribution of the flat portion of the iron-zinc alloy plating surface and the kurtosis Sku of the surface height distribution within the scope of the present invention. For example, in a method in which a temper-rolled galvannealed steel sheet is immersed in a sulfuric acid solution containing zinc sulfate, iron sulfate, sodium acetate and sodium citrate, washed and dried, the pH and temperature of the solution are adjusted. By adjusting, the skewness Ssk of the surface height distribution and the kurtosis Sku of the surface height distribution are within the range defined by the present invention. A more preferable method is a method in which the alloyed hot-dip galvanized steel sheet after temper rolling is immersed in the sulfuric acid acidic solution for a short period of time and then left standing for a predetermined time, followed by washing with water and drying. According to this method, it is relatively easy to adjust the skewness Ssk of the surface height distribution and the kurtosis Sku of the surface height distribution within the range defined by the present invention by changing the standing time. The reason why the surface height distribution can be adjusted by such a method is not clear, but it is presumed that the degree of selective etching of zinc-rich portions and the precipitation of zinc oxide changes depending on the standing time..
[0044]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[Example 1]
First, the skewness S of the surface height distribution of the flat part of the galvannealed steel sheetskAnd Kurtosis S of the surface height distributionkuHowever, the effect which brings about the friction coefficient of the whole plated steel plate is demonstrated.
(Sample material)
The friction coefficients of eight types of alloyed hot-dip galvanized steel sheets in which the Fe concentration shown in Table 1 was 8.6 to 10.9% and the flat area ratio was made approximately 50% by temper rolling were measured. Here, specimens 1 to 4 are alloyed hot-dip galvanized steel sheets after temper rolling, FeSOFour・ 7H2O: 300g / l, ZnSOFour・ 7H2O: 30 g / l, sodium acetate: 20 g / l, and sodium citrate: 15 g / l were added, and the solution was immersed in a sulfuric acid solution at 50 ° C and adjusted to pH 2.2 with sulfuric acid for 1 second. The surface height distribution of skewness S is removed by leaving it for 3 seconds and then washing and drying it.skAnd Kurtosis S of the surface height distributionkuIs a sample (invention example) that is controlled within the scope of the present invention. The specimens 5 to 8 are temper-rolled (ie, normal) galvannealed steel sheets (comparative examples) that have not been subjected to such treatment.
[0045]
The flat area ratio, the Fe concentration in the plating film, and the Al concentration were measured by the following methods.
(Measurement of flat area ratio)
The area ratio occupied by the flat portion in the scanning electron microscope image of 500 times was determined by image processing, and this was repeated for 5 fields of view and averaged.
(Fe concentration and Al concentration in plating film)
After dissolving and peeling only the plating layer with dilute hydrochloric acid, the solution was appropriately diluted and determined by the ICP method.
[0046]
Three-dimensional shape (skewness S of surface height distributionskAnd Kurtosis S of the surface height distributionku) And the coefficient of friction were measured by the following methods.
(Three-dimensional shape measurement)
An electron beam 3D roughness analyzer ERA-8800FE from Elionix was used. The measurement was performed at an acceleration voltage of 5 kV and a WD of 15 mm, and the sampling interval in the in-plane direction during measurement was 5 nm. Skewness S of surface height distributionskAnd surface height distribution of Kurtosis SkuThe value of was obtained by averaging individual results obtained by measuring 20 arbitrarily selected flat portions.
For calibration in the height direction using this device, the SHS thin film level standard for the stylus type and optical surface roughness measuring instruments of VLSI Standard, traceable to NIST, a US national research institution ( Steps of 18 nm, 88 nm, and 450 nm) were used.
[0047]
(Analysis software)
Skewness S of surface height distributionskAnd surface height distribution kurtosis SkuThe measurement was performed using the 3D surface shape analysis software SUMMIT developed by the Yanagi laboratory at Nagaoka University of Technology.
When measuring a 3D shape using an electron beam 3D roughness analyzer, the influence of carbon contamination growing in the electron beam irradiation area may appear in the measurement data during the measurement, especially the measurement area was reduced. In some cases this effect becomes significant. Therefore, in the data analysis, the influence of contamination growth was removed by applying a Spline high-pass filter with the cut-off wavelength half the length in the longitudinal direction of the measurement area to the raw data obtained by measuring the flat portion.
[0048]
(Friction coefficient measurement)
FIG. 1 shows a schematic front view of the friction coefficient measuring apparatus. A friction coefficient measurement sample 1 collected from the test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a horizontally movable slide table 3. On the lower surface of the slide table 3, there is provided a slide table support base 5 having a roller 4 in contact with the slide table 3 and capable of moving up and down, and by pushing it up, a pressing load N applied to the friction coefficient measurement sample 1 by the bead 6 is applied. A first load cell 7 for measurement is attached to the slide table support 5. A second load cell 8 for measuring a sliding resistance force F for moving the slide table 3 in the horizontal direction in a state where the pressing force is applied is attached to one end of the slide table 3. The test was performed after applying Noxlite 550HN manufactured by Nihon Parkerizing Co., Ltd. to the surface of Sample 1 as a lubricating oil.
[0049]
2 and 3 are schematic perspective views showing the shape and dimensions of the beads used. The bead 6 slides with its lower surface pressed against the surface of the sample 1. The shape of the bead 6 shown in FIG. 2 is 10 mm wide, 12 mm long in the sliding direction of the sample, the lower part of both ends of the sliding direction is a curved surface with a curvature of 4.5 mmR, and the bottom surface of the bead to which the sample is pressed is 10 mm wide and in the sliding direction It has a 3mm long plane. The bead 6 shown in FIG. 3 has a width of 10 mm, a length of 69 mm in the sliding direction of the sample, and a lower portion at both ends of the sliding direction is formed by a curved surface having a curvature of 4.5 mm. It has a flat surface with a length of 60 mm.
[0050]
The friction coefficient measurement test was conducted under the following two conditions.
(Condition 1) Using the bead shown in FIG. 2, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 3) was 100 cm / min.
(Condition 2) Using the bead shown in FIG. 3, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 3) was 20 cm / min.
The coefficient of friction μ between the specimen and the bead was calculated from the formula: μ = F / N.
Table 1 shows the contents of the test materials and the measurement results.
[0051]
[Table 1]
Figure 0003797478
[0052]
Figure 4 shows the skewness S of the surface height distribution of the flat part of the specimen.skFig. 5 shows the relationship between the friction coefficient on the surface of the plated steel plate and the surface height distribution of the specimen flat surface.kuAnd the relationship between the friction coefficient of the surface of the plated steel sheet.
[0053]
The lower limit of the coefficient of friction on the surface of a normal alloyed hot-dip galvanized steel sheet varies slightly depending on the Fe concentration in the plating film, but is around 0.16 in condition 1 and around 0.22 in condition 2. For reference, the lower limit value of condition 1 is 0.16 and the lower limit value of condition 2 is 0.22, and these are indicated by broken lines in FIGS. 4 and 5, respectively.
[0054]
As can be seen from the summary of Figs. 4 and 5, the skewness S of the surface height distributionskAnd surface height distribution kurtosis SkuHowever, the friction coefficient of each of the test materials 1 to 4 within the scope of the present invention is at a level lower than that of a normal alloyed hot-dip galvanized steel sheet in any of the conditions 1 and 2, and excellent sliding properties are obtained. It can be seen that dynamic characteristics are obtained.
[0055]
[Example 2]
A normal alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm, and temper rolling was further performed on the other test materials except for the test material No. 1. At this time, the area ratio of the flat portion on the surface was changed by changing the alloying conditions to change the ζ phase ratio of the surface layer and changing the rolling load of the temper rolling.
[0056]
A part of the test material was subjected to an oxide formation treatment under the conditions described below to form an oxide film.
(Oxide formation treatment method) Alloyed hot-dip galvanized steel sheet, FeSOFour・ 7H2O: 300g / l, ZnSOFour・ 7H2O: 30 g / l, sodium acetate: 20 g / l, and sodium citrate: 15 g / l were added, and the solution was immersed in a sulfuric acid acidic solution at a temperature of 50 ° C. adjusted to pH 2.2 with sulfuric acid for 1 second. The product was taken out of the product and allowed to stand for a predetermined time, and then washed with water and dried. In this case, the skew time S of the thickness of the oxide layer containing zinc oxide formed on the flat portion and the surface height distribution of the flat portion is changed by changing the standing time from 4 seconds to 60 seconds.skAnd Kurtosis S of the surface height distributionkuAdjusted.
[0057]
The area ratio of the flat part of the specimen thus obtained, the skewness S of the surface height distribution of the flat partsk, Kurtosis S of the surface height distributionkuThe thickness of the oxide film and the coefficient of friction were measured. Skewness S of flat surface height distributionsk, Kurtosis S of the surface height distributionkuThe friction coefficient and the like were measured by the same method as in Example 1. Moreover, the thickness of the oxide film was measured by the following method.
(Oxide film thickness measurement method)
It was evaluated from depth direction analysis by Auger electron spectroscopy combined with Ar ion sputtering. In the evaluation, the depth at which the signal intensity of oxygen becomes 1/2 of the maximum value of the intensity profile was measured, and this was obtained from a commercially available standard sample (an oxide film with a known thickness grown on a Si substrate). The film thickness was converted at a rate (about 4.5 nm / min). In addition, in order to remove the influence of the contamination layer adsorbed on the surface of the test material in the atmosphere, preliminary sputtering for 30 seconds was performed in the measurement.
[0058]
In addition, a part of the test material on which the oxide film is formed exhibits a so-called charge-up phenomenon in which charges are accumulated in the insulator layer (oxide layer) during surface shape measurement using an electron beam three-dimensional roughness analyzer. Caused. For this reason, some samples with severe charge-up that hinder accurate measurement were pre-sputtered with Au on the order of several nanometers before being subjected to surface shape measurement of the flat part.
Table 2 shows the contents of the test materials and the measurement results.
[0059]
[Table 2]
Figure 0003797478
[0060]
As shown in Table 2, the skewness S of the surface height distribution of the flat partsk, Kurtosis S of surface height distributionkuIn addition, the friction coefficients of Invention Examples 3 to 14 in which the area ratio of the flat portion is within the range of the present invention have a high ζ / δ value, and even when the ζ phase is clearly present on the surface layer of the coating, ordinary alloyed molten zinc It falls below the fluctuation range of the friction coefficient of the plated steel sheet (Comparative Examples 1 to 4 not subjected to the oxidation treatment in Table 2 are included in this category).
In addition, Invention Examples 1 and 2 in which the flat area ratio is outside the scope of the present invention are somewhat less improved than the invention examples in which the flat area ratio is within the scope of the present invention. The mobility is excellent.
[0061]
In contrast, Kurtosis S with surface height distributionkuHowever, in Comparative Example 5, which is out of the scope of the present invention, although the effect of improving the slidability due to the oxide film on the flat portion is recognized, the improvement is only within the above-mentioned fluctuation range.
[0062]
【The invention's effect】
The alloyed hot-dip galvanized steel sheet of the present invention exhibits excellent press formability because of its low sliding resistance during press forming.
[Brief description of the drawings]
FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus.
2 is a schematic perspective view showing bead shapes and dimensions in FIG. 1. FIG.
FIG. 3 is a schematic perspective view showing another bead shape / dimension in FIG. 1;
FIG. 4 shows the skewness S of the surface height distribution of the flat part.skThe figure which shows the relationship between a friction coefficient.
Fig. 5 Kurtosis S of surface height distribution of flat partkuThe figure which shows the relationship between a friction coefficient.
[Explanation of symbols]
1 Sample for friction coefficient measurement
2 Sample stage
3 Slide table
4 Roller
5 Slide table support
6 beads
7 First load cell
8 Second load cell
9 rails
N Push load
F Sliding resistance force
P Tensile load

Claims (3)

鉄−亜鉛合金めっき表面の平坦部において、表面高さ分布のスキューネスSskが0.3以下で、かつ、該表面高さ分布のクルトシスSkuが4以上14以下であって、該平坦部は亜鉛酸化物を含む酸化物で被覆されていることを特徴とする合金化溶融亜鉛めっき鋼板。In the flat portion of the iron-zinc alloy plating surface, the skewness Ssk of the surface height distribution is 0.3 or less, and the kurtosis Sku of the surface height distribution is 4 or more and 14 or less , and the flat portion is made of zinc oxide. An alloyed hot-dip galvanized steel sheet coated with an oxide containing the same . 鉄−亜鉛合金めっき表面における前記平坦部の面積率が20〜80%であることを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板。  2. The galvannealed steel sheet according to claim 1, wherein an area ratio of the flat portion on the surface of the iron-zinc alloy plating is 20 to 80%. 鉄−亜鉛合金めっき層が主としてδ1相からなり、少なくとも鋼板の片面の鉄−亜鉛合金めっき層の表層にζ相が残存することを特徴とする請求項1または2に記載の合金化溶融亜鉛めっき鋼板。3. The alloyed hot dip zinc according to claim 1, wherein the iron-zinc alloy plating layer mainly comprises a δ 1 phase, and the ζ phase remains on at least the surface of the iron-zinc alloy plating layer on one side of the steel plate. Plated steel sheet.
JP2001336631A 2001-11-01 2001-11-01 Alloy hot-dip galvanized steel sheet Expired - Fee Related JP3797478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336631A JP3797478B2 (en) 2001-11-01 2001-11-01 Alloy hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336631A JP3797478B2 (en) 2001-11-01 2001-11-01 Alloy hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2003138364A JP2003138364A (en) 2003-05-14
JP3797478B2 true JP3797478B2 (en) 2006-07-19

Family

ID=19151423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336631A Expired - Fee Related JP3797478B2 (en) 2001-11-01 2001-11-01 Alloy hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP3797478B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062669A (en) * 2016-12-14 2019-07-26 Posco公司 Roll and the coated steel sheet manufactured by it

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021823A1 (en) * 2003-08-29 2005-03-10 Jfe Steel Corporation Hot dip zinc plated steel sheet and method for production thereof
US8025980B2 (en) 2003-08-29 2011-09-27 Jfe Steel Corporation Hot dip galvanized steel sheet and method for manufacturing same
JP4539255B2 (en) * 2003-09-17 2010-09-08 Jfeスチール株式会社 Alloy hot-dip galvanized steel sheet
JP2006193776A (en) * 2005-01-12 2006-07-27 Nisshin Steel Co Ltd STEEL SHEET PLATED WITH Zn-Al-Mg ALLOY SUPERIOR IN SLIDABILITY, AND SLIDING MEMBER
JP2007231375A (en) * 2006-03-01 2007-09-13 Jfe Steel Kk Galvannealed steel sheet
JP2009052080A (en) * 2007-08-27 2009-03-12 Jfe Steel Kk Surface-treated steel sheet having excellent corrosion resistance and conductivity
JP2012031816A (en) * 2010-08-02 2012-02-16 Sanden Corp Scroll type fluid machine
KR101677390B1 (en) * 2015-09-23 2016-11-18 주식회사 포스코 Method for manufacturing coated steel sheet having excellent surface quality and press moldability and coated steel sheet produced using the same
JP2018535313A (en) * 2015-09-30 2018-11-29 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Flat steel product having a Zn galvanic treatment protective coating and method for producing the same
KR102178683B1 (en) 2018-11-29 2020-11-13 주식회사 포스코 Hot-dip galvanized steel sheet having excellent surface appearance and low temperature bonding brittlness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062669A (en) * 2016-12-14 2019-07-26 Posco公司 Roll and the coated steel sheet manufactured by it

Also Published As

Publication number Publication date
JP2003138364A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
RU2621501C1 (en) Product moulded by hot forming and manufacturing method for product moulded by hot forming
KR100707255B1 (en) Hot-dip galvanized steel sheet having excellent press formability and method for producing the same
JP3797478B2 (en) Alloy hot-dip galvanized steel sheet
JP4329387B2 (en) Hot-dip galvanized steel sheet with excellent press formability and manufacturing method thereof
KR101788950B1 (en) Method for manufacturing galvanized steel sheet
JP3613195B2 (en) Alloy hot-dip galvanized steel sheet
JP2003138361A (en) Galvannealed steel sheet
JP2002012958A (en) Alloyed hot-dip galvanized steel sheet and its manufacturing method
WO2018021007A1 (en) Zinc phosphate-treated zinc-plated steel plate and production method therefor
JP4849501B2 (en) Hot-dip galvanized steel sheet excellent in press formability and manufacturing method thereof
JPWO2019131563A1 (en) A hot-dip galvanizing method, a method for producing an alloyed hot-dip galvanized steel sheet using the hot-dip galvanizing method, and a method for producing a hot-dip galvanized steel sheet using the hot-dip galvanizing method.
JP3644402B2 (en) Alloy hot-dip galvanized steel sheet
WO2020250759A1 (en) Molten zinc plating treatment method, production method for alloyed molten zinc plating steel sheet using said molten zinc plating treatment method, and production method for molten zinc plating steel sheet using said molten zinc plating treatment method
JP4930182B2 (en) Alloy hot-dip galvanized steel sheet
JP6919723B2 (en) A hot-dip galvanizing method, a method for producing an alloyed hot-dip galvanized steel sheet using the hot-dip galvanizing method, and a method for producing a hot-dip galvanized steel sheet using the hot-dip galvanizing method.
JP4826078B2 (en) Alloy hot-dip galvanized steel sheet
JP2005002477A (en) Galvannealed steel sheet
JP3570409B2 (en) Galvannealed steel sheet
JP2002256406A (en) Galvannealed steel sheet
JP4826017B2 (en) Alloy hot-dip galvanized steel sheet
JP3575390B2 (en) Galvannealed steel sheet with excellent press formability
JP4329481B2 (en) Hot-dip galvanized steel sheet with excellent press formability
CN108138296A (en) Flat product and its production method with zinc diffusion annealing protective coating
CN118103206A (en) Plated steel sheet
JP2001131772A (en) Galvannealed steel sheet excellent in press formability and its producing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060412

R150 Certificate of patent or registration of utility model

Ref document number: 3797478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees