JP3797420B2 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP3797420B2
JP3797420B2 JP2001346221A JP2001346221A JP3797420B2 JP 3797420 B2 JP3797420 B2 JP 3797420B2 JP 2001346221 A JP2001346221 A JP 2001346221A JP 2001346221 A JP2001346221 A JP 2001346221A JP 3797420 B2 JP3797420 B2 JP 3797420B2
Authority
JP
Japan
Prior art keywords
resin
pom
wear
resin composition
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001346221A
Other languages
Japanese (ja)
Other versions
JP2003147212A (en
Inventor
篤 斎藤
Original Assignee
篤 斎藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 篤 斎藤 filed Critical 篤 斎藤
Priority to JP2001346221A priority Critical patent/JP3797420B2/en
Publication of JP2003147212A publication Critical patent/JP2003147212A/en
Application granted granted Critical
Publication of JP3797420B2 publication Critical patent/JP3797420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、快削黄銅に対する異常摩耗発生を実質的に抑制する樹脂組成物に関する。
【0002】
【従来の技術】
プラスチック材料には吸振性、耐食性、耐薬品性および加工性に優れるという性質があり、とくに自己潤滑性に優れているため歯車や軸受などの機械要素部品の摺動部材として用いられるようになった。また、その相手材には、耐食性、非磁性および時代的要求である小形軽量化等の点から、銅系材料を用いることが多くなっている。とくに動力伝達用歯車のような加工しにくい部品には、銅系材料の中でも最も加工性に優れている快削黄銅が使用されていることが多い。
【0003】
しかし、例えばポリアセタール樹脂(POM)等は、相手材として銅系材料である純銅や快削りん青銅を用いた場合は鉄鋼材料と同様の摩擦摩耗特性を示すのに対して、同じ銅系材料である快削黄銅を用いた場合は異常摩耗が高い確率で生じるという問題が知られている。
【0004】
【発明が解決しようとする課題】
本発明は、快削黄銅に対する異常摩耗発生を実質的に抑制する樹脂組成物を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、上で説明した問題、すなわち快削黄銅に対する異常摩耗発生を実質的に抑制する樹脂組成物を見出すべく鋭意検討した結果、熱可塑性樹脂をベースとし、さらに特定の種類のブレンド材と充てん材とをともに含むことによりかかる問題が解決されることを見出し、本発明を完成した。
すなわち、本発明は、快削黄銅に対する異常摩耗発生を実質的に抑制する樹脂組成物を提供するものであり、熱可塑性樹脂にブレンド材と充てん材とを含むことを特徴とする。
【0006】
また、本発明は、快削黄銅に対する異常摩耗発生を抑制する樹脂組成物であって、ポリアセタール樹脂(POM)をベースとし、低密度ポリエチレン樹脂(LDPE)をブレンド材として10〜50重量%と、黒鉛粉末を充てん材として10〜50重量%とを含むことを特徴とする前記樹脂組成物を提供する。
【0007】
本明細書で「異常摩耗」とは、快削黄銅に対する摩擦摩耗実験の際、「通常摩耗」の状態とは異なり、徐々にまたは急激に試料とスライダの間の摩耗が大きく増加することを意味する。これは両摩擦表面に存在する微視的な凹凸に繰り返し応力が生じ、これにより発生した快削黄銅の摩耗粉が試料に取り込まれ、その摩耗粉がスライダ摩擦面を掘り起こし、その摩擦粉が移着成長することでさらに深くスライダ表面を削る現象に基づくと考えらているものである。
【0008】
また、本明細書で「実質的に抑制する」とは、前記異常摩耗の発生率が0%を意味する。
以下、本発明を実施の形態に即して詳細に説明する。
【0009】
【発明の実施の形態】
(樹脂組成物)
本発明にかかる樹脂組成物は、熱可塑性樹脂をベースとするものである。本発明にかかる樹脂組成物はさらに特定の種類のブレンド材を特定量、特定の形状で含むことを特徴とする。さらには、本発明にかかる樹脂組成物は特定の種類の充てん材を特定量、特定の形状で含むことを特徴とする。
【0010】
かかる新規な構成によりなる本発明の樹脂組成物の形状には特に制限はない。上で説明した熱可塑性樹脂、ブレンド材、充てん材を特定量、特定の形状で単に混合したもの、また粒状、粉状の他種々の形状に成型されたものをも含む。
【0011】
(熱可塑性樹脂)
本発明において好ましく使用可能な熱可塑性樹脂は、通常プラスチック材料として、吸振性、耐食性、耐薬品性および加工性に優れ、とくに自己潤滑性に優れてた歯車や軸受などの機械要素部品の摺動部材として使用可能な樹脂であれば特に制限はない。具体的には、ポリアセタール樹脂(POM)、ポリアミド(PA)、ポリカーボネイト(PC)、ポリエーテルエーテルケトン(PEEK)または高密度ポリエチレン(HDPE)、またはそれらの混合物が挙げられる。本発明において特に好ましいものはポリアセタール樹脂(POM)である。すなわち、ポリアセタール樹脂は、快削黄銅に対する摩擦摩耗実験の際「異常摩耗」が高い確率で起こることが知られているからである。
【0012】
(ブレンド材)
本発明において好ましく使用可能なブレンド材としては、前記熱可塑性樹脂よりも溶融粘度が高くかつ非相溶性であり、前記熱可塑性樹脂を連続相として分散可能であり、海島構造を示すものであれば特に制限はない。特にかかる分散相として粒径が数十μm以下である場合、分散相が摩擦面で荷重を支持可能であり好ましい。具体的にはポリオレフィンが挙げられる。特に好ましくは低密度ポリエチレン樹脂(LDPE)である。
【0013】
樹脂組成物に対するブレンド材の混合比については、10〜50重量%とすることができる。かかる範囲より少ない場合、異常摩耗の発生確率が極端に大となり好ましくない。またかかる範囲より多い場合には耐摩耗性等が低下し好ましくない。
【0014】
(充てん材)
本発明において使用可能な充てん材としては、摩擦係数が小さく、スライダに潤滑膜を形成する効果が期待できるものであれば特に限定されない。具体的には例えば黒鉛、硫化物、塩化物、酸化物、ふっ化物が挙げられる。特に好ましくは黒鉛粉末である。
【0015】
樹脂組成物に対する充てん材の混合比については、10〜50重量%とすることができる。かかる範囲より少ない場合、異常摩耗の発生確率が大となり好ましくない。またかかる範囲より多い場合には耐摩耗性等が低下し好ましくない。
【0016】
(樹脂組成物の製造方法)
本発明にかかる樹脂組成物の製造方法は、従来公知のブレンド方法であって、前記ブレンド材が前記熱可塑性樹脂と非相溶性であり、前記熱可塑性樹脂を連続相として海島構造を示し、前記分散相が摩擦面で荷重を支持し、かつ前記充てん材が前記樹脂組成物中に均質に分散される方法であれば特に限定されない。具体的には、押出成形や射出成形が挙げられる。
【0017】
また、本発明にかかる樹脂組成物は種々の形状に成型されたものをも含み、特に高負荷のかかるOA機器やAV機器等の摺動部材である軸受や歯車に使用されるプラスチック材料、およびその成型品として使用可能である。
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
【0018】
【実施例】
(サンプル調製)
ポリアセタール樹脂(ポリプラスチックス社製 Duracon M90)の試料(POM)、ポリアセタール樹脂に低密度ポリエチレン樹脂(日本ポリオレフィン社製 J-Rex-HD, F042)を20重量%ブレンドした試料(POM+20重量%LDPE)、ポリアセタール樹脂に20重量%の低密度ポリエチレン樹脂を常温でブレンドし、黒鉛粉末(日本黒鉛工業社製、ACP)を5、15、25、35重量%充てんした試料(POM+20重量%LDPE+5重量%Gr、POM+20重量%LDPE+15重量%Gr、POM+20重量%LDPE+25重量%Gr、POM+20重量%LDPE+35重量%Gr)の6種類をそれぞれ押出成形機にて170℃で円筒状に成形したのち、旋盤で外径25mm、内径19mm、高さ35mmに機械仕上げをした。相手材となるスライダは、快削黄銅(Brass)を用い、形状は直径30mm、厚さ15mmの円板状のものを用いた。試料とスライダの両摩擦表面はエメリーペーパを用いて、算術平均粗さを約0.04〜0.06μmRaに最終仕上げをした。なお、本発明の実施において使用した快削黄銅は、汎用の引抜棒(C3604BD-F)を使用した。
【0019】
(摩擦摩耗実験)
スラストワッシャ型試験機を用い、実験前後の重量差より摩耗率を、工具動力計により検出されたトルクから摩擦係数を算出した。なお、実験はすべて温度20±1℃、湿度65±2%の条件の下に、無潤滑で行った。
図1に示すように、ポリアセタール樹脂(POM)に低密度ポリエチレン樹脂(LDPE)をブレンドしたり黒鉛粉末(Gr)を充てんすることにより試料の限界pv値は向上した。
【0020】
また、図2に示されるように、ポリアセタール樹脂(POM)の摩耗率(Wear rate of specimen)はすべり速度(Sliding velocity)が0.6m/sまでは平均すると、1.0×10-4mm3/mであるが、すべり速度が0.6m/sを越えると急増した。ポリアセタール樹脂(POM)を除く各試料の摩耗率は、すべり速度によらず約0.35×10-4mm3/mの値で安定していた。
【0021】
ポリアセタール樹脂(POM)の快削黄銅に対する摩擦係数は6種類の試料の中でも高く、多少のばらつきはあるが0.3前後の値を示した。ポリアセタール樹脂(POM)を除く各試料の摩擦係数は約0.26の値を示した。
このように、ポリアセタール樹脂(POM)に低密度ポリエチレン樹脂(LDPE)をブレンドそして黒鉛粉末(Gr)を充てんすることで快削黄銅に対する摩耗率、摩擦係数がともに低くなり、ポリアセタール樹脂(POM)の摩擦摩耗特性が向上したことがわかった。
【0022】
この結果は、ポリアセタール樹脂(POM)と低密度ポリエチレン樹脂(LDPE)は相溶性がなく低密度ポリエチレン樹脂(LDPE)のメルトマスフローレイトがポリアセタール樹脂(POM)の約1/20であるため、試料内で低密度ポリエチレン樹脂(LDPE)は表面張力により球状となり、海島構造が得られる。このため、試料摩擦面が溶融した際、この球状の低密度ポリエチレン樹脂(LDPE)が試料表面で荷重を支え、その上を溶融したポリアセタール樹脂(POM)が流動する。また、低密度ポリエチレン樹脂(LDPE)を20重量%ブレンドしたポリアセタール樹脂(POM)に黒鉛粉末(Gr)を充てんした試料は、試料の摩擦面にて荷重を支持している低密度ポリエチレン樹脂(LDPE)がスライダ摩擦面上に黒鉛粉末(Gr)と溶融したポリアセタール樹脂(POM)を強く押し付け移着膜を生成するため、試料とスライダの直接接触が減少し、試料の耐速度性が得られたと考えられる。
【0023】
図3に、各試料に対する快削黄銅のスライダの摩耗率とすべり速度の関係を示す。
正常摩耗時の摩耗率は多少のばらつきはあるがいずれの試料においても約0.13×10-4mm3/mの値で安定していた。それに対して、異常摩耗発生時のポリアセタール樹脂(POM)の試料における摩耗率は、多少のばらつきはあるが約10×10-4mm3/mの値を示し、正常摩耗時の約100倍になった。
【0024】
さらに、表1に示すように、ポリアセタール樹脂(POM)における異常摩耗の高発生率(40%)は、ポリアセタール樹脂(POM)に20重量%の低密度ポリエチレン樹脂(LDPE)をブレンドすることで、その発生率を3%にまで低下させたが、実質的に抑制しているといえなかった。これに対し、本発明のように、20重量%の低密度ポリエチレン樹脂(LDPE)をブレンドしたポリアセタール樹脂(POM)に、15〜35重量%の黒鉛粉末を充てんすることにより、異常摩耗の発生を実質的に抑制することができた。なお、異常摩耗発生率の算出方法は、全異常摩耗発生回数を全実験回数で除したものである。
【0025】
【表1】

Figure 0003797420
【0026】
【発明の効果】
本発明の樹脂組成物は、適当な熱可塑性樹脂にブレンド材と充てん材とを含むものであり、快削黄銅に対する異常摩耗発生を実質的に抑制する。
【図面の簡単な説明】
【図1】各試料の使用限界における面間圧力とすべり速度の関係を示す図である。
【図2】快削黄銅に対する各試料の摩耗率とすべり速度の関係を示す図である。
【図3】各試料に対する快削黄銅のスライダの摩耗率とすべり速度の関係を示す図である。ここで、POM(normal)、POM(abnormal)とはそれぞれ、異常摩耗を起こしていないポリアセタール樹脂、異常摩耗を起こしたポリアセタール樹脂を指す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition that substantially suppresses the occurrence of abnormal wear on free-cutting brass.
[0002]
[Prior art]
Plastic materials have excellent vibration absorption, corrosion resistance, chemical resistance, and workability. Especially, they have excellent self-lubricating properties, so they are used as sliding members for machine element parts such as gears and bearings. . In addition, a copper-based material is often used as the counterpart material in terms of corrosion resistance, non-magnetism, and small size and light weight, which are historical requirements. In particular, free-cutting brass having the highest workability among copper-based materials is often used for parts that are difficult to process, such as gears for power transmission.
[0003]
However, for example, polyacetal resin (POM) or the like shows friction and wear characteristics similar to steel materials when pure copper or free-cutting phosphor bronze, which is a copper-based material, is used as the counterpart material. There is a known problem that when certain free-cutting brass is used, abnormal wear occurs with a high probability.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a resin composition that substantially suppresses the occurrence of abnormal wear on free-cutting brass.
[0005]
[Means for Solving the Problems]
As a result of intensive investigations to find a resin composition that substantially suppresses the above-described problem, that is, the occurrence of abnormal wear on free-cutting brass, the inventor has obtained a specific type of blend material based on a thermoplastic resin. The present invention has been completed by finding that such a problem can be solved by including both the filler and the filler.
That is, the present invention provides a resin composition that substantially suppresses the occurrence of abnormal wear on free-cutting brass, and is characterized by including a blend material and a filler in a thermoplastic resin.
[0006]
Further, the present invention is a resin composition that suppresses the occurrence of abnormal wear on free-cutting brass, based on polyacetal resin (POM), 10 to 50% by weight as a blend material with low-density polyethylene resin (LDPE), The resin composition comprising 10 to 50% by weight of graphite powder as a filler is provided.
[0007]
In this specification, “abnormal wear” means that the friction between the sample and the slider is greatly increased gradually or abruptly, unlike the “normal wear” state, in the friction wear experiment for free-cutting brass. To do. This is because stress is repeatedly generated in the microscopic unevenness present on both friction surfaces, and the generated free-cutting brass wear powder is taken into the sample, and the wear powder digs up the slider friction surface, and the friction powder is transferred. This is thought to be based on a phenomenon in which the slider surface is further deepened by growing.
[0008]
Further, in the present specification, “substantially suppress” means that the occurrence rate of the abnormal wear is 0%.
Hereinafter, the present invention will be described in detail according to embodiments.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(Resin composition)
The resin composition according to the present invention is based on a thermoplastic resin. The resin composition according to the present invention further includes a specific amount of a blend material in a specific amount and a specific shape. Furthermore, the resin composition according to the present invention includes a specific type of filler in a specific amount and a specific shape.
[0010]
There is no restriction | limiting in particular in the shape of the resin composition of this invention which consists of this novel structure. The thermoplastic resin, the blend material, and the filler described above are simply mixed in a specific amount and in a specific shape, and include those formed into various shapes such as a granular shape and a powder shape.
[0011]
(Thermoplastic resin)
The thermoplastic resin that can be preferably used in the present invention is usually a plastic material, which is excellent in vibration absorption, corrosion resistance, chemical resistance and workability, and in particular, sliding of machine element parts such as gears and bearings excellent in self-lubricity. If it is resin which can be used as a member, there will be no restriction | limiting in particular. Specifically, polyacetal resin (POM), polyamide (PA), polycarbonate (PC), polyetheretherketone (PEEK) or high-density polyethylene (HDPE), or a mixture thereof can be used. Particularly preferred in the present invention is a polyacetal resin (POM). That is, the polyacetal resin is known to have a high probability of “abnormal wear” in a friction wear experiment on free-cutting brass.
[0012]
(Blend material)
As a blend material that can be preferably used in the present invention, the blend material is higher in melt viscosity than the thermoplastic resin and incompatible, can disperse the thermoplastic resin as a continuous phase, and exhibits a sea-island structure. There is no particular limitation. In particular, when such a dispersed phase has a particle size of several tens of μm or less, it is preferable that the dispersed phase can support a load on the friction surface. Specific examples include polyolefin. Particularly preferred is a low density polyethylene resin (LDPE).
[0013]
The mixing ratio of the blend material to the resin composition can be 10 to 50% by weight. If it is less than this range, the probability of occurrence of abnormal wear becomes extremely large, which is not preferable. On the other hand, when the amount is larger than the above range, the wear resistance is lowered, which is not preferable.
[0014]
(Filler)
The filler that can be used in the present invention is not particularly limited as long as the coefficient of friction is small and an effect of forming a lubricating film on the slider can be expected. Specific examples include graphite, sulfide, chloride, oxide, and fluoride. Particularly preferred is graphite powder.
[0015]
The mixing ratio of the filler to the resin composition can be 10 to 50% by weight . When it is less than this range, the probability of occurrence of abnormal wear becomes large, which is not preferable. On the other hand, when the amount is larger than the above range, the wear resistance is lowered, which is not preferable.
[0016]
(Production method of resin composition)
The method for producing a resin composition according to the present invention is a conventionally known blending method, wherein the blend material is incompatible with the thermoplastic resin, and shows a sea-island structure using the thermoplastic resin as a continuous phase, There is no particular limitation as long as the dispersed phase supports the load on the friction surface and the filler is uniformly dispersed in the resin composition. Specific examples include extrusion molding and injection molding.
[0017]
In addition, the resin composition according to the present invention includes those molded into various shapes, and in particular, plastic materials used for bearings and gears that are sliding members of OA equipment and AV equipment that are heavily loaded, and It can be used as a molded product.
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.
[0018]
【Example】
(Sample preparation)
Sample (POM) of polyacetal resin (Duracon M90 manufactured by Polyplastics Co., Ltd.), sample obtained by blending 20% by weight of low density polyethylene resin (J-Rex-HD, F042 manufactured by Nippon Polyolefin Co., Ltd.) with polyacetal resin (POM + 20% LDPE) A sample (POM + 20 wt% LDPE + 5 wt% Gr) obtained by blending polyacetal resin with 20 wt% low density polyethylene resin at room temperature and filling graphite powder (Nippon Graphite Industries Co., Ltd., ACP) with 5, 15, 25, 35 wt% , POM + 20 wt% LDPE + 15 wt% Gr, POM + 20 wt% LDPE + 25 wt% Gr, POM + 20 wt% LDPE + 35 wt% Gr) were each formed into a cylindrical shape at 170 ° C. by an extruder, and the outer diameter was 25 mm on a lathe Machine finished to an inner diameter of 19 mm and a height of 35 mm. The slider used as the mating material was a free-cutting brass, and the shape was a disk having a diameter of 30 mm and a thickness of 15 mm. Both friction surfaces of the sample and the slider were finished to an arithmetic average roughness of about 0.04 to 0.06 μmRa using emery paper. The free-cutting brass used in the practice of the present invention was a general-purpose drawing rod (C3604BD-F).
[0019]
(Friction and wear experiment)
Using a thrust washer type tester, the wear rate was calculated from the weight difference before and after the experiment, and the friction coefficient was calculated from the torque detected by the tool dynamometer. All experiments were performed without lubrication under conditions of a temperature of 20 ± 1 ° C. and a humidity of 65 ± 2%.
As shown in FIG. 1, the limit pv value of the sample was improved by blending polyacetal resin (POM) with low density polyethylene resin (LDPE) or filling graphite powder (Gr).
[0020]
In addition, as shown in FIG. 2, the wear rate of the polyacetal resin (POM) averages 1.0 × 10 −4 mm when the sliding velocity is averaged up to 0.6 m / s. 3 / m, but increased rapidly when the sliding speed exceeded 0.6 m / s. The wear rate of each sample excluding the polyacetal resin (POM) was stable at a value of about 0.35 × 10 −4 mm 3 / m regardless of the sliding speed.
[0021]
The friction coefficient of polyacetal resin (POM) against free-cutting brass was high among the six types of samples, and showed a value of about 0.3 with some variation. The friction coefficient of each sample excluding the polyacetal resin (POM) showed a value of about 0.26.
Thus, by blending polyacetal resin (POM) with low-density polyethylene resin (LDPE) and filling graphite powder (Gr), both the wear rate and friction coefficient for free-cutting brass are reduced, and polyacetal resin (POM) It was found that the friction and wear characteristics were improved.
[0022]
This result shows that the polyacetal resin (POM) and the low density polyethylene resin (LDPE) are not compatible and the melt mass flow rate of the low density polyethylene resin (LDPE) is about 1/20 that of the polyacetal resin (POM). The low density polyethylene resin (LDPE) becomes spherical due to surface tension, and a sea-island structure is obtained. For this reason, when the sample friction surface is melted, the spherical low density polyethylene resin (LDPE) supports the load on the sample surface, and the melted polyacetal resin (POM) flows. A sample in which 20 wt% of low density polyethylene resin (LDPE) is blended with polyacetal resin (POM) and graphite powder (Gr) is filled with low density polyethylene resin (LDPE) that supports the load on the friction surface of the sample. ) Strongly presses graphite powder (Gr) and molten polyacetal resin (POM) on the friction surface of the slider to form a transfer film, reducing the direct contact between the sample and the slider, and obtaining the speed resistance of the sample. Conceivable.
[0023]
FIG. 3 shows the relationship between the wear rate of the free-cutting brass slider and the sliding speed for each sample.
Although the wear rate during normal wear varied somewhat, all samples were stable at a value of about 0.13 × 10 −4 mm 3 / m. On the other hand, the wear rate of the polyacetal resin (POM) sample at the time of abnormal wear shows a value of about 10 × 10 −4 mm 3 / m, although there is some variation, about 100 times that of normal wear. became.
[0024]
Furthermore, as shown in Table 1, the high occurrence rate (40%) of abnormal wear in the polyacetal resin (POM) is obtained by blending 20% by weight of a low density polyethylene resin (LDPE) with the polyacetal resin (POM). Although the incidence was reduced to 3%, it could not be said to be substantially suppressed. On the other hand, as in the present invention, when polyacetal resin (POM) blended with 20% by weight of low density polyethylene resin (LDPE) is filled with 15 to 35% by weight of graphite powder, abnormal wear occurs. It was possible to suppress substantially. The calculation method of the abnormal wear occurrence rate is obtained by dividing the total number of abnormal wear occurrences by the total number of experiments.
[0025]
[Table 1]
Figure 0003797420
[0026]
【The invention's effect】
The resin composition of the present invention comprises a suitable thermoplastic resin containing a blend material and a filler, and substantially suppresses the occurrence of abnormal wear on free-cutting brass.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the inter-surface pressure and the sliding speed at the use limit of each sample.
FIG. 2 is a graph showing the relationship between the wear rate of each sample and the sliding speed with respect to free-cutting brass.
FIG. 3 is a graph showing the relationship between the wear rate of a free-cutting brass slider and the sliding speed for each sample. Here, POM (normal) and POM (abnormal) refer to a polyacetal resin that does not cause abnormal wear and a polyacetal resin that causes abnormal wear, respectively.

Claims (1)

快削黄銅に対する異常摩耗発生を抑制する樹脂組成物であって、ポリアセタール樹脂(POM)をベースとし、低密度ポリエチレン樹脂(LDPE)をブレンド材として10〜50重量%と、黒鉛粉末を充てん材として10〜50重量%とを含むことを特徴とする前記樹脂組成物。  Resin composition that suppresses the occurrence of abnormal wear on free-cutting brass, based on polyacetal resin (POM), low-density polyethylene resin (LDPE) as a blending material, 10-50% by weight, and graphite powder as a filler The said resin composition characterized by including 10 to 50 weight%.
JP2001346221A 2001-11-12 2001-11-12 Resin composition Expired - Fee Related JP3797420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346221A JP3797420B2 (en) 2001-11-12 2001-11-12 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001346221A JP3797420B2 (en) 2001-11-12 2001-11-12 Resin composition

Publications (2)

Publication Number Publication Date
JP2003147212A JP2003147212A (en) 2003-05-21
JP3797420B2 true JP3797420B2 (en) 2006-07-19

Family

ID=19159433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346221A Expired - Fee Related JP3797420B2 (en) 2001-11-12 2001-11-12 Resin composition

Country Status (1)

Country Link
JP (1) JP3797420B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135299B2 (en) * 1991-08-15 2001-02-13 旭化成工業株式会社 Resin molding
JPH05247235A (en) * 1992-03-10 1993-09-24 Mitsubishi Petrochem Co Ltd Low-noise sliding material
JP3107678B2 (en) * 1993-04-02 2000-11-13 オイレス工業株式会社 Polyacetal resin composition and sliding member
JPH083433A (en) * 1994-06-21 1996-01-09 Kawasaki Steel Corp Sliding member
US5523352A (en) * 1994-09-16 1996-06-04 Kawasaki Chemical Holding Co., Inc. Polyacetal compositions and method of improving wear resistance and reducing friction thereof
JP3965251B2 (en) * 1998-10-28 2007-08-29 オイレス工業株式会社 Polyacetal resin composition and sliding bearing used in copying machines, etc.

Also Published As

Publication number Publication date
JP2003147212A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US7670055B2 (en) Sliding bearing
EP2698402B1 (en) Resin composition and sliding member using same
WO2010038718A1 (en) Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding, sliding bearing and sliding sheet
EP3246583A1 (en) Water-lubricated bearing material
US4486319A (en) Microporous ionomer polymer lubricating composition
JPS58160353A (en) Resin composition
JP3797420B2 (en) Resin composition
JPH03292366A (en) Wear-resistant resin composition
JP3018559B2 (en) Sliding material
JPH0543751B2 (en)
JPS6333465A (en) Production of polyacetal resin composition
JP4473691B2 (en) Oil-impregnated resin composition and oil-impregnated resin bearing
JPH01126359A (en) Polyacetal resin composition
JPH01104622A (en) Production of resin form with sliding characteristics
JPS6366350B2 (en)
JP4517639B2 (en) Solid lubricant and sliding member
JP2006009834A (en) Sliding bearing
WO2023167117A1 (en) Resin composition for sliding, and sliding member
JP6873532B2 (en) Resin composition for sliding members and slide bearings
JP2005171111A (en) Solid lubricant and slide member
CN115011065A (en) Wear-resistant lubricating composite material with oil-containing polyformaldehyde, composite board and preparation method
JP2608827B2 (en) High lubricity resin composition
JP6199196B2 (en) Plain bearing
JPS63179965A (en) Sliding material composition
JPH04114094A (en) Sliding material of tetrafluoroethylene resin base

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041112

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20041108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees