JP3797170B2 - Acrylic synthetic fibers and fiber composites thereof - Google Patents

Acrylic synthetic fibers and fiber composites thereof Download PDF

Info

Publication number
JP3797170B2
JP3797170B2 JP2001290688A JP2001290688A JP3797170B2 JP 3797170 B2 JP3797170 B2 JP 3797170B2 JP 2001290688 A JP2001290688 A JP 2001290688A JP 2001290688 A JP2001290688 A JP 2001290688A JP 3797170 B2 JP3797170 B2 JP 3797170B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
weight
performance
zinc borate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001290688A
Other languages
Japanese (ja)
Other versions
JP2003096619A (en
Inventor
修二 寺西
善治 若山
良道 小澤
明男 西野
道夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2001290688A priority Critical patent/JP3797170B2/en
Publication of JP2003096619A publication Critical patent/JP2003096619A/en
Application granted granted Critical
Publication of JP3797170B2 publication Critical patent/JP3797170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、難燃性能、消臭性能、制菌性能を兼備し、洗濯耐久性に優れた複合高機能アクリル系合成繊維及びその繊維複合体に関するものである。
【0002】
【従来の技術】
アクリル系合成繊維は衣料、寝装、インテリア用途に幅広く用いられている。このような用途において、難燃性能、消臭性能、制菌性能は安全で快適、且つ健康的なライフスタイルに必要不可欠である。これまでに、難燃繊維、消臭繊維、制菌繊維を混綿・混紡・交織・交編することなどで複合機能を謳う製品や、単独機能素材に後加工方式で複合機能を謳う製品が上市されているが、特殊な設備及び生産技術が必要で、且つコスト的に高く経済的ではなく、後加工方式では洗濯耐久性に劣るという問題があった。
【0003】
従来、抗菌性能と消臭性能を兼ね備えたアクリル系合成繊維及びそれを含む繊維製品としては、ケイ酸金属塩又はアルミノケイ酸金属塩を含有せしめることが知られている(特開平9−87924号、特開平9−157978号公報等)。しかしながら、単にこれらの公報に記載の繊維製品のみでは、天然繊維や化学繊維との繊維複合体において、優れた難燃性能、消臭性能、制菌性能の三大機能を兼備させることが出来なかった。即ち、特に天然繊維及び化学繊維の欠点である燃えやすさ、臭い、カビ・雑菌繁殖に着目し、それら三大欠点を単一繊維素材と混合使用することのみで一挙に解決することを意図した多機能の繊維複合体は開示されていない。
【0004】
一方、従来の難燃性能は繊維素材に自己消火性を機能付与させることで、初期段階での火災を未然に防ぐこと、即ち、予防処置的な効果を発現する性能につき検討されてきた。しかし、火災の根絶は困難であり、火災発生後でも火災延焼性が低い、より安全な繊維素材が求められている。特に火災時の最大死亡原因が一酸化炭素中毒(不完全燃焼)であることから、繊維素材が燃料となって火災を助長する火災延焼性を抑えることと同時に、熱分解・燃焼挙動によって発生する一酸化炭素や煤などの発生量を抑制することが強く望まれている。
【0005】
ところで、宇宙航空機、建材用途など使用材料の火災延焼性評価をする手段として、国際規格の小型材料試験ISO5560(測定機器名称はコーンカロリメータ、以下CCMと略す)がある。CCM装置は実火災シミュレーションでは優れた試験装置であるが極めて高価であり、過去においてはCCMによる繊維素材の火災延焼性や一酸化炭素・煤発生量などの解析がなされていない。それ故、これまでに実火災時の最高発熱速度、全発熱量、一酸化炭素発生量、煤発生量に着目し、火災発生後でもより安全な繊維素材の発想である火災延焼性低下や一酸化炭素・煤発生量低下を意図とした繊維素材及び繊維複合体は開発されていないのが現状である。
【0006】
そして、難燃繊維素材の中で発生ガスの面で最も安全だとされていた難燃ポリエステルは、溶融粘度を低下させ、熱分解を遅らせることで着火時間(フラッシュオーバー)を遅延させる効果がある。しかし、実火災では、溶融タイプの難燃性合成繊維は炎の輻射熱で熱溶融して表面積(熱伝導)が低下し、長時間にわたり”不完全燃焼”となるため、一酸化炭素及び煤発生量が異常に多く、最大死亡原因の一酸化炭素中毒を助長していることが判明した。さらには、溶融により重度の皮膚火傷を起こし、溶融したポリマーの皮膚剥離は困難を極め、救命処置を妨げる大きな原因になっていた。
【0007】
また、難燃アクリル繊維においてはアンチモン化合物を添加することは知られているが、アンチモン化合物単独添加では、非溶融繊維(木綿、レーヨンほか)との繊維複合体で、アフターグロー(残塵)が発生しやすく、いわゆる無煙火災は解決されていなかった。また、得られた繊維の最高発熱速度・全発熱量・一酸化炭素発生量、煤発生量の抑制効果は不充分であり、且つ消費者欲求の消臭性能や制菌性能をも兼備することができなかった。
【0008】
さらに、難燃性に優れたアクリル系合成繊維として、アクリロニトリル系重合体に硼酸亜鉛を添加することが知られている(特開昭53−28728号公報)。しかし、硼酸亜鉛単独添加の場合、得られた繊維単独での難燃性は高いものの、天然繊維及び化学繊維との繊維複合体では急激に難燃性が低下する欠点があった。これは、アンチモン化合物の気相中心での難燃効果であるのに対して、硼酸亜鉛は固相中心での難燃効果が強く、急激に熱分解・燃焼する他繊維の難燃までカバーできないためと考えられる。また、硼酸亜鉛とアンチモン化合物との単純な混合添加では、微粉体同士の二次凝集・沈降しやすい性質から、濾過フィルター目詰まりと紡糸口金圧上昇から実生産が困難であった。また、試験的に得られた繊維の品質面でも繊度斑、強伸度不足、発生静電気、紡績不可など極めて劣悪な品質であり、実用に耐えがたい欠点があった。
【0009】
【発明が解決しようとする課題】
火災犠牲者は全世界で年間2万人規模であり、先進国では交通事故に次ぐ最大規模災害である。わが国でも火災死者数は年間2千人規模でここ数年増加傾向にある。その内、50歳以上が70%以上を占め、急激な高齢化社会に突入する社会的背景から、より高レベルに防火・安全対策がなされた繊維素材が求められている。また、高齢化社会を支えるケアシステムの充実により、介護する側・される側のウォンツから消臭に対する強いニーズや、抗菌・防臭性能よりもさらに清潔な環境であるメディカルケア・レベルの制菌性能が求められている。残念ながらこれまでに上述したような火災は起こり得るものとした火災発生後の次世代防火・安全対策(低最高発熱速度、低全発熱量、低一酸化炭素発生量、低煤量、無煙火災防止など)の実現や、急激な高齢化社会に対応した、より安全・衛生的、且つ健康的で快適なライフ・スタイルを提案できる繊維製品、すなわち複合高機能の単一繊維素材を天然繊維や化学繊維と混用する簡単な手段のみで、難燃性能、消臭性能、制菌性能の3大機能をも兼備させることができる合成繊維及びその繊維複合体は未だ見出されていない。
【0010】
本願発明者は上記従来技術の改良に種々取り組み、アンチモン化合物を特定量コーティングした硼酸亜鉛と、アンチモン化合物とを、アクリロニトリル系重合体に併用添加することで、優れた安定生産性と品質を保持し、目的とする低火災延焼性、一酸化炭素・煤発生量低減、無煙火災防止などの次世代防火安全対策を実現し、且つ本発明アクリル系合成繊維を天然繊維や化学繊維と混合使用する簡単な手段のみで、その繊維複合体に難燃性能、消臭性能、制菌性能をも兼備する複合高機能のアクリル系合成繊維を見出し、本願発明にいたった。
【0011】
本発明の目的は、急激な高齢化社会のウォンツ、ニーズに対応し、安全・衛生的、且つ健康的で快適なライフ・スタイルを提案するため、消費者欲求の高い難燃性能、消臭性能、制菌性能に着目し、それら3大機能を兼備し、且つ洗濯耐久性に優れた複合高機能アクリル系合成繊維及びその繊維複合体を提供することにある。
【0012】
【課題を解決するための手段】
本発明の要旨とするところは、アンチモン化合物を硼酸亜鉛量対比で2.0〜25重量%コーティングした硼酸亜鉛と、アンチモン化合物とを、アクリロニトリル30〜70重量%、ハロゲン含有ビニル系単量体70〜30重量%およびこれらと共重合可能なビニル系単量体10重量%以下よりなるアクリロニトリル系重合体に対して、0.5〜50重量%含有するアクリル系合成繊維90〜10重量部に対して、天然繊維および化学繊維よりなる群から選ばれた少なくとも1種の繊維10〜90重量部を含有することを特徴とする難燃性能、消臭性能、制菌性能に優れた繊維複合体である。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に使用するアクリロニトリル系重合体は、アクリロニトリル30〜70重量%、ハロゲン含有ビニル系単量体70〜30重量%およびこれらと共重合可能なビニル系単量体10重量%以下よりなるアクリロニトリル系共重合体である。アクリロニトリル系共重合体の具体例としては、アクリロニトリル―塩化ビニル、アクリロニトリル―塩化ビニリデン、アクリロニトリル―塩化ビニル―塩化ビニリデン、アクリロニトリル―臭化ビニル、アクリロニトリル―臭化ビニリデン、アクリロニトリル―臭化ビニル―臭化ビニリデン、アクリロニトリル―塩化ビニル―臭化ビニル、アクリロニトリル―塩化ビニリデン―臭化ビニリデンなどのハロゲン含有ビニル系単量体の単独使用または2種以上とアクリロニトリルとの共重合体;塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデンなどのハロゲン含有ビニル系単量体の単独使用または2種以上とアクリロニトリルおよびこれらと共重合可能なビニル系単量体との共重合体などがあげられるが、これらに限定されるものではない。また、前記共重合体をポリマーアロイ、ポリマーブレンドなど種々の方法にて適宜に混合して用いてもよい。
【0015】
前記共重合可能なビニル系単量体としては、たとえば、アクリル酸メチル、アクリル酸エチル等のアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸アルキルエステル;スチレン、酢酸ビニル、ビニルエチルエーテル、メタクリロニトリル等の中性単量体;アクリル酸、メタクリル酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルフォン酸等の酸性単量体及びこれら単量体のアンモニウム塩、アルカリ金属塩などがあげられ、アクリロニトリル―ハロゲン含有ビニル系単量体と共重合可能なビニル系単量体なら特に限定されるものではない。また、ビニル系単量体は単独使用または2種以上を混合して用いてもよい。
【0016】
前記アクリロニトリル30〜70重量%、ハロゲン含有ビニル系単量体70〜30重量%およびこれらと共重合可能なビニル系単量体10重量%以下よりなるアクリロニトリル系重合体から得られた繊維は、天然繊維や化学繊維との混合使用に要求される難燃性、単繊維物性、繊維風合い、原繊生産性、紡績性、染色加工性を持つものである。
【0017】
本発明に用いるアクリロニトリル系重合体から得られたアクリル系合成繊維の難燃メカニズムは、ハロゲン―アンチモンの相乗効果のハロゲンソースであり、250℃付近の反応である脱ハロゲン化水素による酸化反応場(気相)へのハロゲン供給とベースポリマー(固相)での表面炭化層(以下、チャーと略す)形成を意図している。従って、アクリロニトリルが70重量%を超えると、必然的にハロゲン含有ビニル系単量体が30重量%未満となり、ベースポリマーの難燃性が不十分となり、好ましくない。また、ハロゲン含有ビニル系単量体が70重量%を超えると原繊生産性、単繊維物性、繊維風合い、紡績性、染色加工性が激しく低下し、好ましくない。また、共重合可能なビニル系単量体の少なくとも1つはスルホン酸基含有ビニル系単量体であることが染色加工の面から好ましい。
【0018】
本発明に使用されるアクリロニトリル系重合体の重合方法は懸濁重合、溶液重合、乳化重合など公知の如何なる方法で製造されても良い。
【0019】
本発明で単独で用いられるアンチモン化合物と、硼酸亜鉛にコーティングするアンチモン化合物はハロゲン―アンチモン相乗効果を狙ったアンチモンソースであり、具体的には、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸、オキシ塩化アンチモンなど無機アンチモン化合物があげられるが、これらに限定されるものではない。これらベース難燃剤は単独使用または2種以上を組合せて用いても良い。これらのなかでも、三酸化アンチモンは本発明アクリロニトリル系重合体の熱分解(脱ハロゲン化水素・チャー形成)開始温度付近の245℃から、硼酸亜鉛発熱開始温度付近の658℃までの広範囲において、オキシハロゲン化アンチモン生成による酸素遮断、オキシハロゲン化アンチモンから三ハロゲン化アンチモンが生成されることによる継続的なハロゲン供給及びベースポリマーの脱ハロゲン化水素作用・チャー形成促進効果が見られ、後で述べる硼酸亜鉛との相乗効果において最も好ましい難燃剤である。アンチモン化合物の平均粒経は硼酸亜鉛へのコーティングや高混率添加による原繊生産性、得られた繊維の単繊維物性、発生静電気、紡績性、染色加工性などの面から3μm以下が好ましい。より好ましくは1.5μm以下である。アンチモン化合物の粒度分布は特に限定しないが、より狭い範囲に分布している微粉末の方が品質安定性や生産安定性の面で好ましいのは言うまでもない。また、アンチモン化合物の形状は限定されないが、原繊生産性や単繊維物性など品質面から斜方形、長方形ではなく球状が好ましい。アンチモン化合物の表面処理状態は特に限定されないが、本発明のポイントである硼酸亜鉛へのコーティング効果(優れた溶媒分散安定性・原繊品質・加工安定性)からアンチモン化合物の水系でのζ電位は−15mV以下が好ましく、より好ましくは−20mV以下である。
【0020】
本発明に用いる硼酸亜鉛の平均粒経は原繊生産性、得られた繊維の単繊維物性、発生静電気、紡績性、染色加工性などの面から6μm以下が好ましく、より好ましくは3μm以下である。硼酸亜鉛の粒度分布は特に限定されないが、より狭い範囲に分布している微粉末の方が品質安定性や生産安定性の面で好ましいのは言うまでもない。また、硼酸亜鉛の形状も特に限定しないが、原繊生産性や単繊維物性など品質面から斜方形、長方形、立方体形状ではなく、より丸みを帯びた粉体形状が好ましく、球状が最も好ましい。
【0021】
硼酸亜鉛にアンチモン化合物をコーティングする方法は微粒子の複合化と表面改質で公知の製造法(気相法、液相法、固相法)を用いることができ、特に限定されない。具体的には、ジェットミルなどの粉砕混合設備で、正帯電したアンチモン化合物を硼酸亜鉛にコーティングすることができ、且つ硼酸亜鉛の凝集物を微粉化し、さらにはアンチモン化合物との粉砕混合により丸みのある形状の硼酸亜鉛を得ることができ、コーティング効果を最大限活かせる。そして、アンチモン化合物コーティング効果により、硼酸亜鉛の溶媒分散安定性(沈降安定性、フィルター濾過性、濾過残さ量、分散液流動性)が大幅に改善され、優れた原繊生産性、得られた繊維の単繊維物性、発生静電気、紡績性、染色加工性を得ることが可能になる。また、亜鉛化合物の課題である強酸、強アルカリでの金属溶出をも硼酸亜鉛にアンチモン化合物をコーティングすることで激減でき、難燃性能、消臭性能、制菌性能の品質レベルを安定化することができる。アンチモン化合物のコーティング量が2.0重量%未満の場合、溶媒分散安定性低下から原繊生産性が困難となり、また、得られた繊維の強酸・強アルカリでの金属溶出も大幅に増大し、品質安定性が維持できず、好ましくない。
【0022】
アンチモン化合物をコーティングした硼酸亜鉛と、アンチモン化合物との合計含有量は、アクリロニトリル系重合体に対して、0.5〜50重量%、好ましくは1〜30重量%、さらに好ましくは5〜20重量%である。アンチモン化合物をコーティングした硼酸亜鉛と、アンチモン化合物との合計含有量が0.5重量%未満では十分な難燃性能、消臭性能、制菌性能を付与出来ず、また50重量%を超えると原繊生産性、単繊維物性及び紡績性が極度に低下する。アンチモン化合物をコーティングした硼酸亜鉛と、アンチモン化合物との含有比率は特に限定されないが、アンチモン化合物をコーティングした硼酸亜鉛/アンチモン化合物=75/25〜25/75が好ましい。アンチモン化合物をコーティングした硼酸亜鉛の含有比率が25重量%未満ではアフターグロー・無煙火災抑制効果に劣り、75重量%を超えるとアンチモン化合物含有比率が低くなりすぎ、他繊維混用での難燃性能が急激に低下するからである。
【0023】
硼酸亜鉛の難燃メカニズムは公知であるが、前記ハロゲン−アンチモン・システムの作用開始温度と極めて近い250℃(ハロゲン化亜鉛生成)から875℃までの金属酸化物形成に至る極めて広範囲の温度で難燃効果を継続する。本発明の場合、アクリロニトリル系重合体中から熱分解したハロゲン化水素と硼酸亜鉛中の亜鉛とが250℃付近で反応し、ハロゲン化亜鉛を生成されることから始まる。生成されたハロゲン化亜鉛はアクリロニトリル系重合体中のニトリルと錯体形成し、燃焼時にトリアジン環を経てチャー形成を促進させるだけでなく、融解してチャー表面にガラス皮膜を形成し、熱分解遅延と低分子量可燃物の拡散を防止する固相での難燃効果がある。また、硼酸亜鉛中の結晶水は、300〜450℃の間に徐々に水蒸気化することで気化熱による冷却効果(吸熱反応)と酸化反応(燃焼)場の熱分解生成物の可燃性ガス濃度を低下させることでフラッシュオーバーを遅らせて、チャー形成を強力に促進し、ひいては一酸化炭素発生量や煤発生量を低下させる効果がある。また硼酸亜鉛中のB23が低融点ガラス同様に表層に形成された炭化層をB23の溶融ガラス不燃層で覆い、亀裂や崩壊しやすい炭化層を補強することで、脆い炭化層内部からの可燃性ガス発生や煤発生・一酸化炭素発生を継続的に抑制させる効果がある。
【0024】
また、消臭性能、制菌性能のメカニズムは硼酸亜鉛の分子構造中に錯体形成する亜鉛イオンによるものと考えられる。本発明の硼酸亜鉛は生活臭の中で最も消臭ニーズ高いアンモニア、硫化水素、酢酸、イソ吉草酸などの悪臭に優れた消臭効果をもつものである。また、亜鉛イオンの優れた菌増殖抑制メカニズムは公知であるため割愛するが、一般的に菌増殖抑制メカニズムは、細菌の細胞膜に含まれる蛋白質のシスチン結合(−S−S−)を切断し、細菌細胞膜を破壊することによる菌増殖抑制である。木綿、麻に代表される植物繊維や羊毛に代表される動物繊維は繊維自体にシスチン結合をもっており、従来から他繊維混用で制菌性能を得ることは極めて困難であった。しかし、これら制菌性能を機能付与することが困難な植物繊維や動物繊維でも、本発明のアクリル系合成繊維は混用することで優れた制菌性能だけでなく、さらに消臭性能や難燃性能をも兼備させることができる。
【0025】
本発明において、他繊維混用での難燃性能、消臭性能、制菌性能の三大機能と優れた火災延焼性、一酸化炭素・煤発生量低減が可能なら、他の難燃剤を組み合わせて用いても良い。その場合、本発明に用いるアンチモン化合物をコーティングした硼酸亜鉛とアンチモン化合物及び他の難燃剤1種または2種以上の合計含有量はアクリロニトリル系重合体に対して、0.5〜50重量%であることが好ましい。硼酸亜鉛とアンチモン化合物に更に組合せて1種または2種以上用いることができる他の難燃剤としては、ハロゲン化パラフィン、ハロゲン化ポリエチレンなどのハロゲン系難燃剤;ハロゲン化リン、赤燐、ポリ燐酸アンモン、燐酸エステル、燐酸アミドなどのリン系難燃剤;メラミン及びその誘導体などの窒素系難燃剤;有機スルホン酸金属塩、芳香族スルフィンイミド金属塩などの金属塩系難燃剤;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水和金属系難燃剤;シープリーなどの低融点ガラス系難燃剤;ポリジオルガノシロキサンなどのシリコーン系難燃剤など公知のものなら如何なるものでも良く限定されないが、特に金属水酸化物や含水化合物に代表される水和金属系難燃剤は、吸熱反応による低発煙性の面で次世代防火安全対策を強化でき、最も好ましい。また、水和金属系難燃剤以外の無機系難燃剤として、シリカ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化スズ、酸化ニッケル、酸化銅、酸化タングステンなどの金属酸化物;アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズなどの金属粉;メタ硼酸亜鉛、メタ硼酸バリウム、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムなどの難燃剤は燃焼時にポリマーの脱水剤として作用し、炭化皮膜形成に寄与し、好ましい。
【0026】
また、本発明の特性を損なわない範囲で通常使用される隠蔽剤、耐光剤、蓄熱剤等の機能性改質剤を併用添加することは何ら差し支えない。
【0027】
本発明の繊維複合体とは難燃性能、消臭性能、制菌性能の三大機能を兼備する本発明のアクリル系合成繊維と他の繊維とを各々単繊維の状態で混綿したり混紡したもの、それらの糸またはそれぞれの糸を交撚したもの、または、上記糸の一部または全部の糸を長繊維にして交撚したもの、または、それぞれの糸を製造したのち交織または交編したもの、または、アクリル系合成繊維と他の繊維との単独ウエブ、或いは混綿ウエブを不織布にしたもの、さらにはこれらの組合せによって得られるものを含むものである。
【0028】
本発明の繊維複合体の構成比率は、当該アクリル系合成繊維は90〜10重量部、好ましくは70〜20重量部である。混用する天然繊維および化学繊維よりなる群から選ばれた少なくとも1種の繊維は10〜90重量部であり、好ましく30〜80重量部である。
【0029】
本発明における当該アクリル系合成繊維と天然繊維および化学繊維よりなる群から選ばれた少なくとも1種の混用割合は、最終製品に要求される難燃性能、消臭性能、制菌性能により決定されるものである。尚、当該アクリル系合成繊維の種類およびその構成割合、アンチモン化合物と硼酸亜鉛とその他難燃剤の合計含有量およびその他難燃剤の種類および含有量は、混用する繊維の種類および組合せなどにより、上記混用割合の範囲内で適宜決められる。
【0030】
当該アクリル系合成繊維繊維が10重量部未満、すなわち混用する天然繊維や化学繊維の構成割合が90重量部を超える場合には、難燃性能、消臭性能、制菌性能が不足し、一方当該アクリル系合成繊維が90重量部を超え、混用する天然繊維や化学繊維の構成割合が10重量部未満の場合には、難燃性能、消臭性能、制菌性能は優れるものの、風合い、吸湿性、耐久性などの性能が十分でなくなり、いずれも好ましくない。
【0031】
本発明の繊維複合体が所望の三大機能を兼備させ、しかも混用する天然繊維や化学繊維の特徴をはっきりと活かすためには、当該アクリル系合成繊維が70〜20重量部で、天然繊維および化学繊維よりなる群から選ばれた少なくとも1種の繊維の割合が30〜80重量部であることが好ましい。
【0032】
本発明の天然繊維の具体例としては、たとえば木綿、亜麻、芋麻、黄麻などの植物繊維や羊毛、絹、山羊毛、らくだ毛、カシミアなどの動物繊維など、また化学繊維の具体例としては、たとえばビスコースレーヨン繊維、ポリノジック繊維、キュプラ繊維などの再生繊維;アセテート繊維、トリアセテート繊維、プロミックス繊維などの半合成繊維;あるいはナイロン繊維、ビニロン繊維、ビニリデン繊維、ポリ塩化ビニル繊維、ポリエステル繊維、アクリル繊維、アクリル系繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリウレタン繊維、ポリクラール繊維、アラミド繊維、ポリイミド繊維などの合成繊維があげられるが、これらに限定されるものではない。これら天然繊維や化学繊維は単独で当該アクリル系合成繊維と混用してもよく、2種以上で当該アクリル系合成繊維と複合混用してもよい。また、混用する天然繊維及び化学繊維が難燃性能、消臭性能、制菌性能などの機能性を付与された繊維であっても良い。なお、上記天然繊維および化学繊維には、製紙に用いられるパルプも含まれる。
【0033】
当該繊維複合体には本発明の特性を損なわない範囲で通常使用される帯電防止剤、防汚加工剤、熱着色防止剤、耐光性向上剤、白度向上剤、失透性防止剤、吸水・吸湿向上剤、蓄熱向上剤などを含有しても良い。
【0034】
このようにして得られる本発明の繊維複合体は、所望の難燃性能、消臭性能、制菌性能を兼備し、しかも混用する天然繊維や化学繊維の特徴である風合い、吸湿性、耐久性、耐摩耗性、ピリング性、耐熱性、高強度などの特性を併有することは言うまでもない。
【0035】
本発明のアクリル系合成繊維の製造方法はあらゆる公知の湿式、乾湿式、乾式等の紡糸方法が適用可能であり、通常のアクリル系合成繊維と同様の条件で行えば良い。紡糸条件は安定操業が可能な条件なら特に限定されない。また、当該アクリル系合成繊維と他の繊維とを混合して造られる製品、用途、製造方法などについて特に限定はされない。一般の天然繊維や化学繊維で可能な如何なる用途、製品、製造方法を適宜選定すれば良い。
【0036】
本発明品の具体的な用途・製品としては、建寝装分野ではボアシーツ、毛布等のパイル商品、シーツ、ピローケース、ふとんカバー等のカバー・側地商品、ふとん、こたつふとん、座ぶとん、ベッドパッド、ピロー、クッションなどの詰め綿商品、ひざ掛け、スローケット、ベッドスプレッド、バスローブ、バスタオル、ボディタオルなどがある。インテリア分野では便座カバー、トイレフタカバー、トイレマットなどトイレタリー商品や、カーテン、レース、ケースメント、ブラインドクロスなどのドレーパリー商品、玄関・バス・キッチンマット、ラグ、カーペット、ホットカーペットカバー等の敷物商品、パーテーションカバー、OAチェアー・椅子張り家具などのカバー布地商品、こたつふとん裏地、ランチョンマット、テーブルクロスなどがある。
【0037】
衣料分野では肌着、タイツ、スパッツ、レッグウォーマーなどのインナー商品や、セーター、フリース、フェイクファー、防寒用インターライナーなどのアウター商品、靴下などソックス商品、エプロン、かっぽう着、ストール、フードケープ、パジャマなどのルームウェア、ナースカーデガン、白衣・手術衣、作業服、消防服などの業務用ユニフォームなどがあり、資材用途ではスリッパ、アニマルシューズ、防寒シューズなどの履き物類、業務用マット、掃除用モップなどのダスト・コントロール商品、壁紙などの住宅建材商品などがある。
【0038】
不織布分野(製紙分野含む)では、住宅・建材向けでは、結露防止用シート、養生シート、ローパーテーション、ハイパーテーション、天井材、壁紙などの不織布、農業用不織布や、仕出しや宅配サービスなどのフードサプライセンター向け産業用ワイパー、おしぼり、業務用ふきん、フローリングワイパー、おしり拭き、ウェットティッシュ、ペーパータオルなどの業務用、家庭用ワイピング不織布、収納袋、収納シート、風呂敷、包装材、洋服カバー、水切り袋などの家庭用雑貨不織布、ビル空調フィルター、自動車フィルター、家庭用空気清浄器フィルター、業務用空気清浄機フィルター、マスク、掃除機フィルターなどのフィルター不織布、自動車の内装表皮材や副資材用としては、ニードルパンチカーペット、天井材、ワディング部材などの自動車用資材不織布、医療用不織布としては、ガウン、ドレープ、マスク、キャップ、シーツ、タオル、穴あきパンツ、患者衣、手術下着、減菌包装材、シューズカバー、分娩パック、ガーゼなどのサージカル用不織布や、パップ薬、プラスターなどの経皮吸収薬用基布不織布、衛生材料としては、紙おむつ部材や、生理用ナプキン部材向け衛材用不織布、医療・介護・研究所・食品加工・食品製造などで使用されるディスポ衣料や、衣料用心地、汗取りパッド、バストパッドなど衣料用不織布、シューズライナー、インソールなどのシューズ部材用不織布などがある。
【0039】
【実施例】
以下、実施例によって本発明を具体的に説明する。
実施例中の部、%は特に断らない限り、「重量部」、「重量%」を示す。
【0040】
まず、難燃性、消臭性、制菌性などを評価する各測定値および測定方法について説明する。
【0041】
[難燃性]
単独または所定の割合で混綿した綿を0.35g量り、0.686メートル番手で撚係数352の強固な撚りをかけ、これを中間より半分に折り曲げた交撚状態の12cmのコヨリを12本作り、酸素指数試験器のホルダーに直立させ、この試料が5cm燃え続けるのに必要な最小酸素濃度を測定し、これを限界酸素濃度指数(以下、LOI値)とした。LOI値が大きいほど燃えにくく、難燃性が高い。(限界酸素濃度および酸素濃度指数はASTMD2863、JISK7201に準拠)
【0042】
[アフターグロー(残塵)]
LOI値を求める前記の難燃性試験と全く同じ方法で試料に着火し、自己消火性により炎が消えてから無煙火災が続く残塵時間を測定し、アフターグロー(残塵)の有無を判別した。
【0043】
[最高発熱速度、全発熱量]
(株)東洋精機製の燃焼分析システムであるコーンカロリメータ(以下、CCMと略す)▼3▲でISO5660、ASTME1354、NFPA264Aなど準
拠した最高発熱速度、全発熱量を測定し、実火災における繊維素材の火災延焼性、火災助長性を評価した。試料は150g/m2、厚み2mm、10cm×10cm角にしたニードルパンチ不織布を使用した。
【0044】
[一酸化炭素発生量、煤発生量]
前記最高発熱速度、全発熱量を測定しながら、CCM試験装置にて一酸化炭素発生量(収量)と煤発生量(収量)を測定した。
【0045】
[消臭性]
繊維製品に対する日常生活で最も消臭ニーズの高い悪臭物質の代表として、アンモニア、硫化水素、酢酸、イソ吉草酸について以下の方法で行った。消臭性能は悪臭除去率で比較評価した。具体的な悪臭測定法は、テドラーバッグ(フッ化ビニリデンフィルム製、5l)に試料3gを入れ密封し、さらに窒素ガス3lを入れる。次いで、悪臭ガスを各々の初期濃度になるよう封入し、24時間放置した後に検知管で悪臭ガス濃度を測定した。対照として空のテドラーバッグに悪臭ガスを各々の初期濃度になるよう封入・調整し、24時間放置した後に検知管で悪臭ガス濃度を測定し、濃度の減少率から悪臭除去率を算出した。
悪臭ガスの初期濃度は、アンモニア40ppm、硫化水素15ppm、酢酸100ppm、イソ吉草酸15ppmとした。
【0046】
[制菌性]
繊維製品の抗菌性能の評価は、2吋紡績システムで紡績し、毛番で27番手単糸を丸編みしたニット製品か、製品不織布自体を被験体として用い、繊維製品衛生加工協議会制定の抗菌防臭加工製品認定基準「菌数測定法」で行い、静菌活性値で比較評価した。
【0047】
[洗濯耐久性]
耐洗濯性試験は、JIS L 1018の「家庭用電気洗濯法」に準じて行った。綿、ニット製品、ニードルパンチ不織布ほかを家庭洗濯用ネットに入れ、洗濯5回の試料を難燃性能、消臭性能、制菌性能の評価に用いた。
【0048】
[平均粒経]
平均粒経は有機溶媒ジメチルホルムアミド80g中に粉体0.5gを投入し、5分間超音波分散させた後、(株)島津製作所製のレーザー回折粒度分布測定装置SALD−2000Jで超音波分散させながら、50%D平均粒経を測定した。
【0049】
[ζ電位]
コロイド粒子間の静電相互作用(静電斥力)や微粉体凝集性を評価するために、マルバーン社(代理店(株)シスメックス)製のゼータサイザー3000HS(電気泳動移動法)を用いて水系でζ電位を測定した。
【0050】
実施例1〜10及び比較例1〜8
アクリロニトリル系重合体の製造・調製は、表1に示すアクリロニトリル(以下ANと記す)/塩化ビニリデン(以下VDCと記す)/2−アクリルアミド−2−メチルプロパンスルホン酸ソーダ(以下SAMと記す)のポリマー組成からなるアクリロニトリル系重合体を、ジメチルホルムアミド(以下DMFと記す)中にてアゾビスジメチルバレロニトリルを重合開始剤として溶液重合し、残存モノマーの除去を行った。その後、アクリロニトリル系重合体の濃度を20〜30%に調製した。Sb23を硼酸亜鉛量に対して表1に示す割合でコーティングした硼酸亜鉛と、Sb23とを、アクリロニトリル系重合体に対して表1に示す難燃剤合計含有量で併用添加した。なお、難燃剤の構成比率はSb23をコーティングした硼酸亜鉛/Sb23=65/35(%)とした。難燃剤微粉末のDMF分散液濃度は40%または20%で調整した。得られたDMF分散液を上記アクリロニトリル系共重合体に表1に示す難燃剤合計含有量で添加、混合し、紡糸原液とした。上記紡糸原液を25℃,60%DMF水溶液中に紡出し、脱溶媒をさせながら延伸、水洗した後、油剤を付与して、乾燥及び乾燥緻密化、クリンプ、湿熱セットを行った。
【0051】
そして得られたアクリル系合成繊維を木綿(漂白)と混用することで、難燃性能、消臭性能、制菌性能を評価した。また、原繊生産性の結果の判定は、実施例、比較例記載の条件で製造した際のDMF分散液安定性、濾過圧上昇、口金圧上昇、単糸切れ、ローラー巻き付き、歩留まりなどを総合して「○(良好)」,「△(やや不良)」,「×(不良)」の三段階評価した。また、繊維品質及び加工安定性はそれぞれ実施例、比較例の単繊維物性、繊維風合い、耐熱性、耐光性、紡績性、染色加工性等を通常のアクリル系合成繊維と比較して、「○(良好)」,「△(やや不良)」、「×(不良)」の3段階評価した。繊維複合体において吸水性、吸湿性など木綿の特徴の有無を「○(良好)」,「△(やや不良)」、「×(不良)」の3段階評価した。
【0052】
なお、比較例1〜3は、実施例1〜10で用いたアクリロニトリル系共重合体のポリマー組成比が範囲外のものであり、比較例4は硼酸亜鉛量に対してコーティングしたSb23量を範囲外にしたものであり、比較例5〜6は難燃剤微粉末の合計含有量を範囲外にしたものであり、また比較例7〜8は繊維複合体での構成比率を範囲外にしたもので、それぞれ各工程、各評価は実施例1〜10と同様に行った。以上の結果をまとめて表1に示す。
【0053】
【表1】

Figure 0003797170
【0054】
表1から明らかな様に、比較例1〜3で示したアクリロニトリル系共重合体のポリマー組成比の内、ANが範囲外に大きなもの(比較例1)では、必然的にVDCが範囲外に小さくなり、原繊生産性、繊維品質、加工安定性は良好なものの、難燃性能が極めて悪く不十分であった。また、ANが範囲外に小さなもの(比較例2)では、必然的にVDCが範囲外に大きくなり、難燃性は良いものの、原繊生産性、繊維品質、加工安定性が急激に悪化し不十分であった。また、SAMが範囲外に大きなもの(比較例3)では、原繊生産性、繊維品質、加工安定性が悪く不十分であった。
【0055】
硼酸亜鉛量に対してコーティングしたSb23量を範囲外に小さくしたもの(比較例4)では、濾過圧上昇、糸切れなど原繊生産性が極めて悪く、紡出ができなかった。
【0056】
難燃剤微粉末の合計含有量を範囲外に大きくしたもの(比較例5)では、濾過圧上昇、口金圧上昇に伴う操業トラブルで原繊生産性が極めて悪く、紡出ができなかった。難燃剤微粉末の合計含有量を範囲外に小さくしたもの(比較例6)では、難燃性、消臭性、制菌性が低下し不十分であった。
【0057】
また、繊維複合体中のアクリル系合成繊維の構成比率を範囲外に大きくしたもの(比較例7)では、必然的に木綿の構成比率が小さくなり、繊維風合い、耐摩耗性、ピリング性に劣り、また混用した木綿の吸水性・吸湿性などの快適な特徴を活かすことができず不十分であった。また、繊維複合体中のアクリル系合成繊維の構成比率を範囲外に小さくしたもの(比較例8)では、必然的に木綿の構成比率が大きくなり、繊維風合い、耐摩耗性、ピリング性、また混用した木綿の吸水性・吸湿性などの快適な特徴を活かすことができるが、難燃性能、消臭性能、制菌性能が急激に悪くなり不十分であった。
【0058】
実施例11〜13及び比較例9〜14
AN/VDC/SAM/メタリルスルホン酸ソーダのアクリロニトリル系重合体とAN/VDCのアクリロニトリル系重合体とをポリブレンドし、AN/ハロゲン含有ビニル単量体/スルホン酸基含有ビニル単量体の組成比が55/42/3となるポリマー組成からなるアクリロニトリル系重合体混合物をポリマー濃度30%に調製した。表4に示すζ電位、コーティング量のSb23を硼酸亜鉛にコーティングし、その硼酸亜鉛とSb23とをアクリロニトリル系重合体に対し、難燃剤含有量20重量%で併用添加した。比較例11は、Sb23を単独で20重量%含有させ、比較例12は硼酸亜鉛を単独で20重量%含有させた。また、実施例11〜13の難燃剤の構成比率は、Sb23をコーティングした硼酸亜鉛/Sb23=60/40(%)とし、難燃剤微粉末のDMF分散液濃度は35%で調整した。得られたDMF分散液を上記アクリロニトリル系共重合体に添加、混合し、紡糸原液とした。上記紡糸原液を20℃,58%DMF水溶液中に紡出し、脱溶媒をさせながら延伸、水洗した後、油剤を付与して、乾燥及び乾燥緻密化、クリンプ、湿熱セットを行った。また、得られたアクリル系合成繊維を木綿(漂白)を始め、表5に示す繊維と混用することで、難燃性能、アフターグロー、消臭性能、制菌性能を評価した。DMF分散液安定性の判定は、沈降安定性、フィルター濾過性、濾過残さ量、分散液流動性などを総合して「○(良好)」,「△(やや不良)」,「×(不良)」の三段階評価した。また、原繊生産性、繊維品質及び加工安定性は実施例1〜10同様に評価した。難燃性能、消臭性能、制菌性能も「○(良好)」,「△(やや不良)」,「×(不良)」の三段階評価とした。
【0059】
なお、比較例9、10(表2)はポリエステル繊維、難燃ポリエステル繊維を比較例として100%繊維素材として評価したものであり、比較例11(表3)はSb23を単独で含有させたものであり、比較例12(表3)は硼酸亜鉛を単独で含有させたものである。また、比較例13〜14(表4)はSb23のコーティング無しと、コーティング量を範囲外にしたものである。
【0060】
【表2】
Figure 0003797170
【0061】
表2から明らかなように、本発明のアクリル系合成繊維(実施例11)は火災延焼性の指標である最高発熱速度、平均発熱速度、全発熱量が極めて低く、初期火災が食い止められない場合でも繊維素材による火災延焼をなるべく抑制したものであるのに対し、ポリエステル繊維(比較例9)や難燃ポリエステル繊維(比較例10)などの繊維素材は火災時には繊維素材そのものが燃料元となりやすく、火災延焼を助長することがわかった。また、火災時の避難で障害となる煙(=煤発生量)については、本発明のアクリル系合成繊維(実施例11)では煤発生量が殆ど見られない検出限界にあり、低発煙性に極めて優れているのに対し、ポリエステル繊維(比較例9)、難燃ポリエステル繊維(比較例10)は、多量の黒い煙を発生し、火災時の退避をより危険にすることは明らかである。また、ガス・煙発生の面で一般的に最も安全な難燃繊維素材とされていた難燃ポリエステル繊維(比較例11)は、溶融粘度を低下させ、より速く溶融させることで表面積を低下させ、着火・フラッシュオーバーを遅延させる効果を意図しているが、逆にその設計が酸素欠乏による“不完全燃焼”、即ち、一酸化炭素発生を極めて長い時間持続させることとなり、火災時に最も危険な一酸化炭素中毒を起しやすい繊維素材の一つとなっている。
【0062】
本発明のアクリル系合成繊維は、火災事故は起こり得るものとの前提に立ち、初期消火・火災遅延効果(難燃性能)に優れるとともに、火災発生後の速やかな退避ができるように、煙や一酸化炭素・二酸化炭素の発生に着目し、それらをなるべく抑制する次世代防火・安全対策効果に優れることは表2の結果より明白である。
【0063】
【表3】
Figure 0003797170
【0064】
表3から明らかなように、Sb23を20重量%単独含有したもの(比較例11)は、炭化しやすいセルロース系繊維を代表とする木綿との繊維複合体において、“アフターグロー”いわゆる無煙火災を防ぐことができず、木綿混用率50重量部以上では難燃性が低下し、不十分であった。また、硼酸亜鉛を20重量%単独含有したもの(比較例12)も同様にアフターグロー効果はなく、繊維複合体での難燃性も極めて悪かった。また、木綿以外でもセルロース構造をもつセルロース系繊維など燃焼時に炭化する他繊維全般は、繊維複合体で“アフターグロー(残塵)”を防ぐことができなかった。本発明の繊維複合体はアフターグローの発生しやすい他繊維混用率の高い場合でも優れた無煙火災防止効果をもつことは明らかである。
【0065】
【表4】
Figure 0003797170
【0066】
表4から明らかなように、Sb23を硼酸亜鉛にコーティングしないもの(比較例13)は、DMF分散安定性が極めて悪く、原繊生産は困難を極め、得られた繊維の単繊維強伸度も極めて低く、発生静電気から紡績加工も困難を極まった。さらに、硼酸亜鉛の金属溶出も激しく難燃性能、消臭性能、制菌性能が著しく低下した。また、Sb23コーティング量が範囲外に大きくしたもの(比較例14)も、コーティングしないもの(比較例13)と同じ傾向で、DMF分散安定性が好ましくないため、フィルター圧上昇、口金圧上昇、繊度斑など発生し、繊維品質、加工安定性も劣悪となるだけでなく、金属溶出抑制効果も不十分であった。
【0067】
【表5】
Figure 0003797170
【0068】
表5は、実施例11、比較例11で得られた繊維を種々の混用繊維素材の他繊維と50重量部で繊維複合体にしたものを示すものであるが、Sb23を単独含有したもの(比較例11)は、本発明の目的とする難燃性能、消臭性能、制菌性能の三大機能を兼備させることができないだけでなく、羊毛、アクリル系繊維、ポリクラール繊維、アラミド繊維、ポリイミド繊維などの難燃性繊維や溶融系繊維を除き、燃焼時に炭化する他繊維との混用では“アフターグロー”いわゆる無煙火災を防止することができなかった。本発明の繊維複合体は幅広い天然繊維、化学繊維に極めて簡単な混用するのみの手段により、目的とする難燃性能、消臭性能、制菌性能の三大機能を兼備させ、且つ繊維混用する他繊維の特徴を最大限に活かし得る複合高機能の繊維複合体であることは明らかである。
【0069】
【発明の効果】
本発明のアクリル系合成繊維及びその繊維複合体は、急激な高齢化社会のウォンツ、ニーズに対応し、安全・衛生的、且つ健康的で快適なライフ・スタイルを提供でき、消費者欲求の高い難燃性能、消臭性能、制菌性能の3大機能を兼備し、且つ洗濯耐久性に優れたものであり、産業上極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite high-performance acrylic synthetic fiber having flame retardancy, deodorant performance, and antibacterial performance and excellent in washing durability, and a fiber composite thereof.
[0002]
[Prior art]
Acrylic synthetic fibers are widely used in clothing, bedding and interior applications. In such applications, flame retardancy, deodorant performance, and antibacterial performance are essential for a safe, comfortable and healthy lifestyle. To date, products that have multiple functions, such as blended, blended, unwoven, and knitted flame retardant fibers, deodorant fibers, and antibacterial fibers, and products that have multiple functions in a single function material are post-marketed. However, there is a problem that special equipment and production technology are required, and the cost is high and not economical, and the post-processing method is inferior in washing durability.
[0003]
Conventionally, it is known that an acrylic synthetic fiber having antibacterial performance and deodorizing performance and a fiber product including the same include a silicate metal salt or an aluminosilicate metal salt (Japanese Patent Laid-Open No. 9-87924, JP-A-9-157978). However, the fiber products described in these publications alone cannot combine the three major functions of excellent flame retardancy, deodorant performance, and antibacterial performance in fiber composites with natural fibers and chemical fibers. It was. That is, focusing on flammability, odor, mold, and bacteria growth, which are the disadvantages of natural fibers and chemical fibers, in particular, these three major defects were intended to be solved at once by using only a single fiber material. Multifunctional fiber composites are not disclosed.
[0004]
On the other hand, the conventional flame retardancy has been studied for preventing fire at an early stage by giving a self-extinguishing function to a fiber material, that is, a performance exhibiting a preventive action effect. However, it is difficult to eradicate fire, and there is a need for a safer fiber material that has low fire spread even after a fire. In particular, because carbon monoxide poisoning (incomplete combustion) is the biggest cause of death during a fire, it is caused by thermal decomposition and combustion behavior as well as suppressing the fire spread that promotes fire by using fiber materials as fuel. It is strongly desired to suppress the generation amount of carbon monoxide and soot.
[0005]
By the way, as a means for evaluating the fire spreadability of materials used such as space aircraft and building materials, there is an international standard small material test ISO 5560 (the name of the measuring instrument is a cone calorimeter, hereinafter abbreviated as CCM). Although the CCM apparatus is an excellent test apparatus in actual fire simulation, it is extremely expensive, and in the past, the analysis of the fire spreadability of carbon fiber material, the amount of carbon monoxide and soot generated by CCM has not been made. Therefore, focusing on the maximum heat generation rate, total calorific value, carbon monoxide generation amount, and soot generation amount in actual fires so far, the fire spreadability reduction and At present, fiber materials and fiber composites intended to reduce the amount of carbon oxide and soot generated have not been developed.
[0006]
And flame retardant polyester, which is considered to be the safest in terms of generated gas among flame retardant fiber materials, has the effect of reducing the melt viscosity and delaying the ignition time (flash over) by delaying thermal decomposition. . However, in actual fires, melt-type flame retardant synthetic fibers are thermally melted by the radiant heat of the flame, and the surface area (heat conduction) decreases, resulting in “incomplete combustion” over a long period of time, generating carbon monoxide and soot. The amount was unusually high and was found to promote carbon monoxide poisoning, the cause of death. Furthermore, severe skin burns were caused by melting, and peeling of the melted polymer was extremely difficult, which was a major cause of hindering lifesaving treatment.
[0007]
In addition, it is known that antimony compounds are added to flame retardant acrylic fibers. However, when antimony compounds are added alone, they are fiber composites with non-melted fibers (cotton, rayon, etc.), and afterglow (residual dust) is generated. The so-called smokeless fire has not been solved. In addition, the maximum heating rate, total calorific value, carbon monoxide generation amount, and soot generation amount of the obtained fiber are insufficient, and it also has deodorant performance and antibacterial performance for consumer needs. I could not.
[0008]
Furthermore, it is known that zinc borate is added to an acrylonitrile polymer as an acrylic synthetic fiber having excellent flame retardancy (Japanese Patent Laid-Open No. 53-28728). However, in the case of adding zinc borate alone, the obtained fiber alone has high flame retardancy, but the fiber composite with natural fiber and chemical fiber has a drawback that flame retardancy is drastically lowered. This is the flame retardant effect of antimony compounds at the center of the gas phase, whereas zinc borate has a strong flame retardant effect at the center of the solid phase, and cannot cover the flame retardant of other fibers that undergo rapid thermal decomposition and combustion. This is probably because of this. In addition, with a simple mixed addition of zinc borate and antimony compound, actual production was difficult due to clogging of the filter and increase in the spinneret pressure due to the property of secondary aggregation and precipitation of fine powders. In addition, the quality of the fiber obtained on a trial basis was extremely poor quality such as fineness unevenness, insufficient strength, generation of static electricity, and unspinning.
[0009]
[Problems to be solved by the invention]
The number of fire victims is about 20,000 worldwide, and it is the largest disaster after a traffic accident in developed countries. In Japan, the number of fire deaths is about 2,000 people per year, which has been increasing for several years. Among them, fiber materials with fire prevention and safety measures at a higher level are being demanded from the social background where 50 years old and over accounted for 70% or more and entered a rapidly aging society. In addition, due to the enhancement of the care system that supports the aging society, there is a strong need for deodorization from the wants of the caregiver and the recipient, and antibacterial performance at the medical care level, which is a cleaner environment than antibacterial and deodorant performance Is required. Unfortunately, the next-generation fire prevention / safety measures after the occurrence of fires as described above (low maximum heat generation rate, low total heat generation, low carbon monoxide generation, low soot, smokeless fire) Prevention) and a fiber product that can propose a safer, more hygienic, healthier and more comfortable lifestyle in response to a rapidly aging society, that is, a composite high-performance single fiber material made of natural fiber or Synthetic fibers and fiber composites that can combine the three major functions of flame retardancy, deodorant performance, and antibacterial performance with only simple means of mixing with chemical fibers have not yet been found.
[0010]
The inventor of the present application has made various efforts to improve the above prior art, and by adding zinc borate coated with a specific amount of an antimony compound and an antimony compound to an acrylonitrile-based polymer, excellent stable productivity and quality can be maintained. Realizes next-generation fire safety and safety measures such as low fire spread, low carbon monoxide and soot generation, and smokeless fire prevention, and the use of acrylic synthetic fibers mixed with natural and chemical fibers. Thus, the present inventors have found a composite high-functional acrylic synthetic fiber having flame retardancy, deodorant performance, and antibacterial performance in the fiber composite.
[0011]
The purpose of the present invention is to respond to the needs and needs of a rapidly aging society, and to propose a safe, hygienic, healthy and comfortable lifestyle, so that flame retardant performance and deodorant performance with high consumer desire The purpose of the present invention is to provide a composite high-functional acrylic synthetic fiber that combines these three major functions and has excellent washing durability, and its fiber composite, focusing on antibacterial performance.
[0012]
[Means for Solving the Problems]
The gist of the present invention is that the antimony compound is compared with the amount of zinc borate. 2.0-25% by weight The coated zinc borate and the antimony compound are composed of 30 to 70% by weight of acrylonitrile, 70 to 30% by weight of a halogen-containing vinyl monomer, and 10% by weight or less of a vinyl monomer copolymerizable therewith. 0.5 to 50% by weight based on the polymer Flame retardancy and deodorization performance characterized by containing 10 to 90 parts by weight of at least one fiber selected from the group consisting of natural fibers and chemical fibers with respect to 90 to 10 parts by weight of acrylic synthetic fiber , Fiber composite with excellent antibacterial performance It is.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The acrylonitrile polymer used in the present invention is an acrylonitrile polymer comprising 30 to 70% by weight of acrylonitrile, 70 to 30% by weight of a halogen-containing vinyl monomer and 10% by weight or less of a vinyl monomer copolymerizable therewith. It is a copolymer. Specific examples of acrylonitrile copolymers include acrylonitrile-vinyl chloride, acrylonitrile-vinylidene chloride, acrylonitrile-vinyl chloride-vinylidene chloride, acrylonitrile-vinyl bromide, acrylonitrile-vinylidene bromide, acrylonitrile-vinyl bromide-vinylidene bromide. , Acrylonitrile-vinyl chloride-vinyl bromide, acrylonitrile-vinylidene chloride-vinylidene bromide and other halogen-containing vinyl monomers used alone or a copolymer of two or more with acrylonitrile; vinyl chloride, vinylidene chloride, bromide Examples thereof include, but are not limited to, single use of halogen-containing vinyl monomers such as vinyl and vinylidene bromide or copolymers of acrylonitrile and vinyl monomers copolymerizable therewith with two or more kinds. Something No. The copolymer may be appropriately mixed and used by various methods such as polymer alloy and polymer blend.
[0015]
Examples of the copolymerizable vinyl monomer include alkyl acrylates such as methyl acrylate and ethyl acrylate; methacrylic acid alkyl esters such as methyl methacrylate and ethyl methacrylate; styrene, vinyl acetate, and vinyl ethyl. Neutral monomers such as ether and methacrylonitrile; acidic monomers such as acrylic acid, methacrylic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and the like Examples of the monomer include ammonium salts and alkali metal salts. The vinyl monomers are not particularly limited as long as they are copolymerizable with an acrylonitrile-halogen-containing vinyl monomer. Moreover, you may use a vinyl-type monomer individually or in mixture of 2 or more types.
[0016]
The fiber obtained from the acrylonitrile polymer comprising 30 to 70% by weight of the acrylonitrile, 70 to 30% by weight of the halogen-containing vinyl monomer and 10% by weight or less of the vinyl monomer copolymerizable therewith is natural. It has flame retardancy, single fiber properties, fiber texture, raw fiber productivity, spinning property, and dyeability required for mixed use with fibers and chemical fibers.
[0017]
The flame retardant mechanism of the acrylic synthetic fiber obtained from the acrylonitrile polymer used in the present invention is a halogen source having a synergistic effect of halogen-antimony, and an oxidation reaction field by dehydrohalogenation (reaction near 250 ° C.) It is intended to supply a halogen to the gas phase and form a surface carbonized layer (hereinafter abbreviated as char) in the base polymer (solid phase). Therefore, when acrylonitrile exceeds 70% by weight, the halogen-containing vinyl monomer is inevitably less than 30% by weight, and the flame retardancy of the base polymer becomes insufficient, such being undesirable. On the other hand, if the halogen-containing vinyl monomer exceeds 70% by weight, the raw fiber productivity, the single fiber properties, the fiber texture, the spinning property, and the dyeing processability are drastically lowered, which is not preferable. Further, at least one of the copolymerizable vinyl monomers is preferably a sulfonic acid group-containing vinyl monomer from the viewpoint of dyeing.
[0018]
The polymerization method of the acrylonitrile-based polymer used in the present invention may be produced by any known method such as suspension polymerization, solution polymerization or emulsion polymerization.
[0019]
The antimony compound used alone in the present invention and the antimony compound coated on zinc borate are antimony sources aimed at the synergistic effect of halogen-antimony, specifically, antimony trioxide, antimony tetraoxide, antimony pentoxide, antimony. Examples include inorganic antimony compounds such as acid and antimony oxychloride, but are not limited thereto. These base flame retardants may be used alone or in combination of two or more. Among these, antimony trioxide has a wide range of oxygen from 245 ° C. near the thermal decomposition (dehydrohalogenation / char formation) initiation temperature of the acrylonitrile-based polymer of the present invention to 658 ° C. near the zinc borate exotherm initiation temperature. Boronic acid, which will be described later, has been shown to block oxygen by producing antimony halide, and to continuously supply halogen and to promote dehydrohalogenation and char formation of the base polymer by producing antimony trihalide from antimony oxyhalide. It is the most preferable flame retardant in synergistic effect with zinc. The average particle size of the antimony compound is preferably 3 μm or less from the viewpoints of raw fiber productivity by coating with zinc borate and addition of a high mixing rate, physical properties of the obtained fiber, generated static electricity, spinning property, dyeing processability and the like. More preferably, it is 1.5 μm or less. The particle size distribution of the antimony compound is not particularly limited, but it goes without saying that a fine powder distributed in a narrower range is preferable in terms of quality stability and production stability. Further, the shape of the antimony compound is not limited, but is preferably a rhombus or a rectangle rather than a rectangle in terms of quality such as raw fiber productivity and single fiber properties. Although the surface treatment state of the antimony compound is not particularly limited, the ζ potential in the aqueous system of the antimony compound is determined from the coating effect (excellent solvent dispersion stability, raw fiber quality, processing stability) on zinc borate which is the point of the present invention. It is preferably −15 mV or less, more preferably −20 mV or less.
[0020]
The average particle diameter of zinc borate used in the present invention is preferably 6 μm or less, more preferably 3 μm or less in terms of raw fiber productivity, single fiber physical properties of the obtained fiber, generated static electricity, spinning property, dyeing processability, and the like. . The particle size distribution of zinc borate is not particularly limited, but it goes without saying that fine powder distributed in a narrower range is preferable in terms of quality stability and production stability. Also, the shape of zinc borate is not particularly limited, but from the viewpoint of quality such as raw fiber productivity and single fiber properties, a rounded powder shape is preferable, and a spherical shape is most preferable, not a rhombic shape, a rectangular shape or a cubic shape.
[0021]
A method for coating zinc borate with an antimony compound is not particularly limited, and a known manufacturing method (gas phase method, liquid phase method, solid phase method) can be used for complexing fine particles and surface modification. Specifically, a positively charged antimony compound can be coated on zinc borate in a pulverizing and mixing facility such as a jet mill, and agglomerates of zinc borate are pulverized and further rounded by pulverizing and mixing with the antimony compound. A certain shape of zinc borate can be obtained, and the coating effect can be maximized. The antimony compound coating effect greatly improves the solvent dispersion stability of zinc borate (sedimentation stability, filter filterability, filtration residue, dispersion fluidity), and excellent raw fiber productivity, resulting fiber. Single fiber properties, generated static electricity, spinning property, and dyeing processability can be obtained. In addition, metal elution with strong acid and strong alkali, which are the challenges of zinc compounds, can be drastically reduced by coating antimony compounds on zinc borate, stabilizing the quality level of flame retardant performance, deodorant performance, and antibacterial performance. Can do. When the coating amount of the antimony compound is less than 2.0% by weight, it becomes difficult to produce the raw fiber due to a decrease in the solvent dispersion stability, and the metal elution with the strong acid / strong alkali of the obtained fiber is greatly increased. Quality stability cannot be maintained, which is not preferable.
[0022]
The total content of zinc borate coated with the antimony compound and the antimony compound is 0.5 to 50% by weight, preferably 1 to 30% by weight, more preferably 5 to 20% by weight, based on the acrylonitrile polymer. It is. If the total content of zinc borate coated with the antimony compound and the antimony compound is less than 0.5% by weight, sufficient flame retardancy, deodorant performance and antibacterial performance cannot be imparted. The fiber productivity, single fiber properties and spinnability are extremely reduced. The content ratio of the zinc borate coated with the antimony compound and the antimony compound is not particularly limited, but zinc borate coated with the antimony compound / antimony compound = 75/25 to 25/75 is preferable. If the content ratio of zinc borate coated with antimony compound is less than 25% by weight, the afterglow / smokeless fire suppression effect is inferior. If it exceeds 75% by weight, the content ratio of antimony compound becomes too low, and flame retardant performance when mixed with other fibers This is because it drops rapidly.
[0023]
Although the flame retardant mechanism of zinc borate is known, it is difficult to form a metal oxide from 250 ° C. (zinc halide formation) to 875 ° C. which is very close to the onset temperature of the halogen-antimony system. Continue the flammable effect. In the case of the present invention, the process begins with the reaction between the hydrogen halide thermally decomposed from the acrylonitrile polymer and the zinc in the zinc borate at around 250 ° C. to produce zinc halide. The generated zinc halide forms a complex with the nitrile in the acrylonitrile polymer and not only promotes char formation via the triazine ring during combustion, but also melts to form a glass film on the char surface, and delays thermal decomposition. Has a flame retardant effect in the solid phase that prevents the diffusion of low molecular weight combustibles. In addition, the crystal water in zinc borate is gradually vaporized between 300 and 450 ° C., so that the cooling effect by heat of vaporization (endothermic reaction) and the flammable gas concentration of the thermal decomposition products in the oxidation reaction (combustion) field. By reducing the amount of carbon dioxide, the flashover is delayed, char formation is strongly promoted, and as a result, the amount of carbon monoxide and soot generated is reduced. B in zinc borate 2 O Three The carbonized layer formed on the surface layer like B 2 O Three By covering with a molten glass incombustible layer and reinforcing a carbon layer that is easy to crack or collapse, there is an effect of continuously suppressing the generation of flammable gas, soot generation, and carbon monoxide generation from the inside of the brittle carbonized layer.
[0024]
The mechanism of deodorizing performance and antibacterial performance is thought to be due to zinc ions forming a complex in the molecular structure of zinc borate. The zinc borate of the present invention has a deodorizing effect excellent in bad odors such as ammonia, hydrogen sulfide, acetic acid and isovaleric acid, which have the highest deodorizing needs among daily odors. In addition, although the excellent bacterial growth suppression mechanism of zinc ions is known, it will be omitted, but in general, the bacterial growth suppression mechanism cleaves the cystine bond (-SS-) of the protein contained in the bacterial cell membrane, Inhibition of bacterial growth by destroying the bacterial cell membrane. Plant fibers typified by cotton and hemp and animal fibers typified by wool have cystine bonds in the fibers themselves, and it has been extremely difficult to obtain antibacterial performance by mixing other fibers. However, even with these plant fibers and animal fibers that are difficult to impart functions of antibacterial performance, the acrylic synthetic fiber of the present invention can be used not only for excellent antibacterial performance but also for deodorizing performance and flame retardancy. Can also be combined.
[0025]
In the present invention, if it is possible to reduce the amount of carbon monoxide and soot generated by combining the three major functions of flame retardant performance, deodorization performance, and antibacterial performance when mixed with other fibers, excellent fire spreadability, carbon monoxide and soot generation, It may be used. In that case, the total content of zinc borate coated with the antimony compound used in the present invention, the antimony compound and one or more other flame retardants is 0.5 to 50% by weight based on the acrylonitrile polymer. It is preferable. Other flame retardants that can be used in combination with one or more of zinc borate and antimony compounds include halogen flame retardants such as halogenated paraffin and halogenated polyethylene; phosphorous halide, red phosphorus, ammonium polyphosphate Phosphorus flame retardants such as phosphoric acid esters and phosphoric acid amides; Nitrogen flame retardants such as melamine and its derivatives; Metal salt flame retardants such as organic sulfonic acid metal salts and aromatic sulfinimide metal salts; Aluminum hydroxide, hydroxylation Hydrated metal flame retardants such as magnesium and calcium hydroxide; low-melting glass flame retardants such as Shipley; silicone flame retardants such as polydiorganosiloxane are not particularly limited and are not particularly limited. Hydrated metal flame retardants represented by products and water-containing compounds have low fuming properties due to endothermic reactions. In the next generation fire safety measures can enhance the, most preferable. As inorganic flame retardants other than hydrated metal flame retardants, silica, aluminum oxide, iron oxide, titanium oxide, manganese oxide, magnesium oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, bismuth oxide, chromium oxide Metal oxides such as tin oxide, nickel oxide, copper oxide, tungsten oxide; metal powders such as aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, tin; metaboric acid Flame retardants such as zinc, barium metaborate, zinc carbonate, magnesium carbonate, calcium carbonate, and barium carbonate are preferred because they act as a polymer dehydrating agent during combustion and contribute to the formation of a carbonized film.
[0026]
Further, it is possible to add a functional modifier such as a concealing agent, a light fastness agent, and a heat storage agent that are usually used within a range not impairing the characteristics of the present invention.
[0027]
The fiber composite of the present invention is a mixture of the acrylic synthetic fiber of the present invention, which has the three major functions of flame retardancy, deodorant performance, and antibacterial performance, and other fibers in the form of a single fiber. Yarns, those yarns or those obtained by twisting each yarn, or those obtained by twisting some or all of the above yarns into long fibers, or after producing each yarn, weaving or knitting Or a single web of acrylic synthetic fibers and other fibers, a non-woven fabric of a mixed cotton web, or a combination thereof.
[0028]
The composition ratio of the fiber composite of the present invention is 90 to 10 parts by weight, preferably 70 to 20 parts by weight for the acrylic synthetic fiber. At least one fiber selected from the group consisting of natural fibers and chemical fibers to be mixed is 10 to 90 parts by weight, preferably 30 to 80 parts by weight.
[0029]
The mixing ratio of at least one selected from the group consisting of the acrylic synthetic fiber, natural fiber and chemical fiber in the present invention is determined by the flame retardancy performance, deodorization performance and antibacterial performance required for the final product. Is. The type of acrylic synthetic fiber and its composition ratio, the total content of antimony compound, zinc borate and other flame retardants, and the type and content of other flame retardants are determined according to the type and combination of the fibers used. It is determined appropriately within the range of the ratio.
[0030]
When the acrylic synthetic fiber fiber is less than 10 parts by weight, that is, when the composition ratio of the mixed natural fiber or chemical fiber exceeds 90 parts by weight, flame retardancy, deodorant performance, and antibacterial performance are insufficient. When the acrylic synthetic fiber exceeds 90 parts by weight and the composition ratio of the mixed natural fiber or chemical fiber is less than 10 parts by weight, the flame retardancy, deodorant performance and antibacterial performance are excellent, but the texture and moisture absorption , Performance such as durability is not sufficient, both are not preferable.
[0031]
In order for the fiber composite of the present invention to have the desired three major functions and to make full use of the characteristics of the natural fiber and chemical fiber to be mixed, the acrylic synthetic fiber is 70 to 20 parts by weight, The ratio of at least one fiber selected from the group consisting of chemical fibers is preferably 30 to 80 parts by weight.
[0032]
Specific examples of the natural fiber of the present invention include plant fibers such as cotton, flax, linseed, and jute, animal fibers such as wool, silk, goat wool, camel hair, and cashmere, and specific examples of chemical fibers. Recycled fibers such as viscose rayon fiber, polynosic fiber and cupra fiber; semi-synthetic fibers such as acetate fiber, triacetate fiber and promix fiber; or nylon fiber, vinylon fiber, vinylidene fiber, polyvinyl chloride fiber, polyester fiber, Synthetic fibers such as acrylic fiber, acrylic fiber, polyethylene fiber, polypropylene fiber, polyurethane fiber, polyclar fiber, aramid fiber, and polyimide fiber can be mentioned, but are not limited thereto. These natural fibers and chemical fibers may be used alone or in combination with the acrylic synthetic fiber, or two or more types may be used in combination with the acrylic synthetic fiber. Moreover, the natural fiber and chemical fiber to be used together may be fibers imparted with functionality such as flame retardancy, deodorant performance, and antibacterial performance. In addition, the pulp used for paper manufacture is also contained in the said natural fiber and chemical fiber.
[0033]
In the fiber composite, an antistatic agent, an antifouling agent, an anti-coloring agent, a light fastness improver, a whiteness improver, a devitrification preventive agent, a water absorption agent, which are usually used within a range not impairing the characteristics of the present invention. -You may contain a moisture absorption improving agent, a heat storage improving agent, etc.
[0034]
The fiber composite of the present invention thus obtained has the desired flame retardancy, deodorant performance, and antibacterial performance, and also has the texture, hygroscopicity, and durability characteristic of natural fibers and chemical fibers to be mixed. Needless to say, it also has properties such as wear resistance, pilling properties, heat resistance and high strength.
[0035]
Any known wet, dry-wet, and dry spinning methods can be applied to the method for producing the acrylic synthetic fiber of the present invention, and the method may be performed under the same conditions as for ordinary acrylic synthetic fibers. The spinning conditions are not particularly limited as long as stable operation is possible. There are no particular limitations on the product, application, manufacturing method, and the like that are produced by mixing the acrylic synthetic fiber and other fibers. Whatever application, product, and manufacturing method possible with general natural fibers and chemical fibers may be appropriately selected.
[0036]
Specific applications and products of the present invention products include pile products such as bore sheets and blankets in the bedding field, covers and side products such as sheets, pillow cases, and futon covers, futons, kotatsu futons, sitting futons, and bed pads. , Cotton products such as pillows and cushions, rugs, slockets, bed spreads, bathrobes, bath towels and body towels. In the interior field, toiletry products such as toilet seat covers, toilet lid covers, toilet mats, drapery products such as curtains, laces, casements, blind cloths, rugs such as entrance / bath / kitchen mats, rugs, carpets, hot carpet covers, and partitions Covers, cover fabric products such as OA chairs and upholstered furniture, kotatsu futon lining, place mats, table cloths, etc.
[0037]
In the clothing field, inner products such as underwear, tights, spats, leg warmers, outer products such as sweaters, fleece, faux fur, cold weather interliner, socks products such as socks, apron, cheongsam, stall, food cape, pajamas, etc. Room wear, nurse cardigans, white uniforms / surgical clothes, work uniforms, fire fighting uniforms, and other uniforms. For materials, footwear such as slippers, animal shoes, winter shoes, commercial mats, cleaning mops, etc. There are dust control products, home building materials such as wallpaper.
[0038]
In the non-woven fabric field (including papermaking), for housing and building materials, anti-condensation sheets, curing sheets, ropes, hypertensions, ceiling materials, non-woven fabrics such as wallpaper, agricultural non-woven fabrics, food supplies such as catering and home delivery services Industrial wipers for center, towels, commercial wipes, flooring wipers, wipes, wet tissue, paper towels, etc., household wiping nonwoven fabric, storage bags, storage sheets, furoshiki, packaging materials, clothes covers, draining bags, etc. Nonwoven fabrics for household goods, building air conditioning filters, automobile filters, household air cleaner filters, commercial air cleaner filters, filter nonwoven fabrics for masks, vacuum cleaner filters, etc. Needle punches for interior skin materials and secondary materials for automobiles Carpet, ceiling material, wadding Non-woven materials for automobiles such as materials, non-woven materials for medical use, such as gowns, drapes, masks, caps, sheets, towels, perforated pants, patient clothing, surgical underwear, sterilized packaging materials, shoe covers, delivery packs, gauze, etc. Surgical non-woven fabrics, base fabric non-woven fabrics for transdermal drugs such as poultices and plasters, sanitary materials such as disposable diapers, sanitary napkins for sanitary napkins, medical / nursing / laboratory / food processing / food manufacturing Disposable clothing used in clothing, non-woven fabrics for clothing such as clothing comfort, sweat pad, bust pad, and non-woven fabrics for shoe members such as shoe liners and insoles.
[0039]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
Unless otherwise indicated, “parts” and “%” in the examples indicate “parts by weight” and “% by weight”.
[0040]
First, each measured value and measuring method for evaluating flame retardancy, deodorizing property, antibacterial property, etc. will be described.
[0041]
[Flame retardance]
Weighing 0.35g of cotton singly or blended at a specified ratio, applying a strong twist with a twist coefficient of 352 with a count of 0.686 meters, and making 12 twisted 12cm twists that are folded in half from the middle Then, the sample was placed upright on the holder of an oxygen index tester, and the minimum oxygen concentration required for the sample to continue to burn for 5 cm was measured, and this was defined as a critical oxygen concentration index (hereinafter, LOI value). The larger the LOI value, the harder to burn and the higher the flame retardancy. (Limited oxygen concentration and oxygen concentration index conform to ASTM D2863 and JISK7201)
[0042]
[Afterglow (residual dust)]
Determine the presence or absence of afterglow (residual dust) by igniting the sample in exactly the same way as the flame retardant test described above to determine the LOI value, measuring the residual dust time after the flame disappears due to self-extinguishing properties, and continuing the smokeless fire did.
[0043]
[Maximum heat generation rate, total heat generation]
Cone calorimeter (hereinafter abbreviated as CCM), a combustion analysis system manufactured by Toyo Seiki Co., Ltd. ▼ 3 ▲, ISO5660, ASTME1354, NFPA264A, etc.
The maximum heat generation rate and total heat generation were measured, and the fire spreadability and fire-promoting property of the fiber material in an actual fire were evaluated. Sample is 150 g / m 2 A needle punched nonwoven fabric having a thickness of 2 mm and a 10 cm × 10 cm square was used.
[0044]
[Carbon monoxide generation, soot generation]
While measuring the maximum heat generation rate and the total heat generation amount, the carbon monoxide generation amount (yield) and the soot generation amount (yield) were measured with a CCM test apparatus.
[0045]
[Deodorization]
As representatives of malodorous substances with the highest deodorizing needs in daily life for textile products, ammonia, hydrogen sulfide, acetic acid and isovaleric acid were used in the following manner. The deodorization performance was evaluated by comparing the malodor removal rate. A specific malodor measurement method is to put 3 g of a sample in a Tedlar bag (made of vinylidene fluoride film, 5 l), seal it, and then add 3 l of nitrogen gas. Next, malodorous gases were sealed so as to have respective initial concentrations, and after standing for 24 hours, the malodorous gas concentration was measured with a detector tube. As a control, malodorous gases were sealed and adjusted in an empty Tedlar bag so as to have respective initial concentrations. After standing for 24 hours, the malodorous gas concentration was measured with a detector tube, and the malodor removal rate was calculated from the rate of decrease in concentration.
The initial concentration of the malodorous gas was 40 ppm ammonia, 15 ppm hydrogen sulfide, 100 ppm acetic acid, and 15 ppm isovaleric acid.
[0046]
[Bactericidal]
The antibacterial performance of textile products is evaluated by the textile product sanitary processing council established by using a knit product spun with a 2-ply spinning system and circularly knitted 27th single yarn with a hair yarn or a non-woven fabric itself as a test subject. The deodorant processed product certification standard “bacteria count measurement method” was used, and the bacteriostatic activity value was compared and evaluated.
[0047]
[Washing durability]
The washing resistance test was performed in accordance with JIS L 1018 “Home Electric Washing Method”. Cotton, knitted products, needle punched nonwoven fabric, etc. were placed in a household laundry net, and samples of 5 washes were used for evaluation of flame retardancy, deodorant performance, and antibacterial performance.
[0048]
[Average grain size]
The average particle size is 0.5 g of powder in 80 g of the organic solvent dimethylformamide, ultrasonically dispersed for 5 minutes, and then ultrasonically dispersed with a laser diffraction particle size distribution analyzer SALD-2000J manufactured by Shimadzu Corporation. The 50% D average particle size was then measured.
[0049]
[Ζ potential]
In order to evaluate electrostatic interaction (electrostatic repulsion) and fine powder agglomeration between colloidal particles, using Zetasizer 3000HS (electrophoretic transfer method) manufactured by Malvern (agent Sysmex) The zeta potential was measured.
[0050]
Examples 1-10 and Comparative Examples 1-8
Production and preparation of acrylonitrile-based polymers are as follows: acrylonitrile (hereinafter referred to as AN) / vinylidene chloride (hereinafter referred to as VDC) / sodium 2-acrylamido-2-methylpropanesulfonate (hereinafter referred to as SAM) shown in Table 1. The acrylonitrile polymer having the composition was subjected to solution polymerization in dimethylformamide (hereinafter referred to as DMF) using azobisdimethylvaleronitrile as a polymerization initiator, and the residual monomer was removed. Thereafter, the concentration of the acrylonitrile-based polymer was adjusted to 20 to 30%. Sb 2 O Three Zinc borate coated at a ratio shown in Table 1 with respect to the amount of zinc borate, and Sb 2 O Three Were added together with the total flame retardant content shown in Table 1 to the acrylonitrile polymer. The composition ratio of the flame retardant is Sb 2 O Three Coated zinc borate / Sb 2 O Three = 65/35 (%). The DMF dispersion concentration of the flame retardant fine powder was adjusted to 40% or 20%. The obtained DMF dispersion was added to and mixed with the acrylonitrile copolymer at the total flame retardant content shown in Table 1 to obtain a spinning dope. The spinning stock solution was spun into a 60% DMF aqueous solution at 25 ° C., stretched while being desolvated and washed with water, and then an oil agent was applied thereto, followed by drying and drying densification, crimping, and wet heat setting.
[0051]
The obtained acrylic synthetic fiber was mixed with cotton (bleaching) to evaluate flame retardancy, deodorization performance, and antibacterial performance. In addition, the determination of the result of raw fiber productivity is based on the stability of DMF dispersion, increased filtration pressure, increased base pressure, single yarn breakage, roller winding, yield, etc. when manufactured under the conditions described in Examples and Comparative Examples. Then, three grades of “◯ (good)”, “△ (somewhat bad)” and “× (bad)” were evaluated. In addition, the fiber quality and processing stability of the examples, comparative examples of single fiber properties, fiber texture, heat resistance, light resistance, spinning property, dyeing processability, etc., compared with ordinary acrylic synthetic fibers, (Good), “△ (somewhat poor)”, and “× (bad)” were evaluated in three stages. The fiber composites were evaluated for the presence or absence of cotton characteristics such as water absorbency and hygroscopicity in three grades: “◯ (good)”, “Δ (somewhat poor)”, and “× (bad)”.
[0052]
In Comparative Examples 1 to 3, the polymer composition ratio of the acrylonitrile copolymer used in Examples 1 to 10 is out of the range, and Comparative Example 4 is Sb coated with respect to the amount of zinc borate. 2 O Three In Comparative Examples 5 to 6, the total content of the flame retardant fine powder is out of the range, and in Comparative Examples 7 to 8, the composition ratio in the fiber composite is out of the range. Each process and each evaluation were performed similarly to Examples 1-10. The above results are summarized in Table 1.
[0053]
[Table 1]
Figure 0003797170
[0054]
As is apparent from Table 1, among the polymer composition ratios of the acrylonitrile-based copolymers shown in Comparative Examples 1 to 3, when AN is large outside the range (Comparative Example 1), VDC is inevitably outside the range. Although it became small and raw fiber productivity, fiber quality and processing stability were good, the flame retardancy was extremely poor and insufficient. In addition, when the AN is out of the range (Comparative Example 2), the VDC inevitably increases out of the range and the flame retardancy is good, but the raw fiber productivity, fiber quality, and processing stability deteriorate rapidly. It was insufficient. Moreover, when SAM was large outside the range (Comparative Example 3), raw fiber productivity, fiber quality, and processing stability were poor and insufficient.
[0055]
Sb coated against the amount of zinc borate 2 O Three When the amount was smaller than the range (Comparative Example 4), the raw fiber productivity such as increase in filtration pressure and yarn breakage was extremely poor, and spinning could not be performed.
[0056]
In the case where the total content of the flame retardant fine powder was increased outside the range (Comparative Example 5), the raw fiber productivity was extremely poor due to the operation trouble accompanying the increase in the filtration pressure and the base pressure, and spinning could not be performed. In the case where the total content of the flame retardant fine powder was reduced outside the range (Comparative Example 6), the flame retardancy, the deodorizing property, and the antibacterial properties were insufficient and insufficient.
[0057]
In addition, in the case where the composition ratio of the acrylic synthetic fiber in the fiber composite is increased outside the range (Comparative Example 7), the composition ratio of the cotton is inevitably small, and the fiber texture, abrasion resistance, and pilling property are inferior. Moreover, it was insufficient because it was not possible to take advantage of comfortable features such as water absorption and moisture absorption of the mixed cotton. In addition, in the case where the composition ratio of the acrylic synthetic fiber in the fiber composite is reduced outside the range (Comparative Example 8), the composition ratio of the cotton is inevitably increased, and the fiber texture, abrasion resistance, pilling property, Comfortable characteristics such as water absorption and hygroscopicity of the mixed cotton can be utilized, but the flame retardancy, deodorant performance, and antibacterial performance have deteriorated rapidly and are insufficient.
[0058]
Examples 11-13 and Comparative Examples 9-14
Composition of AN / halogen-containing vinyl monomer / sulfonic acid group-containing vinyl monomer by poly-blending an acrylonitrile polymer of AN / VDC / SAM / sodium methallylsulfonate and an acrylonitrile polymer of AN / VDC An acrylonitrile-based polymer mixture having a polymer composition with a ratio of 55/42/3 was prepared at a polymer concentration of 30%. Ζ potential and coating amount Sb shown in Table 4 2 O Three Is coated on zinc borate, the zinc borate and Sb 2 O Three Were added to the acrylonitrile polymer at a flame retardant content of 20% by weight. Comparative Example 11 is Sb 2 O Three 20% by weight alone, and Comparative Example 12 contained 20% by weight zinc borate alone. Moreover, the composition ratio of the flame retardants of Examples 11 to 13 is Sb. 2 O Three Coated zinc borate / Sb 2 O Three = 60/40 (%), and the DMF dispersion concentration of the flame retardant fine powder was adjusted to 35%. The obtained DMF dispersion was added to and mixed with the acrylonitrile copolymer to prepare a spinning dope. The spinning stock solution was spun into a 20 ° C., 58% DMF aqueous solution, stretched and washed with water while removing the solvent, and then an oil agent was applied, followed by drying and drying densification, crimping, and wet heat setting. In addition, the obtained acrylic synthetic fibers were mixed with the fibers shown in Table 5 including cotton (bleaching) to evaluate the flame retardancy, afterglow, deodorizing performance, and antibacterial performance. Judgment of DMF dispersion stability is based on the settling stability, filter filterability, filtration residue amount, dispersion fluidity, etc. "○ (good)", "△ (somewhat bad)", "× (bad) ”Was evaluated in three stages. Moreover, raw fiber productivity, fiber quality, and processing stability were evaluated similarly to Examples 1-10. The flame retardant performance, deodorant performance, and antibacterial performance were also evaluated in three grades: “◯ (good)”, “△ (somewhat poor)”, and “× (bad)”.
[0059]
In Comparative Examples 9 and 10 (Table 2), polyester fibers and flame-retardant polyester fibers were evaluated as 100% fiber materials as comparative examples, and Comparative Example 11 (Table 3) was Sb. 2 O Three In Comparative Example 12 (Table 3), zinc borate is contained alone. Moreover, Comparative Examples 13-14 (Table 4) are Sb. 2 O Three No coating and coating amount out of range.
[0060]
[Table 2]
Figure 0003797170
[0061]
As is apparent from Table 2, the acrylic synthetic fiber (Example 11) of the present invention has extremely low maximum heat generation rate, average heat generation rate, and total heat generation, which are indicators of fire spreadability, and the initial fire cannot be stopped. However, while the fire spread due to the fiber material is suppressed as much as possible, the fiber material such as polyester fiber (Comparative Example 9) and flame-retardant polyester fiber (Comparative Example 10) tends to be a fuel source in the event of a fire, It was found to promote fire spread. In addition, smoke (= soot generation amount) that becomes an obstacle in evacuation at the time of fire is at the detection limit where almost no soot generation amount is found in the acrylic synthetic fiber (Example 11) of the present invention, and low smoke generation It is clear that the polyester fiber (Comparative Example 9) and the flame-retardant polyester fiber (Comparative Example 10) generate a large amount of black smoke, making it more dangerous to evacuate in the event of fire. In addition, the flame retardant polyester fiber (Comparative Example 11), which is generally the safest flame retardant fiber material in terms of gas and smoke generation, reduces the melt viscosity and lowers the surface area by melting faster. It is intended to delay ignition and flashover, but conversely, its design is the most dangerous in the event of a fire because it results in “incomplete combustion” due to lack of oxygen, ie, carbon monoxide generation lasts for a very long time. It is one of the fiber materials that are likely to cause carbon monoxide poisoning.
[0062]
The acrylic synthetic fiber of the present invention is based on the premise that a fire accident can occur, is excellent in initial fire extinguishing / fire delaying effect (flame retardant performance), and can be quickly evacuated after a fire has occurred. Focusing on the generation of carbon monoxide and carbon dioxide, it is clear from the results in Table 2 that it is excellent in the next-generation fire prevention and safety countermeasure effects that suppress them as much as possible.
[0063]
[Table 3]
Figure 0003797170
[0064]
As is clear from Table 3, Sb 2 O Three 20% by weight (Comparative Example 11) is a fiber composite with cotton typified by cellulosic fibers that tend to be carbonized, and cannot prevent “after glow” so-called smokeless fires. When the amount was 50 parts by weight or more, the flame retardancy decreased and was insufficient. Further, the one containing 20% by weight of zinc borate alone (Comparative Example 12) similarly had no afterglow effect, and the flame retardancy of the fiber composite was extremely poor. In addition to cotton, other fibers that are carbonized during combustion, such as cellulosic fibers having a cellulose structure, could not prevent “afterglow” in the fiber composite. It is clear that the fiber composite of the present invention has an excellent smokeless fire prevention effect even when other fibers are prone to generate afterglow.
[0065]
[Table 4]
Figure 0003797170
[0066]
As is clear from Table 4, Sb 2 O Three Is not coated with zinc borate (Comparative Example 13), the DMF dispersion stability is extremely poor, the production of raw fibers is extremely difficult, the single fiber strength and elongation of the obtained fibers are extremely low, and the spinning process from the generated static electricity Extremely difficult. In addition, the metal elution of zinc borate was severe and the flame retardancy, deodorant performance, and antibacterial performance were significantly reduced. Sb 2 O Three Even when the coating amount was increased outside the range (Comparative Example 14), the same tendency as that without the coating (Comparative Example 13), and the DMF dispersion stability was not preferable, resulting in increased filter pressure, increased base pressure, fineness spots, etc. In addition, the fiber quality and processing stability are not only poor, but also the metal elution suppression effect is insufficient.
[0067]
[Table 5]
Figure 0003797170
[0068]
Table 5 shows the fibers obtained in Example 11 and Comparative Example 11 made into a fiber composite with 50 parts by weight of other fibers of various mixed fiber materials. 2 O Three (Comparative Example 11) not only contains the three major functions of flame retardancy, deodorant performance, and antibacterial performance, but also wool, acrylic fiber, and polyclar. With the exception of flame retardant fibers such as fibers, aramid fibers and polyimide fibers and melted fibers, mixing with other fibers that carbonize during combustion could not prevent “afterglow” so-called smokeless fires. The fiber composite of the present invention has the three major functions of flame retardancy, deodorant performance, and antibacterial performance, and is used in combination with fibers by means of simple mixing with a wide range of natural fibers and chemical fibers. It is clear that this is a composite high-performance fiber composite that can make the most of the characteristics of other fibers.
[0069]
【The invention's effect】
The acrylic synthetic fiber and fiber composite of the present invention can provide a safe, hygienic, healthy and comfortable lifestyle that meets the needs and needs of the rapidly aging society, and has a high consumer desire. It has three major functions of flame retardancy, deodorant performance, and antibacterial performance, and has excellent washing durability, and is extremely useful in industry.

Claims (1)

アンチモン化合物を硼酸亜鉛量対比で2.0〜25重量%コーティングした硼酸亜鉛と、アンチモン化合物とを、アクリロニトリル30〜70重量%、ハロゲン含有ビニル系単量体70〜30重量%およびこれらと共重合可能なビニル系単量体10重量%以下よりなるアクリロニトリル系重合体に対して、0.5〜50重量%含有するアクリル系合成繊維90〜10重量部に対して、天然繊維および化学繊維よりなる群から選ばれた少なくとも1種の繊維10〜90重量部を含有することを特徴とする難燃性能、消臭性能、制菌性能に優れた繊維複合体。 Zinc borate coated with 2.0 to 25% by weight of antimony compound relative to zinc borate and antimony compound are copolymerized with acrylonitrile 30 to 70% by weight, halogen-containing vinyl monomer 70 to 30% by weight and these. It consists of natural fiber and chemical fiber with respect to 90-10 parts by weight of acrylic synthetic fiber containing 0.5-50 % by weight with respect to acrylonitrile-based polymer comprising 10% by weight or less of possible vinyl monomer. A fiber composite excellent in flame retardancy, deodorizing performance, and antibacterial performance, comprising 10 to 90 parts by weight of at least one fiber selected from the group.
JP2001290688A 2001-09-25 2001-09-25 Acrylic synthetic fibers and fiber composites thereof Expired - Fee Related JP3797170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290688A JP3797170B2 (en) 2001-09-25 2001-09-25 Acrylic synthetic fibers and fiber composites thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290688A JP3797170B2 (en) 2001-09-25 2001-09-25 Acrylic synthetic fibers and fiber composites thereof

Publications (2)

Publication Number Publication Date
JP2003096619A JP2003096619A (en) 2003-04-03
JP3797170B2 true JP3797170B2 (en) 2006-07-12

Family

ID=19112958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290688A Expired - Fee Related JP3797170B2 (en) 2001-09-25 2001-09-25 Acrylic synthetic fibers and fiber composites thereof

Country Status (1)

Country Link
JP (1) JP3797170B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103346A1 (en) * 2004-04-27 2005-11-03 Kaneka Corporation Flame-retardant synthetic fiber and frame-retarded textile goods made by using the same
JP4777892B2 (en) * 2004-07-30 2011-09-21 株式会社カネカ Flame retardant synthetic fiber, flame retardant fiber composite and upholstered furniture product using the same
ATE486160T1 (en) * 2004-10-08 2010-11-15 Kaneka Corp FLAME RETARDANT SYNTHETIC FIBER, FLAME RETARDANT FIBER COMPOSITE AND UPHOLSTERED FURNITURE MADE THEREFROM
JP4809156B2 (en) * 2006-08-03 2011-11-09 帝人テクノプロダクツ株式会社 Flame retardant aromatic polyamide fiber containing inorganic carbonate
JP4457182B2 (en) 2008-07-24 2010-04-28 株式会社カネカ Flame retardant synthetic fiber, flame retardant fiber assembly, method for producing the same, and fiber product

Also Published As

Publication number Publication date
JP2003096619A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP4308820B2 (en) Flame retardant fiber composite and fabric produced using the same
WO2006093279A1 (en) Flame retardant bedding product
JP2008239606A (en) Antithrombogenic platinum-containing ceramic composition and article containing the same
JP3301706B2 (en) Deodorant composite fiber and method for producing the same
JP3797170B2 (en) Acrylic synthetic fibers and fiber composites thereof
US6528162B1 (en) Acrylic synthetic fiber, use thereof, and process for producing acrylic synthetic fiber
TW200914658A (en) Textile knit fabrics with enhanced flame retardancy for mattress and household products
KR102522833B1 (en) flame retarding non-woven for mattress and manufacturing method therof
JP2007270410A (en) Flame-retardant fabric for cover
JP2023516529A (en) Mattress fabric and its manufacturing method
WO2021049200A1 (en) Flame-retardant fiber composite and flame-retardant working clothes
JP2007291570A (en) Flame-retardant synthetic fiber, flame-retardant fiber complex body and nonwoven fabric as flame-blocking barrier
EP1798318B1 (en) Flame-retardant synthetic fiber, flame-retardant fiber composite, and upholstered furniture product made with the same
JP2007270409A (en) Flame-retardant synthetic fiber and flame-retardant mattress using the same
JP2007291571A (en) Flame-retardant synthetic fiber, flame-retardant fiber complex body and flame-retardant mattress using the same
JP4346566B2 (en) Flame-retardant synthetic fiber, flame-retardant fiber composite using the flame-retardant synthetic fiber, and upholstered furniture products using the flame-retardant fiber composite
JP5341673B2 (en) Deodorant fiber and method for producing the same
JP4713695B1 (en) Flameproof rayon fiber, method for producing the same, and flameproof fiber structure
JP2007270411A (en) Flame-retardant synthetic fiber, flame-retardant fiber composite, and upholstered furniture product using the same
JP2023076196A (en) Fiber, yarn and blended yarn, and fiber structure
JP2021059790A (en) Blended yarn and fiber structure
JP4777892B2 (en) Flame retardant synthetic fiber, flame retardant fiber composite and upholstered furniture product using the same
JP2024160196A (en) Flame retardant upholstered furniture including flame barrier fabrics
JP2007308849A (en) Flame-retardant synthetic fiber, frame-retardant fiber composite material and upholstered furniture using the same
JP2007169800A (en) Deodorant/flame retardant polyester-based fibrous structure and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060113

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees