JP3796765B2 - Manufacturing method of multilayer substrate for mounting electronic components - Google Patents

Manufacturing method of multilayer substrate for mounting electronic components Download PDF

Info

Publication number
JP3796765B2
JP3796765B2 JP08482795A JP8482795A JP3796765B2 JP 3796765 B2 JP3796765 B2 JP 3796765B2 JP 08482795 A JP08482795 A JP 08482795A JP 8482795 A JP8482795 A JP 8482795A JP 3796765 B2 JP3796765 B2 JP 3796765B2
Authority
JP
Japan
Prior art keywords
thermocompression bonding
insulating substrate
prepreg
mounting
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08482795A
Other languages
Japanese (ja)
Other versions
JPH08255979A (en
Inventor
輝正 二の丸
一史 小竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP08482795A priority Critical patent/JP3796765B2/en
Publication of JPH08255979A publication Critical patent/JPH08255979A/en
Application granted granted Critical
Publication of JP3796765B2 publication Critical patent/JP3796765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【産業上の利用分野】
本発明は,バリ取り工程及びフタ取り工程を必要とせず,加熱圧着作業の簡易化を図ることができる,電子部品搭載用多層基板の製造方法に関する。
【0002】
【従来技術】
多数の絶縁基板を積層してなる電子部品搭載用多層基板としては,例えば,図8に示すごとく,4枚の絶縁基板11〜14を,プリプレグ接着層22〜24を介して積層圧着したものがある。絶縁基板11〜13の表側面には,内層回路としての回路パターン5が設けられている。最下層の絶縁基板11の裏側面,及び最上層の絶縁基板14の表側面には,それぞれ外層回路としての回路パターン51が設けられている。
【0003】
また,電子部品搭載用多層基板9の略中央部には,電子部品を搭載するための搭載用凹部10が設けられている。搭載用凹部10は,絶縁基板11〜14に設けた搭載穴101〜104と,搭載穴101の周囲に接合された放熱板59とより構成されている。
【0004】
上記電子部品搭載用多層基板9を製造する方法としては,従来,例えば,図9〜図17に示す方法がある。その概略は,図1(A)に図示した。
まず,図9に示すごとく,表側面に回路パターン5を形成した絶縁基板12を準備する。一方,図10に示すごとく,該絶縁基板12と同一形状のプリプレグ接着シート220を準備する。次に,図11に示すごとく,絶縁基板12の裏側面に,上記プリプレグ接着シートを仮接着してプリプレグ接着層22となし,第2単位積層体32を得る。
【0005】
次に,図12に示すごとく,第2単位積層体32の略中央部を穴明けして,絶縁基板12には搭載穴102,プリプレグ接着層22には開口穴202を形成する。このとき,プリプレグ接着層22の開口穴202には,プリプレグ接着層におけるファイバーが露出した所謂バリ292が発生するため,バリ取り作業を行う。
【0006】
次に,図13に示すごとく,第2単位積層体32をエアープレート41に載置し,その表面を,プリプレグ接着層22と離型性の高い密封シート42により包む。密封シート42の周辺は,耐熱ゴム43により止めて,密封シート42の中を真空の状態とする。次に,この状態のまま,第2単位積層体32を加熱することによりベーキングして,プリプレグ接着層22を半硬化させる。次に,図14に示すごとく,上記密封シートの中から第2単位積層体32を取り出す。
【0007】
次に,図15に示すごとく,回路パターン5を形成した最下層用の絶縁基板11に,凹状の搭載穴111を形成する。
次に,上記絶縁基板11の表側面に上記第2単位積層体32を積層し,これらをプレス板6により押圧して先行プレスを行い加熱圧着する。先行プレスは,後述の本プレスよりも低温において行う。これにより,一体化した二層基板302を得る。
【0008】
次に,図16に示すごとく,上記第2単位積層体32と同様の方法により,第3単位積層体33を作製する。そして,該第3単位積層体33を,上記二層基板302の表側面に積層し,これらをプレス板6により押圧して本プレスを行い加熱圧着する。これにより,一体化した三層基板303を得る。
【0009】
また,図17に示すごとく,裏側面にプリプレグ接着層24を設けた絶縁基板14を作製し,その裏側面に凹状の搭載穴114を形成して,第4単位積層体34とする。
次に,上記三層基板303の表側面に第4単位積層体34を積層し,これらをプレス板6により押圧して本プレスを行い加熱圧着する。これにより,一体化した四層基板304を得る。
【0010】
次に,上記四層基板304に,図示しないスルーホールを穿設し,その表面にパネルめっきを施す。次いで,エッチングにより四層基板304の表側面及び裏側面に,外層回路としての回路パターンを形成する。
次に,最下層及び最上層の絶縁基板11,14に形成されている搭載穴111,114の蓋部121,124を,図17に示す点線131,134に沿って切断して,上下に貫通する搭載穴101,104を形成する。
【0011】
これにより,図8に示す上記電子部品搭載用多層基板9が得られる。その後,上記電子部品搭載用多層基板には,外形加工を施し,スルーホールの中にリードピンを装着し,放熱板59を接着する。
【0012】
【解決しようとする課題】
しかしながら,上記従来の電子部品搭載用多層基板の製造方法においては,上記図8〜図17及び図1(A)のフローチャートに示すごとく,絶縁基板にプリプレグ接着シートを接着した後,穴明けを行っている。そのため,図12に示すごとく,プリプレグ接着層22の開口穴202の端部にバリ292が発生する。それ故,図1に示すごとく,バリ取り工程が必要である。
【0013】
また,図17に示すごとく,すべての絶縁基板11〜14を積層し加熱圧着した後に,搭載穴111,114の蓋部121,124を取り除き,搭載用凹部10を開口させる作業が必要である。
更に,図15〜図17に示すごとく,各単位積層体を1枚ずつ積層する毎に,本プレスをしているため,加熱圧着操作が多く,作業時間が長くなる。
【0014】
本発明はかかる従来の問題点に鑑み,バリ取り工程及びフタ取り工程を必要とせず,加熱圧着作業の簡易化を図ることができる,電子部品搭載用多層基板の製造方法を提供しようとするものである。
【0015】
【課題の解決手段】
本発明は,回路パターンを形成した絶縁基板の間に,当該絶縁基板と一対をなす各プリプレグ接着層を介在させて,上記絶縁基板を積層し,これらを真空度状態となすと共にオートクレーブ内に入れて上記プリプレグ接着層が半硬化しないような温度で加圧加熱し仮接着して一体化した積層体となす工程と
次に,上記積層体を上記真空状態から取り出し,上記プリプレグ接着層のゲルタイムに合わせて調整したベーキング時間でベーキングして上記プリプレグ接着層を半硬化させる工程と
その後,上記積層体を真空度状態で加熱圧着する工程とよりなることを特徴とする電子部品搭載用多層基板の製造方法にある。
【0016】
本発明において最も注目すべきことは,搭載用凹部を形成するための搭載穴と回路パターンとを予め形成した絶縁基板と,開口穴を予め形成したプリプレグ接着シートとを,それぞれ複数枚準備すること,次いで,上記プリプレグ接着シートを介在させて上記複数の絶縁基板のすべてを積層し,仮接着して一体化した積層体となし,その後該積層体にベーキング及び加熱圧着を施すことである。
【0017】
複数の絶縁基板に形成される搭載穴は,絶縁基板を積層した際に,その積層体の少なくとも一方に開口した搭載用凹部を構成するように形成する。
一方,プリプレグ接着シートにおける開口穴の穴径Rは,該プリプレグ接着シートと一対をなす絶縁基板における上記搭載穴の穴径rよりも0.05〜0.6mm大きいことが好ましい(図3参照)。
【0018】
上記開口穴の穴径Rと上記搭載穴の穴径rとの差が0.05mm未満の場合には,後工程の加熱圧着の際に,プリプレグ接着シートの樹脂が搭載用凹部内に流出するおそれがある。一方,上記穴径の差が0.6mmを越える場合には,搭載用凹部付近における絶縁基板とプリプレグ接着シートとの接着性が低下するおそれがある。 上記プリプレグ接着シートの開口穴は,例えば,ルーター加工の手段により形成する。
【0019】
次に,上記複数の各絶縁基板の間に上記絶縁基板と一対をなす各プリプレグ接着シートを介在させて,これらをすべて積層し,仮接着して,一体化した積層体を得る。
上記仮接着は,プリプレグ接着シートよりなるプリプレグ接着層が半硬化しないような低温で行う。半硬化する温度又はそれ以上の温度で仮接着を行うと,後工程のベーキング及び加熱圧着において,プリプレグ接着層の硬化状態を調整することが困難となる。
【0020】
次に,上記積層体をベーキングして,上記プリプレグ接着層を半硬化させる。このベーキングは,90〜100℃において行うことが好ましい。これにより,加熱圧着の際のプリプレグ接着層の樹脂流れを抑制することができ,また回路パターン間の凹凸をプリプレグ接着層により埋めて平坦にすることができる。
【0021】
上記ベーキングの時間は,プリプレグ接着層の樹脂のゲルタイムに併せて調整する。ゲルタイムは,プリプレグ接着シートの種類,保存条件,及び保存期間により異なるため,使用前に測定して,ベーキング時間を決定することが好ましい。例えば,ゲルタイムが50分間の場合には,ベーキング時間を40分間とする。ゲルタイムが60分間の場合には,ベーキング時間を50分間とする。
【0022】
次に,上記積層体に加熱圧着を行う。この積層体の加熱圧着は,例えば,温度上昇させながら加熱圧着を行う先行プレスと,その後において最終圧着温度において加熱圧着を行う本プレスとにより行う。
上記加熱圧着は,例えば,オートクレーブ等を用いて等方的に加圧しながら行うことが好ましい。これにより,積層体の全体に等しく圧力Pが加わるため,各絶縁基板の全体を確実に加熱圧着することができる(図5参照)。
【0023】
この加熱圧着は,積層体を真空状態として行うことが好ましい。これにより,比較的低温において,プリプレグ接着層からの樹脂の流出,及びプリプレグ接着層の中におけるボイドの発生等といった不具合を抑制することができる。更に,かかる不具合を防止するため,上記真空条件は,76mmHg以下の真空度であることが好ましい。
【0024】
上記積層体の真空状態は,例えば,積層体を密封シートにより包み,密封し,その内部の空気を真空排気装置により吸引することにより実現することができる。
上記密封シートとしては,ポリイミド,ポリアミド,ポリプロピレン,ポリカーボネート,ポリメチルペンテン等を用い,その厚みは,0.03〜2.0mmとすることが好ましい。これにより,密封シートに耐熱性,柔軟性を付与することができる。
【0025】
また,上記密封シートの内部に,クッションとしての役目を果たすブリザークロスを設けることが好ましい。ブリザークロスは,積層体の形状が起伏に富み,その凹部が非常に深い場合(例えば,搭載用凹部)に,積層体の形状に追従して,積層体の全体を等方的に加熱加圧するためである。また,積層体の凸部による密封シートの破損を防止するためである。
上記ブリザークロスとしては,ガラス繊維,セラミック繊維,紙,ポリイミド繊維,テフロン繊維等を用い,その厚みは0.5〜5.0mmとすることが好ましい。
【0026】
【作用及び効果】
本発明の電子部品搭載用多層基板の製造方法においては,プリプレグ接着シートに対して予め開口穴を形成しておく。そのため,プリプレグ接着シートを単独で中抜き加工することとなるため加工面にバリが発生しない。このため,プリプレグ接着シートからファイバーが露出せず,バリが発生しない。故に,バリ取り作業が不要である。
【0027】
また,絶縁基板及びプリプレグ接着シートを積層してなる積層体は,搭載用凹部を有している。このため,加熱圧着の後に,搭載用凹部を開口させるためのフタ取り作業を行う必要がない。
【0028】
更に,仮接着に先立って,複数枚の各絶縁基板の間に,各プリプレグ接着シートを介在させてこれらをすべて積層している。そのため,積層工程は一度行えばよい。
また,その後の仮接着,ベーキング,及び加熱圧着もそれぞれ一度行えばよく,従来のように各層を積層するごとに加熱圧着を行う必要がない(図1参照)。故に,加熱圧着作業が容易となり,電子部品搭載用多層基板の製造工程全体の大幅な合理化を達成することができる。
【0029】
上記のごとく,本発明によれば,バリ取り工程及びフタ取り工程を必要とせず,加熱圧着作業の簡略化を図ることができる,電子部品搭載用多層基板の製造方法を提供することがきる。
【0030】
【実施例】
本発明の実施例にかかる電子部品搭載用多層基板の製造方法について,図1〜図7を用いて説明する。
本例により作製される電子部品搭載用多層基板9は,4枚の絶縁基板11〜14をプリプレグ接着層22〜24を介して積層,圧着したものであり,その略中央部には電子部品を搭載するための搭載用凹部10が形成されている(前記図8参照)。各絶縁基板の表面には回路パターン5が設けられている。
【0031】
次に,上記電子部品搭載用多層基板の製造方法について,まずその概要を説明する。
即ち,図1(B)に示すごとく,搭載用凹部を形成するための搭載穴と回路パターンとを予め形成してなる絶縁基板(図1における回路作成基板)と,上記搭載穴に対応した開口穴を予め形成してなるプリプレグ接着シートとを,それぞれ複数枚準備し,上記の各絶縁基板の間に,各プリプレグ接着シートを介在させてこれらを全部積層し,仮接着して積層体となし,次いでベーキング及び加熱圧着を行うことにより,上記電子部品搭載用多層基板を製造する。
【0032】
以下,これを詳説する。
まず,図2に示すごとく,ガラスエポキシ製の絶縁基板11〜14の表側面に,回路パターン5を形成する。次に,上記絶縁基板11〜14に,搭載用凹部を形成するための貫通した搭載穴101〜104を,ルーター加工により形成する。この搭載穴101〜104は,絶縁基板11〜14を積層した際に,上方に行くに従って階段状に広く開口するよう設計する。
【0033】
一方,上記絶縁基板12〜14のそれぞれと一対をなすプリプレグ接着シート220,230,240を準備する。このプリプレグ接着シートは,ガラスクロスに樹脂が含浸されているものである。次に,プリプレグ接着シート220,230,240に,上記搭載穴102〜104と対応する位置に開口穴202〜204をルーター加工により形成する。
【0034】
開口穴202の穴径Rは,図3に示すごとく,プリプレグ接着シート220と一対をなす絶縁基板12の搭載穴102の穴径rよりも0.2mm大きい。また,その他の開口穴203,204も同様である。
【0035】
次に,図2に示すごとく,プラテン71上に設けたエアープレート710の上に,マイラー721〜723を介在させながら樹脂シート731(厚み0.1mm)および金属板741(SUS,厚み1mm)を重ねる。これは,位置合わせ用のピンの長さに合せるためである。エアープレート710は,図示しない真空排気装置と連結している。尚,本例においては上記の構成としたが,別にこの組み合わせ構成でなくても良い。
【0036】
次に,上記エアプレート710の上に,上記各絶縁基板11〜14の間に,上記各プリプレグ接着シート220,230,240を介在させて,上記複数の絶縁基板のすべてを積層し,位置決めする。
【0037】
次に,積層した最上層の絶縁基板14の上に,マイラー724,樹脂シート732,マイラー725を重ねる。次いで,これらを,ブリザークロス79,及び密封シートとしてのポリアミドシート74により包み,その周辺を耐熱ゴム75により止めて,上記真空排気装置によりポリアミドシート74の内部の空気を吸引して,真空度76mmg以下とする。
この状態で,オートクレーブ内において,加圧加熱して,すべての各絶縁基板を仮接着して,一体化した積層体を得る。
上記仮接着の条件は,図6に示すごとく,9kg/cm2 ,64℃である。
【0038】
尚,図2において,上記最上段のマイラー725の上に金属板を重ね,更にその上に,前記と同様の他の積層体となるべき絶縁基板及びプリプレグ接着シートを積層して,これらを一括して仮接着して,複数組の積層体を同時に得ることもできる。
【0039】
次に,図4に示すごとく,上記積層体7を上記密封用のポリアミドシート74の中から取り出す。次いで,この積層体7についてベーキングを行い,プリプレグ接着シートからなるプリプレグ接着層22〜24を半硬化させる。
【0040】
ベーキングは,積層体をラック等に立てかけた状態で行う。ベーキングの条件は,90〜100℃である。ベーキングの時間は,プリプレグ接着層の樹脂のゲルタイムに合わせて調整する。例えば,ゲルタイムが50分間の場合にはベーキングを40分間行い,ゲルタイムが60分間の場合にはベーキングを50分間行う。
【0041】
次に,上記積層体7を加熱圧着する。この加熱圧着を行うに当たっては,図5に示すごとく,プラテン81上のエアープレート82の上に,更に金属板83(SUS,厚み1mm),テドラー841を重ね,その上に上記積層体7を載置し,その上にテドラー842を重ねる。そして,これらをブリザークロス85,及び密封シートとしてのポリアミドシート86により包み,耐熱ゴム87により止める。
次に,ポリアミドシート86の内部を脱気し真空度76mmHgとする。
【0042】
次いで,これらをオートクレーブ内にて,等方的に加圧しながら加熱して積層体7を加熱圧着する。加圧媒体は,窒素ガスである。この加熱圧着は,図7に示すごとく,まず,温度上昇させながら130℃,9kg/cm2 にて先行プレスを行い,次いで更に昇温させて175℃,9kg/cm2 にて本プレスを行う。
以上により,上記上記電子部品搭載用多層基板を得る(図8参照)。
【0043】
次に,本例の作用効果について説明する。
本例の電子部品搭載用多層基板の製造方法においては,図2に示すごとく,プリプレグ接着シート220,230,240に対して予め開口穴202,203,204を形成しておく。そのため,プリプレグ接着シートを単独で中抜き加工することとなるため,加工面にバリが発生しない。このため,上記プリプレグ接着シートからガラスファイバーが露出せず,バリが発生しない。故に,バリ取り作業が不要である。
【0044】
また,図4,図5に示すごとく,積層体7は,上下両方に開口した階段状の搭載用凹部10を有している。そのため,加熱圧着後に,搭載用凹部を開口させるためのフタ取り作業が不要である。
【0045】
更に,図5に示すごとく,仮接着に先立って,複数枚の各絶縁基板11〜14の間に,各プリプレグ接着シート220,230,240を介在させてこれらをすべて積層する。そのため,積層工程は一度行えばよい。
また,その後の仮接着,ベーキング工程,加熱圧着工程もそれぞれ一度行えばよく,そのため,図1(A)に示すごとく,従来のように各層を積層するごとに加熱圧着を行う必要がない。故に,加熱圧着作業が容易となり,電子部品搭載用多層基板の製造工程全体の大幅な合理化を達成することができる。
【0046】
また,図5に示すごとく,加熱圧着の際には,積層体7の全体に等方的に加圧されるため,搭載用凹部10の周辺の絶縁基板11〜14にも等しく圧力Pが加わる。そのため,すべての絶縁基板11〜14を確実に加熱圧着することができ,接着不良もない。
【0047】
また,積層体7の加熱圧着は,図5に示すごとく,オートクレーブ内において等方的に行っている。そのため,積層体7の全体に等しく圧力Pが加わり,各絶縁基板11〜14をプリプレグ接着層22〜24によって確実に密着することができる。
【0048】
また,加熱圧着は,上記のごとく,先行プレスと本プレスの2段階に渡って,徐々に温度上昇をしているため,プリプレグ接着層のゲル化と硬化とを別々に行うことができ,プリプレグ接着層の樹脂硬化の精密な制御ができる。
また,加熱圧着は,真空下において行っているため,比較的低温において,プリプレグの流出,及びプリプレグ接着層の中におけるボイドの発生等といった不具合を抑制することができる。
【図面の簡単な説明】
【図1】本発明と従来における,電子部品搭載用多層基板の製造方法の対比説明図。
【図2】実施例の,積層体の仮接着の方法を示す説明図。
【図3】実施例における,絶縁基板の搭載穴とプリプレグ接着シートの開口穴との大きさを示す説明図。
【図4】実施例における,仮接着後の積層体の説明図。
【図5】実施例における,加熱圧着の方法を示す説明図。
【図6】実施例における,仮接着のタイムプログラムの説明図。
【図7】実施例における,加熱圧着のタイムプログラムの説明図。
【図8】従来例の電子部品搭載用多層基板の説明図。
【図9】従来例における,絶縁基板の説明図。
【図10】従来例における,プリプレグ接着シートの説明図。
【図11】従来例における,第2単位積層体の説明図。
【図12】従来例における,開口穴にバリが発生した第2単位積層体の説明図。
【図13】従来例における,ベーキング工程を示す説明図。
【図14】従来例における,ベーキング後の第2単位積層体の説明図。
【図15】従来例における,二層積層時の加熱圧着時の説明図。
【図16】図15につづく,三層積層時の加熱圧着時の説明図。
【図17】図16に続く,四層積層時の加熱圧着時の説明図。
【符号の説明】
11〜14...絶縁基板,
10...搭載用凹部,
101〜104...搭載穴,
22〜24...プリプレグ接着層,
202〜204...開口穴,
5...回路パターン,
7...積層体,
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a multilayer substrate for mounting electronic components, which does not require a deburring step and a lid removing step, and can simplify the thermocompression bonding operation.
[0002]
[Prior art]
As a multilayer substrate for mounting an electronic component formed by laminating a large number of insulating substrates, for example, as shown in FIG. 8, four insulating substrates 11 to 14 are laminated and pressure-bonded via prepreg adhesive layers 22 to 24. is there. Circuit patterns 5 as inner layer circuits are provided on the front side surfaces of the insulating substrates 11 to 13. Circuit patterns 51 as outer layer circuits are provided on the back side surface of the lowermost insulating substrate 11 and the front side surface of the uppermost insulating substrate 14.
[0003]
In addition, a mounting recess 10 for mounting electronic components is provided at a substantially central portion of the electronic component mounting multilayer substrate 9. The mounting recess 10 includes mounting holes 101 to 104 provided in the insulating substrates 11 to 14 and a heat radiating plate 59 joined around the mounting hole 101.
[0004]
As a method of manufacturing the multilayer board 9 for mounting electronic components, there are conventional methods, for example, shown in FIGS. The outline is shown in FIG.
First, as shown in FIG. 9, an insulating substrate 12 having a circuit pattern 5 formed on the front side surface is prepared. On the other hand, as shown in FIG. 10, a prepreg adhesive sheet 220 having the same shape as the insulating substrate 12 is prepared. Next, as shown in FIG. 11, the prepreg adhesive sheet is temporarily bonded to the back side surface of the insulating substrate 12 to form the prepreg adhesive layer 22, thereby obtaining the second unit laminate 32.
[0005]
Next, as shown in FIG. 12, a substantially central portion of the second unit laminate 32 is drilled, and a mounting hole 102 is formed in the insulating substrate 12, and an opening hole 202 is formed in the prepreg adhesive layer 22. At this time, since the so-called burrs 292 in which the fibers in the prepreg adhesive layer are exposed are generated in the opening holes 202 of the prepreg adhesive layer 22, a deburring operation is performed.
[0006]
Next, as shown in FIG. 13, the second unit laminate 32 is placed on the air plate 41, and the surface thereof is wrapped with the prepreg adhesive layer 22 and a highly releasable sealing sheet 42. The periphery of the sealing sheet 42 is stopped by a heat-resistant rubber 43 so that the inside of the sealing sheet 42 is in a vacuum state. Next, in this state, the second unit laminate 32 is baked by heating, and the prepreg adhesive layer 22 is semi-cured. Next, as shown in FIG. 14, the 2nd unit laminated body 32 is taken out from the said sealing sheet.
[0007]
Next, as shown in FIG. 15, a concave mounting hole 111 is formed in the lowermost insulating substrate 11 on which the circuit pattern 5 is formed.
Next, the said 2nd unit laminated body 32 is laminated | stacked on the front side surface of the said insulating substrate 11, these are pressed with the press board 6, a prior press is performed, and thermocompression bonding is carried out. The preceding press is performed at a lower temperature than the press described later. Thereby, an integrated two-layer substrate 302 is obtained.
[0008]
Next, as shown in FIG. 16, a third unit laminate 33 is fabricated by the same method as the second unit laminate 32. Then, the third unit laminated body 33 is laminated on the front side surface of the two-layer substrate 302, and these are pressed by the press plate 6 to perform the main pressing and thermocompression bonding. Thereby, an integrated three-layer substrate 303 is obtained.
[0009]
In addition, as shown in FIG. 17, the insulating substrate 14 provided with the prepreg adhesive layer 24 on the back side surface is produced, and a concave mounting hole 114 is formed on the back side surface to form a fourth unit laminate 34.
Next, the fourth unit laminate 34 is laminated on the front side surface of the three-layer substrate 303, and these are pressed by the press plate 6 to perform the main press and heat-press. As a result, an integrated four-layer substrate 304 is obtained.
[0010]
Next, through holes (not shown) are formed in the four-layer substrate 304, and the surface thereof is subjected to panel plating. Next, a circuit pattern as an outer layer circuit is formed on the front side surface and the back side surface of the four-layer substrate 304 by etching.
Next, the lid portions 121 and 124 of the mounting holes 111 and 114 formed in the lowermost and uppermost insulating substrates 11 and 14 are cut along the dotted lines 131 and 134 shown in FIG. The mounting holes 101 and 104 to be formed are formed.
[0011]
Thus, the electronic component mounting multilayer substrate 9 shown in FIG. 8 is obtained. Thereafter, the multi-layer substrate for mounting electronic parts is subjected to external processing, lead pins are mounted in the through holes, and the heat sink 59 is bonded.
[0012]
[Problems to be solved]
However, in the above-described conventional method for manufacturing a multilayer substrate for mounting electronic components, as shown in the flowcharts of FIGS. 8 to 17 and FIG. 1 (A), the prepreg adhesive sheet is bonded to the insulating substrate and then drilled. ing. Therefore, as shown in FIG. 12, a burr 292 is generated at the end of the opening hole 202 of the prepreg adhesive layer 22. Therefore, a deburring process is required as shown in FIG.
[0013]
In addition, as shown in FIG. 17, after all the insulating substrates 11 to 14 are stacked and thermocompression bonded, it is necessary to remove the lid portions 121 and 124 of the mounting holes 111 and 114 and open the mounting recess 10.
Furthermore, as shown in FIGS. 15 to 17, since the main pressing is performed every time the unit laminated bodies are laminated one by one, the thermocompression operation is many and the working time is long.
[0014]
In view of the conventional problems, the present invention is intended to provide a method for manufacturing a multilayer substrate for mounting electronic components, which does not require a deburring step and a lid removing step, and can simplify a thermocompression bonding operation. It is.
[0015]
[Means for solving problems]
In the present invention, the prepreg adhesive layer paired with the insulating substrate is interposed between the insulating substrates on which the circuit pattern is formed, and the insulating substrates are laminated to bring them into a vacuum state and put them in an autoclave. and to process such a laminate the prepreg adhesive layer are integrated by temporary adhesion pressurized and heated at a temperature that does not semi-cured Te,
Next, the above laminated body was taken out from the vacuum state, Ru and baked in the baking time that is tailored to a gel time of the prepreg adhesive layer is semi-cured the prepreg adhesive layer step,
Then, the manufacturing method of the multilayer board | substrate for electronic component mounting characterized by including the process of heat-pressing the said laminated body in a vacuum degree state.
[0016]
The most notable aspect of the present invention is to prepare a plurality of insulating substrates in which mounting holes and circuit patterns for forming mounting recesses are formed in advance, and a plurality of prepreg adhesive sheets in which opening holes are formed in advance. Then, all of the plurality of insulating substrates are laminated with the prepreg adhesive sheet interposed therebetween to form a laminated body that is temporarily bonded and integrated, and then the laminated body is subjected to baking and thermocompression bonding.
[0017]
The mounting holes formed in the plurality of insulating substrates are formed so as to form mounting recesses opened in at least one of the stacked bodies when the insulating substrates are stacked.
On the other hand, the hole diameter R of the opening hole in the prepreg adhesive sheet is preferably 0.05 to 0.6 mm larger than the hole diameter r of the mounting hole in the insulating substrate paired with the prepreg adhesive sheet (see FIG. 3). .
[0018]
When the difference between the hole diameter R of the opening hole and the hole diameter r of the mounting hole is less than 0.05 mm, the resin of the prepreg adhesive sheet flows into the mounting recess during the post-process thermocompression bonding. There is a fear. On the other hand, when the difference between the hole diameters exceeds 0.6 mm, the adhesion between the insulating substrate and the prepreg adhesive sheet in the vicinity of the mounting recess may be lowered. The opening hole of the prepreg adhesive sheet is formed by means of router processing, for example.
[0019]
Next, each prepreg adhesive sheet paired with the insulating substrate is interposed between the plurality of insulating substrates, and all of these are laminated and temporarily bonded to obtain an integrated laminated body.
The temporary adhesion is performed at a low temperature so that the prepreg adhesive layer made of the prepreg adhesive sheet is not semi-cured. If temporary bonding is performed at a temperature that is semi-cured or higher, it becomes difficult to adjust the cured state of the prepreg adhesive layer in the subsequent baking and thermocompression bonding.
[0020]
Next, the laminate is baked to semi-cure the prepreg adhesive layer. This baking is preferably performed at 90 to 100 ° C. Thereby, the resin flow of the prepreg adhesive layer at the time of thermocompression bonding can be suppressed, and the unevenness between the circuit patterns can be filled with the prepreg adhesive layer and flattened.
[0021]
The baking time is adjusted in accordance with the gel time of the resin of the prepreg adhesive layer. Since gel time varies depending on the type of prepreg adhesive sheet, storage conditions, and storage period, it is preferable to measure the gel time before use to determine the baking time. For example, when the gel time is 50 minutes, the baking time is 40 minutes. If the gel time is 60 minutes, the baking time is 50 minutes.
[0022]
Next, thermocompression bonding is performed on the laminate. The thermocompression bonding of the laminate is performed by, for example, a preceding press that performs thermocompression bonding while increasing the temperature, and a main press that performs thermocompression bonding at the final crimping temperature thereafter.
The thermocompression bonding is preferably performed while isotropically pressing using, for example, an autoclave. Thereby, since the pressure P is equally applied to the whole laminated body, the whole of each insulating substrate can be reliably heat-pressed (see FIG. 5).
[0023]
This thermocompression bonding is preferably performed with the laminate in a vacuum state. Thereby, it is possible to suppress problems such as outflow of resin from the prepreg adhesive layer and generation of voids in the prepreg adhesive layer at a relatively low temperature. Furthermore, in order to prevent such a problem, the vacuum condition is preferably a vacuum degree of 76 mmHg or less.
[0024]
The vacuum state of the laminated body can be realized, for example, by wrapping the laminated body with a sealing sheet, sealing the laminated body, and sucking air inside the laminated body with a vacuum exhaust device.
As the sealing sheet, polyimide, polyamide, polypropylene, polycarbonate, polymethylpentene or the like is used, and the thickness is preferably 0.03 to 2.0 mm. Thereby, heat resistance and a softness | flexibility can be provided to a sealing sheet.
[0025]
Further, it is preferable to provide a blister cloth that serves as a cushion inside the sealing sheet. The blister cloth isotropically heats and presses the entire laminate following the shape of the laminate when the laminate has a undulating shape and the recesses are very deep (for example, mounting recesses). Because. Moreover, it is for preventing the damage of the sealing sheet by the convex part of a laminated body.
As the blister cloth, glass fiber, ceramic fiber, paper, polyimide fiber, Teflon fiber or the like is used, and the thickness is preferably 0.5 to 5.0 mm.
[0026]
[Action and effect]
In the method for manufacturing a multilayer substrate for mounting electronic components according to the present invention, an opening hole is formed in advance in the prepreg adhesive sheet. Therefore, since the prepreg adhesive sheet is hollowed out independently, no burrs are generated on the processed surface. For this reason, the fiber is not exposed from the prepreg adhesive sheet, and burrs are not generated. Therefore, deburring work is unnecessary.
[0027]
Moreover, the laminated body formed by laminating the insulating substrate and the prepreg adhesive sheet has a mounting recess. For this reason, it is not necessary to perform a lid removing operation for opening the mounting recess after the thermocompression bonding.
[0028]
Further, prior to the temporary bonding, all the prepreg adhesive sheets are laminated between the plurality of insulating substrates. Therefore, the stacking process may be performed once.
Further, the subsequent temporary bonding, baking, and thermocompression bonding may be performed once, and it is not necessary to perform thermocompression bonding every time the respective layers are laminated as in the prior art (see FIG. 1). Therefore, the thermocompression bonding operation is facilitated, and a significant rationalization of the entire manufacturing process of the electronic component mounting multilayer substrate can be achieved.
[0029]
As described above, according to the present invention, it is possible to provide a method for manufacturing a multilayer substrate for mounting electronic components, which does not require a deburring step and a lid removing step, and can simplify the thermocompression bonding operation.
[0030]
【Example】
A method for manufacturing a multilayer substrate for mounting electronic components according to an embodiment of the present invention will be described with reference to FIGS.
The multilayer board 9 for mounting electronic components produced according to this example is obtained by laminating and pressing four insulating substrates 11 to 14 via prepreg adhesive layers 22 to 24. A mounting recess 10 for mounting is formed (see FIG. 8). A circuit pattern 5 is provided on the surface of each insulating substrate.
[0031]
Next, the outline of the manufacturing method of the multilayer board for mounting electronic parts will be described first.
That is, as shown in FIG. 1B, an insulating substrate (circuit creation substrate in FIG. 1) in which a mounting hole and a circuit pattern for forming a mounting recess are formed in advance, and an opening corresponding to the mounting hole. Prepare a plurality of prepreg adhesive sheets each having holes formed in advance, and laminate all of them by interposing each prepreg adhesive sheet between each of the above-mentioned insulating substrates. Then, the electronic component mounting multilayer substrate is manufactured by baking and thermocompression bonding.
[0032]
This will be described in detail below.
First, as shown in FIG. 2, the circuit pattern 5 is formed on the front side surfaces of the insulating substrates 11 to 14 made of glass epoxy. Next, through holes 101 to 104 for forming mounting recesses are formed in the insulating substrates 11 to 14 by router processing. The mounting holes 101 to 104 are designed to open wide in a stepped manner as they go upward when the insulating substrates 11 to 14 are stacked.
[0033]
Meanwhile, prepreg adhesive sheets 220, 230, and 240 that make a pair with each of the insulating substrates 12 to 14 are prepared. In this prepreg adhesive sheet, a glass cloth is impregnated with a resin. Next, opening holes 202 to 204 are formed in the prepreg adhesive sheets 220, 230, and 240 at positions corresponding to the mounting holes 102 to 104 by router processing.
[0034]
As shown in FIG. 3, the hole diameter R of the opening hole 202 is 0.2 mm larger than the hole diameter r of the mounting hole 102 of the insulating substrate 12 paired with the prepreg adhesive sheet 220. The same applies to the other opening holes 203 and 204.
[0035]
Next, as shown in FIG. 2, a resin sheet 731 (thickness: 0.1 mm) and a metal plate 741 (SUS, thickness: 1 mm) are placed on an air plate 710 provided on the platen 71 with the mylars 721 to 723 interposed. Overlapping. This is to match the length of the alignment pin. The air plate 710 is connected to a vacuum exhaust device (not shown). In this example, the above-described configuration is used, but this combination configuration is not necessary.
[0036]
Next, all of the plurality of insulating substrates are stacked and positioned on the air plate 710 with the prepreg adhesive sheets 220, 230, 240 interposed between the insulating substrates 11-14. .
[0037]
Next, the Mylar 724, the resin sheet 732, and the Mylar 725 are stacked on the uppermost insulating substrate 14 stacked. Next, these are wrapped with a blister cloth 79 and a polyamide sheet 74 as a sealing sheet, the periphery thereof is stopped with a heat-resistant rubber 75, and the air inside the polyamide sheet 74 is sucked by the vacuum exhaust device, and the degree of vacuum is 76 mm. The following.
In this state, pressure heating is performed in the autoclave, and all the insulating substrates are temporarily bonded to obtain an integrated laminate.
The temporary bonding conditions are 9 kg / cm 2 and 64 ° C. as shown in FIG.
[0038]
In FIG. 2, a metal plate is overlaid on the uppermost mylar 725, and further, an insulating substrate and a prepreg adhesive sheet to be another laminated body are laminated thereon, and these are collectively collected. Thus, a plurality of sets of laminated bodies can be obtained simultaneously by temporary bonding.
[0039]
Next, as shown in FIG. 4, the laminate 7 is taken out from the sealing polyamide sheet 74. Next, the laminate 7 is baked, and the prepreg adhesive layers 22 to 24 made of the prepreg adhesive sheet are semi-cured.
[0040]
Baking is performed in a state where the laminate is leaned against a rack or the like. Baking conditions are 90-100 degreeC. The baking time is adjusted according to the gel time of the resin of the prepreg adhesive layer. For example, when the gel time is 50 minutes, baking is performed for 40 minutes, and when the gel time is 60 minutes, baking is performed for 50 minutes.
[0041]
Next, the laminate 7 is thermocompression bonded. In performing this thermocompression bonding, as shown in FIG. 5, a metal plate 83 (SUS, thickness 1 mm) and a tedlar 841 are further stacked on the air plate 82 on the platen 81, and the laminate 7 is mounted thereon. And place the tedlar 842 on top of it. These are wrapped with a blister cloth 85 and a polyamide sheet 86 as a sealing sheet, and are fixed with heat-resistant rubber 87.
Next, the inside of the polyamide sheet 86 is evacuated to a vacuum degree of 76 mmHg.
[0042]
Next, these are heated while isotropically pressurizing in an autoclave to heat-bond the laminate 7. The pressurizing medium is nitrogen gas. In this thermocompression bonding, as shown in FIG. 7, first, the preceding press is performed at 130 ° C. and 9 kg / cm 2 while the temperature is increased, and then the temperature is further increased and the main press is performed at 175 ° C. and 9 kg / cm 2 . .
Thus, the above-mentioned multilayer substrate for mounting electronic parts is obtained (see FIG. 8).
[0043]
Next, the function and effect of this example will be described.
In the method for manufacturing a multilayer substrate for mounting electronic components in this example, as shown in FIG. 2, opening holes 202, 203, 204 are formed in advance in the prepreg adhesive sheets 220, 230, 240. Therefore, since the prepreg adhesive sheet is hollowed out independently, no burrs are generated on the processed surface. For this reason, glass fiber is not exposed from the prepreg adhesive sheet, and burrs are not generated. Therefore, deburring work is unnecessary.
[0044]
Moreover, as shown in FIGS. 4 and 5, the laminated body 7 has a step-like mounting recess 10 that is open both vertically. Therefore, it is not necessary to remove the lid for opening the mounting recess after thermocompression bonding.
[0045]
Further, as shown in FIG. 5, prior to temporary bonding, all the prepreg adhesive sheets 220, 230, and 240 are laminated between the plurality of insulating substrates 11 to 14. Therefore, the stacking process may be performed once.
Further, the subsequent temporary bonding, baking process, and thermocompression bonding process only need to be performed once. Therefore, as shown in FIG. 1A, it is not necessary to perform thermocompression bonding every time the respective layers are stacked as in the prior art. Therefore, the thermocompression bonding operation is facilitated, and a significant rationalization of the entire manufacturing process of the electronic component mounting multilayer substrate can be achieved.
[0046]
Further, as shown in FIG. 5, during the thermocompression bonding, the entire laminated body 7 is isotropically pressurized, so that the pressure P is equally applied to the insulating substrates 11 to 14 around the mounting recess 10. . Therefore, all the insulating substrates 11 to 14 can be reliably heat-pressed and there is no adhesion failure.
[0047]
Further, the thermocompression bonding of the laminate 7 is isotropically performed in the autoclave as shown in FIG. Therefore, the pressure P is equally applied to the entire laminated body 7, and the insulating substrates 11 to 14 can be reliably adhered by the prepreg adhesive layers 22 to 24.
[0048]
In addition, as described above, since the temperature is gradually increased over the two stages of the preceding press and the main press as described above, gelation and curing of the prepreg adhesive layer can be performed separately. Precise control of the resin curing of the adhesive layer is possible.
Moreover, since the thermocompression bonding is performed under vacuum, problems such as outflow of the prepreg and generation of voids in the prepreg adhesive layer can be suppressed at a relatively low temperature.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a comparison between a method for producing a multilayer substrate for mounting electronic components according to the present invention and a conventional one.
FIG. 2 is an explanatory view showing a method for temporarily adhering a laminate according to an example.
FIG. 3 is an explanatory diagram showing the sizes of the mounting hole of the insulating substrate and the opening hole of the prepreg adhesive sheet in the example.
FIG. 4 is an explanatory diagram of a laminated body after temporary bonding in an example.
FIG. 5 is an explanatory view showing a method of thermocompression bonding in an example.
FIG. 6 is an explanatory diagram of a temporary adhesion time program in the embodiment.
FIG. 7 is an explanatory diagram of a thermocompression time program in the embodiment.
FIG. 8 is an explanatory view of a multilayer board for mounting electronic components according to a conventional example.
FIG. 9 is an explanatory diagram of an insulating substrate in a conventional example.
FIG. 10 is an explanatory diagram of a prepreg adhesive sheet in a conventional example.
FIG. 11 is an explanatory diagram of a second unit laminate in a conventional example.
FIG. 12 is an explanatory diagram of a second unit laminate in which burrs are generated in an opening hole in a conventional example.
FIG. 13 is an explanatory view showing a baking process in a conventional example.
FIG. 14 is an explanatory diagram of a second unit laminated body after baking in a conventional example.
FIG. 15 is an explanatory diagram at the time of thermocompression bonding in a two-layer lamination in a conventional example.
FIG. 16 is an explanatory view at the time of thermocompression bonding at the time of three-layer lamination, following FIG.
FIG. 17 is an explanatory view at the time of thermocompression bonding during four-layer lamination, following FIG. 16;
[Explanation of symbols]
11-14. . . Insulating substrate,
10. . . Mounting recess,
101-104. . . Mounting holes,
22-24. . . Prepreg adhesive layer,
202-204. . . Opening hole,
5. . . Circuit pattern,
7). . . Laminate,

Claims (4)

回路パターンを形成した絶縁基板の間に,当該絶縁基板と一対をなす各プリプレグ接着層を介在させて,上記絶縁基板を積層し,これらを真空度状態となすと共にオートクレーブ内に入れて上記プリプレグ接着層が半硬化しないような温度で加圧加熱し仮接着して一体化した積層体となす工程と
次に,上記積層体を上記真空状態から取り出し,上記プリプレグ接着層のゲルタイムに合わせて調整したベーキング時間でベーキングして上記プリプレグ接着層を半硬化させる工程と
その後,上記積層体を真空度状態で加熱圧着する工程とよりなることを特徴とする電子部品搭載用多層基板の製造方法。
The insulating substrate is laminated between the insulating substrate on which the circuit pattern is formed, and the insulating substrate is paired with the insulating substrate, and the insulating substrate is laminated. Then, the insulating substrate is brought into a vacuum state and placed in an autoclave to bond the prepreg. and to process such a laminate layer are integrated at a temperature that will not partially cured pressurized and heated temporarily adhered to,
Next, the above laminated body was taken out from the vacuum state, Ru and baked in the baking time that is tailored to a gel time of the prepreg adhesive layer is semi-cured the prepreg adhesive layer step,
Then, the manufacturing method of the multilayer substrate for electronic component mounting characterized by including the process of heat-pressing the said laminated body in a vacuum degree state.
上記積層体のベーキングは,90〜100℃の範囲で行うことを特徴とする請求項1に記載の電子部品搭載用多層基板の製造方法。  The method for manufacturing a multilayer substrate for mounting electronic components according to claim 1, wherein the laminated body is baked in a range of 90 to 100 ° C. 上記加熱圧着は,温度上昇させながら加熱圧着を行う先行プレスと,その後において最終圧着温度において加熱圧着し上記プリプレグ層を硬化させる本プレスとの2段階に渡って温度を上昇させることを特徴とする請求項1に記載の電子部品搭載用多層基板の製造方法。  The thermocompression bonding is characterized in that the temperature is increased in two stages: a preceding press that performs thermocompression bonding while raising the temperature, and a main press that subsequently cures the prepreg layer by thermocompression bonding at the final crimping temperature. The manufacturing method of the multilayer substrate for electronic component mounting of Claim 1. 上記加熱圧着は,オートクレーブ内で等方圧下において行うことを特徴とする請求項1に記載の電子部品搭載用多層基板の製造方法。  2. The method of manufacturing a multilayer substrate for mounting electronic components according to claim 1, wherein the thermocompression bonding is performed under isotropic pressure in an autoclave.
JP08482795A 1995-03-15 1995-03-15 Manufacturing method of multilayer substrate for mounting electronic components Expired - Fee Related JP3796765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08482795A JP3796765B2 (en) 1995-03-15 1995-03-15 Manufacturing method of multilayer substrate for mounting electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08482795A JP3796765B2 (en) 1995-03-15 1995-03-15 Manufacturing method of multilayer substrate for mounting electronic components

Publications (2)

Publication Number Publication Date
JPH08255979A JPH08255979A (en) 1996-10-01
JP3796765B2 true JP3796765B2 (en) 2006-07-12

Family

ID=13841606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08482795A Expired - Fee Related JP3796765B2 (en) 1995-03-15 1995-03-15 Manufacturing method of multilayer substrate for mounting electronic components

Country Status (1)

Country Link
JP (1) JP3796765B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430040B2 (en) * 1998-11-19 2003-07-28 シャープ株式会社 Two-dimensional image detector and manufacturing method thereof
CN101784161A (en) * 2010-02-23 2010-07-21 深圳崇达多层线路板有限公司 Method for manufacturing circuit board containing step holes
CN105282980B (en) * 2015-10-20 2018-09-07 深圳市景旺电子股份有限公司 A kind of production method of PCB metallization stepped hole

Also Published As

Publication number Publication date
JPH08255979A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
JP3885638B2 (en) Pressing method and method for producing pressing member
WO2007052799A1 (en) Multilayer printed wiring board and process for producing the same
JP3796765B2 (en) Manufacturing method of multilayer substrate for mounting electronic components
JP3893930B2 (en) Sheet material holder, sheet material holding method, and multilayer substrate manufacturing method
JP4069787B2 (en) Multilayer substrate and manufacturing method thereof
WO2004064465A1 (en) Circuit board and process for producing the same
JP3277195B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP4465888B2 (en) Board connection method
JP4175192B2 (en) Multilayer substrate manufacturing method
JP2004063701A (en) Production of flexible printed wiring board
EP1158549A1 (en) Laminated body manufacturing method and laminated body pressurizing device
JP3876802B2 (en) Press method
JP2001036237A (en) Manufacture of multilayered printed board
JP2003304071A (en) Method of manufacturing multilayer board
KR101679565B1 (en) Bonding target guide
WO2017187939A1 (en) Method for producing resin multilayer substrate
JP3838108B2 (en) Manufacturing method of multilayer printed wiring board
JP3934826B2 (en) Manufacturing method of multilayer wiring board
JPH0883981A (en) Manufacture of printed-wiring board
JP4803918B2 (en) Manufacturing method of multilayer wiring board
JP3834888B2 (en) Manufacturing method of electronic component mounting board
JP3915662B2 (en) Multilayer circuit board manufacturing method
JP2001203453A (en) Manufacturing method for multilayer laminated board
JP2003249753A (en) Method for producing multilayer printed wiring board
JP4693331B2 (en) Manufacturing method of multilayer electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees