JP3796599B2 - Electrolytic polishing liquid - Google Patents

Electrolytic polishing liquid Download PDF

Info

Publication number
JP3796599B2
JP3796599B2 JP27743797A JP27743797A JP3796599B2 JP 3796599 B2 JP3796599 B2 JP 3796599B2 JP 27743797 A JP27743797 A JP 27743797A JP 27743797 A JP27743797 A JP 27743797A JP 3796599 B2 JP3796599 B2 JP 3796599B2
Authority
JP
Japan
Prior art keywords
acid
electrolytic polishing
copper
phosphate
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27743797A
Other languages
Japanese (ja)
Other versions
JPH11117100A (en
Inventor
義治 菊池
達裕 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuken Industry Co Ltd
Original Assignee
Yuken Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuken Industry Co Ltd filed Critical Yuken Industry Co Ltd
Priority to JP27743797A priority Critical patent/JP3796599B2/en
Publication of JPH11117100A publication Critical patent/JPH11117100A/en
Application granted granted Critical
Publication of JP3796599B2 publication Critical patent/JP3796599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits

Description

【0001】
【発明の属する技術分野】
本発明は、銅または銅合金を電解研摩する際に使用する電解研摩液に関する。特に、リード(端子)材等の電子部品に好適な発明である。
【0002】
【背景技術】
昨今、銅や銅合金からなる材料(以下「銅系材料」と称す。)は、コンデンサ、抵抗器、コネクタ、プリント回路、集積回路等の電子部品のリード材(端子材)として多用化されている。そして、昨今の電子部品の高性能化・高密度化等の要請から、従来にもまして、銅系材料の表面が平滑であることが要求されるようになってきている。その平滑化が容易に可能な方法として、本願出願人が先に提案した電解研摩方法がある(特開平6−238519号公報、特開平6−285719号公報、同7−60549号公報等)。
【0003】
ここで、これらの電解研摩方法は、陽極(被加工物)と陰極との対面間の電解液を、流動させて研摩する方法で、ヤッケ層を発生させずに表面粗さ2〜100μmに仕上げる粗研摩(マクロ研摩)と、ヤッケ層を発生させて表面粗さを2μm未満にする鏡面研摩(ミクロ研摩)とを、一工程で同時にできる方法である。
【0004】
そして、従来の電解研摩液としては、通常、硫酸塩、硝酸塩、キレート剤を含む、中性から酸性のものを使用していた(特開平7−316899号公報:(特願平6−139285号)参照)。
【0005】
例えば、銅合金である黄銅(Cu−Zn)用の電解液として、上記特開平7−316899号公報に、下記組成のものが記載されている。
【0006】
硫酸アンモニウム 100g/L
酢酸アンモニウム 100g/L
【0007】
【発明が解決しようとする課題】
しかし、上記組成の電解研摩液を使用して銅合金を研摩した場合、銅合金の種類により、特にコルソン系合金に下記のような問題点が発生し易いことが分かった。
【0008】
研摩対象物(銅系材料)の表面に、スマット(粉状の黒色酸化物)が発生し易い。このスマットは、後工程で、電気メッキ、無電解メッキ、CVD(chemical vapor deposition)、PVD(physical vapor deposition)等による被膜(表面処理)を形成した場合、該被膜に表面フクレ、コブ、ハガレ等の原因となり、望ましくない。
【0009】
本発明は、上記にかんがみて、研摩対象物である銅系材料の表面にスマットが発生しがたい電解研摩液を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る電解研摩液は、上記課題を、下記構成により解決するものである。
【0011】
銅または銅合金を電解研摩する際に使用する電解研摩液であって、
リン酸根含有化合物とヒドロキシカルボン酸とを必須成分として含有し、アンモニア水でpH調整されてなることを特徴とする。
【0012】
【発明の実施の形態】
次に、上記手段の各構成について詳細な説明を行う。
【0013】
(1) 研摩対象物である銅合金としては、
▲1▼銅−亜鉛系合金:丹銅、七三しんちゅう、六四しんちゅう
▲2▼銅−錫系合金:実用青銅(砲金)コルソン合金(Cu−Ni−Si)、ケイ素青銅、ベリリウム青銅
等が好適である。
【0014】
しかし、上記以外の他の銅合金、例えば、鉛入り黄銅、錫入り黄銅、高力黄銅、リン青銅、鉛青銅、アルミニウム青銅、ニッケルアルミニウム青銅、ニッケルマンガン青銅、ケイ素青銅、ベリリウム青銅、白銅(Cu−Ni合金)、洋銀(Ni−Cu−Zn合金)、銅−鉛合金、銅マンガン合金、カドミニウム銅等も、本発明の研摩対象物とすることができる。
【0015】
(2) 上記リン酸根含有化合物としては、リン酸、二リン酸(ピロリン酸)の他、リン酸アンモニウム、リン酸カリウム、リン酸ナトリウム等のオルトリン酸塩;リン酸水素アンモニウム、リン酸水素カリウム、リン酸水素ナトリウム、リン酸二水素アンモニウム、リン酸二水素カリウム、リン酸二水素ナトリウム等のリン酸酸性塩、及び、
二リン酸アンモニウム、二リン酸カリウム、二リン酸ナトリウム等のオルト二リン酸塩;二リン酸水素アンモニウム、二リン酸水素カリウム、二リン酸水素ナトリウム、二リン酸二水素アンモニウム、二リン酸二水素カリウム、二リン酸二ナトリウム等の二リン酸酸性塩等、
のうちから一種または2種以上を併用して使用することができる。
【0016】
これらのリン酸根含有化合物の内、リン酸アンモニウム、二リン酸カリウム、二リン酸の群から選択される1種または2種以上のものが望ましい。
【0017】
このリン酸根含有化合物の含有量は、通常、20〜120g/L、望ましくは、40〜80g/L、更に望ましくは、50〜70g/Lとする。
【0018】
(3) 上記カルボン酸根含有化合物としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、ラウリン酸、パルミチン酸、ステアリン酸等の飽和脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピペリン酸、スベリン酸、アゼライン酸、セバシン酸等の飽和脂肪族ジカルボン酸;アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、オレイン酸等の不飽和モノカルボン酸;フマル酸、マレイン酸等の不飽和ジカルボン酸;アコニット酸等のトリカルボン酸;クエン酸、リンゴ酸、酒石酸、グリコール酸、乳酸、グリセリン酸等のヒドロキシカルボン酸;更には、各種、アミド酸、メルカプトカルボン酸、ケトカルボン酸等、及び、それらのアンモニア塩及びアルカリ塩
のうちから1種または2種以上を併用して使用できる。
【0019】
こらのカルボン酸根含有化合物のうち、クエン酸、リンゴ酸、酒石酸等のヒドロキシカルボン酸が特に好ましい。
【0020】
このカルボン酸根含有化合物の含有量は、通常、50〜150g/L、望ましくは70〜130g/L、更に望ましくは90〜110g/Lとする。
【0021】
(4) 上記 pH (水素イオン指数)が、約5未満では、研摩ムラが発生し易く、約8を越えると、研摩が困難となり、エッチング現象が発生し易くなる。
【0022】
そして、この pH 調整は、塩基または酸の水溶液を使用して行う。このとき、塩基としては、上記各種塩に含まれるものが望ましく、アンモニア水、水酸化カリ、水酸化ナトリウムの水溶液を使用でき、特に、アンモニア水が望ましい。通常、上記リン酸化合物及びカルボン酸化合物を使用したとき、電解液は、酸性を示すことが多いため、アンモニア水で調整することが多いが、 pH 8をこえるアルカリ性に傾いたときは、上記リン酸、二リン酸、カルボン酸を使用して調整する。
【0023】
(5) 次に、上記電解液を使用しての電解研摩方法を説明する。
【0024】
本電解液は、電解研摩、特に鏡面研摩に好適に適用できるが、上記公報に記載の電解粗研摩・鏡面研摩を同時にできる方法にも適用できる。
【0025】
上記公報に記載の方法を使用できる。電解研摩の条件は、下記の通りとする。
【0026】
電解液温度 20〜60℃(望ましくは30〜50℃)、
研摩電流 20〜100A/dm2(望ましくは30〜80A/dm2
加工時間 5〜90秒(望ましくは15〜60秒、更に望ましくは20〜40秒)
(6) こうして、銅系金属を電解研摩した場合、粗研摩とともに鏡面研摩が行われるが、スマットが発生しがたい。従って、後工程で電気メッキ等の被膜処理を行っても、該被膜に、フクレ、コブ、ハガレ等が発生するおそれががない。
【0027】
【実施例】
本発明の効果を確認するために行った実施例について説明をする。
【0028】
なお、被研摩物は、コルソン合金(組成:Ni 2.4%,Si 0.4%、P 0.15%,Cu 残部)製の、50mm□のものを使用し、陰極は、被研摩物と同一断面形状でSUS304製の角柱状のものを用い、被研摩物に対して、8cm間隔とした。
【0029】
<実施例1>
電解研摩液は、ピロリン酸カリ(二リン酸カリウム):60g/L、クエン酸100g/Lの組成液を、アンモニア水(1N)で pH 7に調整した。
【0030】
そして、研摩電流(陽極):50A/dm2 、鏡面電解研摩を20秒を行った。
【0031】
その電解研摩加工の前後の結果を表1に示す。
【0032】
本電解研摩液は、十分な研摩作用を奏することがわかる。また、表面にはスマットが認められなかった。
【0033】
<実施例2>
上記実施例1と同様の条件において、鏡面電解研摩を60秒行った。
【0034】
結果を表1に示すが、長く行えば研摩度が若干であるが向上することがわかる。また、表面にはスマットが認められなかった。
【0035】
<比較例>
上記実施例1において、電解研摩液を、硫酸アンモニウム:100g/L、酢酸アンモニウム:100g/L、とした以外は、同様に行った。
【0036】
結果を表1に示すが、実施例1に比して、Rz (十点平均粗さ)が大きく、かつ、Sm (平均山間隔)が小さく、研摩度が劣ることが分かる。なお、比較例ではスマットが確認された。
【0037】
【発明の作用・効果】
本発明の電解研摩液は、上記の如く、リン酸根及びカルボン酸根を必須成分として含有し、 pH が約5〜8に調整されてなる構成により、前述の実施例で支持される如く、銅系材料に対する電解鏡面研摩が円滑に行われるとともに、スマットの発生も全く認められない。
【0038】
従って、後工程で、電気メッキ、無電解メッキ、CVD(chemical vapor deposition)、PVD(physical vapor deposition)等による被膜(表面処理)を形成しても、該被膜にスマットに起因する表面フクレ、コブ、ハガレ等を発生するおそれがない。
【0039】
【表1】

Figure 0003796599
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electropolishing liquid used when electropolishing copper or a copper alloy. In particular, the present invention is suitable for electronic parts such as lead (terminal) materials.
[0002]
[Background]
In recent years, materials made of copper or copper alloys (hereinafter referred to as “copper materials”) have been widely used as lead materials (terminal materials) for electronic components such as capacitors, resistors, connectors, printed circuits, and integrated circuits. Yes. Due to recent demands for higher performance and higher density of electronic components, the surface of the copper-based material is required to be smoother than before. As a method which can be easily smoothed, there are electrolytic polishing methods previously proposed by the applicant of the present application (Japanese Patent Laid-Open Nos. 6-238519, 6-285719, 7-60549, etc.).
[0003]
Here, these electrolytic polishing methods are a method in which the electrolytic solution between the facing surfaces of the anode (workpiece) and the cathode is flowed and polished, and the surface roughness is finished to 2 to 100 μm without generating a fray layer. In this method, rough polishing (macro-polishing) and mirror polishing (micro-polishing) that generates a surface layer with a surface roughness of less than 2 μm can be performed simultaneously in one step.
[0004]
As the conventional electrolytic polishing liquid, a neutral to acidic solution containing sulfate, nitrate and chelating agent is usually used (Japanese Patent Application Laid-Open No. 7-316899: (Japanese Patent Application No. 6-139285). )reference).
[0005]
For example, the following composition is described in the said Unexamined-Japanese-Patent No. 7-316899 as an electrolyte solution for brass (Cu-Zn) which is a copper alloy.
[0006]
Ammonium sulfate 100g / L
Ammonium acetate 100g / L
[0007]
[Problems to be solved by the invention]
However, it has been found that when a copper alloy is polished using an electrolytic polishing liquid having the above composition, the following problems are likely to occur particularly in a Corson alloy, depending on the type of copper alloy.
[0008]
Smut (powdered black oxide) is likely to occur on the surface of the object to be polished (copper-based material). When this smut is formed with a film (surface treatment) by electroplating, electroless plating, CVD (chemical vapor deposition ), PVD (physical vapor deposition) or the like in a later process, surface swelling, bumps, peeling, etc. This is undesirable.
[0009]
In view of the above, it is an object of the present invention to provide an electrolytic polishing liquid in which smut is unlikely to occur on the surface of a copper-based material that is an object to be polished.
[0010]
[Means for Solving the Problems]
The electrolytic polishing liquid according to the present invention solves the above problems by the following configuration.
[0011]
An electropolishing liquid used when electropolishing copper or a copper alloy,
It contains a phosphate group- containing compound and a hydroxycarboxylic acid as essential components, and is adjusted in pH with aqueous ammonia .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, each component of the above means will be described in detail.
[0013]
(1) As a copper alloy that is an object to be polished,
(1) Copper-zinc alloy: Danzoku, Nanasanchu, Rokushimashinchu (2) Copper-tin alloy: Practical bronze (gunmetal) Corson alloy (Cu-Ni-Si), silicon bronze, beryllium bronze Etc. are suitable.
[0014]
However, other copper alloys than the above, for example, lead-containing brass, tin-containing brass, high-strength brass, phosphor bronze, lead bronze, aluminum bronze, nickel aluminum bronze, nickel manganese bronze, silicon bronze, beryllium bronze, white bronze (Cu -Ni alloy), silver (Ni-Cu-Zn alloy), copper-lead alloy, copper manganese alloy, cadmium copper and the like can also be used as the polishing object of the present invention.
[0015]
(2) Examples of the phosphate group-containing compound include phosphoric acid, diphosphoric acid (pyrophosphoric acid), orthophosphates such as ammonium phosphate, potassium phosphate, and sodium phosphate; ammonium hydrogen phosphate, potassium hydrogen phosphate Phosphoric acid acidic salts such as sodium hydrogen phosphate, ammonium dihydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, and
Ortho diphosphates such as ammonium diphosphate, potassium diphosphate, and sodium diphosphate; ammonium biphosphate, potassium hydrogen phosphate, sodium hydrogen phosphate, ammonium dihydrogen phosphate, diphosphate Diphosphate acidic salts such as potassium dihydrogen and disodium diphosphate,
One or two or more of them can be used in combination.
[0016]
Among these phosphate group-containing compounds, one or more compounds selected from the group consisting of ammonium phosphate, potassium diphosphate and diphosphate are desirable.
[0017]
The content of the phosphate group-containing compound is usually 20 to 120 g / L, preferably 40 to 80 g / L, and more preferably 50 to 70 g / L.
[0018]
(3) Examples of the carboxylate group-containing compound include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, lauric acid, palmitic acid, stearic acid and other saturated aliphatic monocarboxylic acids; oxalic acid, malonic acid , Succinic acid, glutaric acid, adipic acid, piperic acid, suberic acid, azelaic acid, sebacic acid and other saturated aliphatic dicarboxylic acids; acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, oleic acid and other unsaturated monocarboxylic acids An unsaturated dicarboxylic acid such as fumaric acid and maleic acid; a tricarboxylic acid such as aconitic acid; a hydroxycarboxylic acid such as citric acid, malic acid, tartaric acid, glycolic acid, lactic acid, and glyceric acid; One of carboxylic acid, ketocarboxylic acid, etc. and their ammonia salts and alkali salts, Can be used in combination of two or more.
[0019]
Of these carboxylate group-containing compounds, hydroxycarboxylic acids such as citric acid, malic acid, and tartaric acid are particularly preferred.
[0020]
The content of the carboxylate group-containing compound is usually 50 to 150 g / L, desirably 70 to 130 g / L, and more desirably 90 to 110 g / L.
[0021]
(4) The pH (hydrogen ion exponent) is less than about 5, easy polishing unevenness occurs and above about 8, polishing is difficult, etching phenomenon is likely to occur.
[0022]
This pH adjustment is performed using an aqueous solution of a base or an acid. At this time, as the base, those contained in the above-mentioned various salts are desirable, and aqueous ammonia, potassium hydroxide, and sodium hydroxide can be used, and ammonia water is particularly desirable. Usually, when the above phosphoric acid compound and carboxylic acid compound are used, the electrolyte solution is often acidic, so it is often adjusted with aqueous ammonia. Prepare using acid, diphosphoric acid, carboxylic acid.
[0023]
(5) Next, an electrolytic polishing method using the above electrolytic solution will be described.
[0024]
The electrolytic solution can be suitably applied to electrolytic polishing, particularly mirror polishing, but can also be applied to a method capable of simultaneously performing electrolytic rough polishing and mirror polishing described in the above publication.
[0025]
The method described in the above publication can be used. The conditions for electrolytic polishing are as follows.
[0026]
Electrolyte temperature 20-60 ° C (desirably 30-50 ° C),
Polishing current 20 to 100 A / dm 2 (preferably 30 to 80 A / dm 2 )
Processing time 5 to 90 seconds (desirably 15 to 60 seconds, more desirably 20 to 40 seconds)
(6) Thus, when the electropolishing of copper-based metal, but coarse abrasive together with a mirror surface polishing to is performed, smut seldom occurs. Therefore, even if a coating process such as electroplating is performed in a subsequent process, there is no possibility that bulges, bumps, peelings, etc. will occur in the coating.
[0027]
【Example】
Examples carried out to confirm the effects of the present invention will be described.
[0028]
Incidentally, the polishing material is Corson alloy (composition: Ni 2.4%, Si 0.4% , P 0.15%, Cu remainder) made, using those 50 mm □, the cathode, the polished A prismatic column made of SUS304 having the same cross-sectional shape as the object was used, and the distance between the objects to be polished was 8 cm.
[0029]
<Example 1>
The electrolytic polishing liquid was adjusted to pH 7 with a solution of potassium pyrophosphate (potassium diphosphate) : 60 g / L and citric acid 100 g / L with aqueous ammonia (1 N).
[0030]
Then, polishing current (anode): 50 A / dm 2 , mirror surface electrolytic polishing was performed for 20 seconds.
[0031]
Table 1 shows the results before and after the electrolytic polishing.
[0032]
It can be seen that the present electrolytic polishing liquid exhibits a sufficient polishing action. Further, no smut was observed on the surface.
[0033]
<Example 2>
Mirror surface electrolytic polishing was performed for 60 seconds under the same conditions as in Example 1 above.
[0034]
The results are shown in Table 1. It can be seen that the longer the polishing, the better the degree of polishing. Further, no smut was observed on the surface.
[0035]
<Comparative example>
The same procedure as in Example 1 was performed except that the electrolytic polishing liquid was ammonium sulfate: 100 g / L and ammonium acetate: 100 g / L.
[0036]
The results are shown in Table 1. As compared with Example 1, it can be seen that R z (ten-point average roughness) is large and S m (average peak interval) is small, and the degree of polishing is inferior. In the comparative example, smut was confirmed.
[0037]
[Operation and effect of the invention]
Electropolishing solution of the present invention, as described above, containing phosphate radical and a carboxylic acid radical as essential components, the structure formed is adjusted to a pH of about 5 to 8, as is supported by the previous examples, copper-based Electrolytic mirror polishing of the material is carried out smoothly and no smut is observed.
[0038]
Therefore, even if a film (surface treatment) is formed by electroplating, electroless plating, CVD (chemical vapor deposition ), PVD (physical vapor deposition), or the like in a later process, surface blisters and bumps resulting from smut are formed on the film. There is no risk of peeling.
[0039]
[Table 1]
Figure 0003796599

Claims (6)

銅または銅合金を電解研摩する際に使用する電解研摩液であって、
リン酸根含有化合物とヒドロキシカルボン酸とを必須成分として含有し、アンモニア水でpH調整されてなることを特徴とする電解研摩液。
An electropolishing liquid used when electropolishing copper or a copper alloy,
An electropolishing liquid characterized by containing a phosphate group- containing compound and a hydroxycarboxylic acid as essential components, and pH-adjusted with aqueous ammonia .
前記リン酸根含有化合物が、リン酸アンモニウム、二リン酸カリウム、二リン酸の群から選択される1種または2種以上からなることを特徴とする請求項1記載の電解研摩液。The electropolishing liquid according to claim 1, wherein the phosphate group-containing compound comprises one or more selected from the group consisting of ammonium phosphate, potassium diphosphate, and diphosphate. 前記リン酸根含有化合物が二リン酸カリウムであり、前記ヒドロキシカルボン酸がクエン酸であることを特徴とする請求項2記載の電解研摩液。The electrolytic polishing liquid according to claim 2, wherein the phosphate group-containing compound is potassium diphosphate, and the hydroxycarboxylic acid is citric acid . 銅または銅合金を、電解研摩液を用いて電解研摩する方法において、
前記電解研摩液として、リン酸根含有化合物とヒドロキシカルボン酸とを必須成分とし、アンモニア水でpH調整されてなるものを使用することを特徴とする電解研摩方法。
In a method of electrolytic polishing copper or copper alloy using an electrolytic polishing liquid,
An electrolytic polishing method characterized by using a phosphate radical-containing compound and a hydroxycarboxylic acid as essential components and having pH adjusted with aqueous ammonia as the electrolytic polishing liquid.
前記リン酸根含有化合物が、リン酸アンモニウム、二リン酸カリウム、二リン酸の群から選択される1種または2種以上からなることを特徴とする請求項4記載の電解研摩方法。5. The electrolytic polishing method according to claim 4, wherein the phosphate group-containing compound is one or more selected from the group consisting of ammonium phosphate, potassium diphosphate, and diphosphate . 前記リン酸根含有化合物が二リン酸カリウムであり、前記ヒドロキシカルボン酸がクエン酸であることを特徴とする請求項5記載の電解研摩方法。 6. The electrolytic polishing method according to claim 5, wherein the phosphate group-containing compound is potassium diphosphate, and the hydroxycarboxylic acid is citric acid .
JP27743797A 1997-10-09 1997-10-09 Electrolytic polishing liquid Expired - Lifetime JP3796599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27743797A JP3796599B2 (en) 1997-10-09 1997-10-09 Electrolytic polishing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27743797A JP3796599B2 (en) 1997-10-09 1997-10-09 Electrolytic polishing liquid

Publications (2)

Publication Number Publication Date
JPH11117100A JPH11117100A (en) 1999-04-27
JP3796599B2 true JP3796599B2 (en) 2006-07-12

Family

ID=17583560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27743797A Expired - Lifetime JP3796599B2 (en) 1997-10-09 1997-10-09 Electrolytic polishing liquid

Country Status (1)

Country Link
JP (1) JP3796599B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996023B2 (en) * 2001-09-14 2012-08-08 中越合金鋳工株式会社 Prevention of lead elution from lead-containing copper alloy materials
JP4617425B2 (en) * 2004-11-08 2011-01-26 山梨県 Non-cyan electropolishing liquid and electropolishing method using the same
EP2756117B1 (en) * 2011-09-15 2018-08-22 Ensitech IP Pty Ltd Weld cleaning fluid
JP5897406B2 (en) * 2012-05-28 2016-03-30 株式会社石飛製作所 Electrolytic solution for electropolishing
CN110629227A (en) * 2019-08-14 2019-12-31 沈阳造币有限公司 Electrolyte plasma polishing solution and polishing process for coinage copper alloy blank cake

Also Published As

Publication number Publication date
JPH11117100A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP6803944B2 (en) Substitution type electroless gold plating solution containing purine or pyrimidine-based compound having carbonyl oxygen, and substitution type electroless gold plating method using the same.
CN105358741A (en) Method for producing plated laminate, and plated laminate
JP4733468B2 (en) Metal surface treatment aqueous solution and method for preventing discoloration of metal surface
JP2009108389A (en) Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
JP2645701B2 (en) Palladium alloy plating composition and plating method
JPWO2014207975A1 (en) Plating material manufacturing method and plating material
CN111850625B (en) Electroplating liquid for direct electrodeposition of iron on magnesium alloy surface and electroplating process thereof
JPWO2009016979A1 (en) Plating object in which metal thin film is formed by electroless plating and method for producing the same
JP6665387B2 (en) Silver plated member and method of manufacturing the same
JP3796599B2 (en) Electrolytic polishing liquid
KR100553233B1 (en) Coating process for light metal alloy surface
EP4177376A1 (en) Metal displacement solution and corresponding method for surface treatment of aluminum or aluminum alloy
JP5337760B2 (en) Metal surface treatment aqueous solution and method for preventing discoloration of metal surface
JP6268408B2 (en) Plating material manufacturing method and plating material
WO2016147709A1 (en) Electrolytic stripping agent for jig
JP4230813B2 (en) Gold plating solution
JP2020196914A (en) Plating pretreatment method
KR102295180B1 (en) Ag-Nano Alloy Plating Solution Compositions for Improving of Conductivity and Durability and Plating Methods Using Thereof
TW200809014A (en) Planarization of substrates at a high polishing rate using electrochemical mechanical polishing
WO2020226158A1 (en) Apparatus for processing copper surface
JP2009097050A (en) Tin-plated material for electronic parts
US2879210A (en) Process of electroplating on aluminum
WO2021261348A1 (en) Corrosion-resistant terminal material for aluminum core wire, method for manufacturing same, corrosion-resistant terminal, and electric wire terminal structure
WO2020226159A1 (en) Method for manufacturing metal member having metal layer
JP2022182670A (en) Conductive member and method for manufacturing conductive member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term