JP3794753B2 - Stoker furnace for burning incinerated materials such as garbage - Google Patents

Stoker furnace for burning incinerated materials such as garbage Download PDF

Info

Publication number
JP3794753B2
JP3794753B2 JP11309896A JP11309896A JP3794753B2 JP 3794753 B2 JP3794753 B2 JP 3794753B2 JP 11309896 A JP11309896 A JP 11309896A JP 11309896 A JP11309896 A JP 11309896A JP 3794753 B2 JP3794753 B2 JP 3794753B2
Authority
JP
Japan
Prior art keywords
grate
stoker
combustion
inclination angle
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11309896A
Other languages
Japanese (ja)
Other versions
JPH09280520A (en
Inventor
健一 柴田
裕姫 本多
勝彦 小林
由喜美 西塚
充 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11309896A priority Critical patent/JP3794753B2/en
Publication of JPH09280520A publication Critical patent/JPH09280520A/en
Application granted granted Critical
Publication of JP3794753B2 publication Critical patent/JP3794753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物、固形燃料、汚泥等の焼却処理やサーマルリサイクルに適用される被焼却物燃焼用ストーカ炉に係り、特にごみ焼却物の搬送方向に所定角度傾斜してなる火格子を有するごみ等の被焼却物燃焼用ストーカ炉に関する。
【0002】
【従来の技術】
ごみ焼却施設の燃焼設備には、ストーカ式、流動床式、回転炉式、等があり、ごみの質、焼却炉規模等によって選択される。ストーカ式は大量のごみを選別することなく能率的に焼却処理する目的で種々の方式が考案されている。
例えば実開昭57−127129号においてストーカを階段式に構成し、乾燥、燃焼、後燃焼の各機能が果たせるように構成している。
【0003】
かかる従来技術の構成を図21に基づいて説明するに、17は給塵装置で、ごみ投入ホッパ1及び投入シュート2の下部にフィードテーブル5を設置し、該テーブル上の往復動フィーダ3にて火格子7へごみ11を供給する。
給塵装置17の下流側にストーカ6が設置されている。
ストーカ6は、上流側から乾燥・燃焼・後燃焼の各ストーカ6が階段状に配列されており、そのストーカ6間落差がフィードテーブル5高さと同様に、100±300mmに設定している。
【0004】
図22に示すように、各ストーカは固定火格子段16と移動火格子段15を交互に配置した階段状であり、各段当りの各移動火格子列は連結棒9Aを介して1本の油圧シリンダ9で駆動する。また、ストーカ各段当りの燃焼用一次空気13の風箱10は各段毎に夫々1ヶで構成している。ストーカ6の運転要素は各段当り1ヶの制御要素のみの操作で行ない、燃焼用一次空気量制御一系列、燃焼用空気温度制御一系列、移動火格子15の往復動作によるごみの撹拌制御一系列を設備している。
そして前記ストーカ6の据え付け角度は0°、ストーカ6面に対する火格子背面傾斜角度は20°程度(水平面に対する火格子背面の傾斜角度)、移動火格子15ストロークは450±50mm程度に設定している。
【0005】
そしてかかる従来技術のストーカ炉において、都市ごみ燃焼の場合、かさ比重0.1〜0.3t/m3 程度のごみを投入ホッパ1へ供給すると、ごみはシュート2内で圧密し、かさ比重0.4t/m3 程度に圧縮される。フィードテーブル5上へ押し出されたごみは、往復動式フィーダ3にて1ストローク100〜300mmづつ切り出されて、ストーカ6上へ供給される。
そしてストーカ6上に供給されたごみ11は火格子7の往復動にて撹拌・混合されながらごみの乾燥・燃焼はフィードテーブル段差、ストーカ段差をごみが落下する際にごみが解砕・反転する。ごみと高温の燃焼用一次空気(50〜280℃)の接触による乾燥・燃焼、及び火炎(900〜1200℃)からのふく射熱によるごみの乾燥・燃焼、移動火格子15の前進時のごみの撹拌によるごみの解砕・反転による乾燥・燃焼される。
【0006】
【発明が解決しようとする課題】
しかしながら前記した従来の1段当り1ヶの制御系では、急激なごみ質変動があった場合の最適燃焼条件維持のための各制御系の設定値変更から、最適燃焼状態へ戻すまでの時間遅れがあった。特に大塊物や、高カロリーごみを投入した際には、フィードテーブル下や、ストーカ段差下のごみ層が薄くなり、火格子表面が火炎にさらされ、スポーリングや、熱衝撃等により火格子表面を熱損傷することがあった。またごみ層の薄い部分のごみの乾燥・ガス化が進み吹き抜けが発生し、この部分では一時的に空気過剰となり、他の部分では空気が不足するために燃焼が遅れ、ストーカの一段当りの燃焼に影響し、排ガスの性状変動、焼却灰質の低下や、ボイラ付の焼却炉の場合は、ボイラ蒸発量の変動が大きくなる等の影響があった。
【0007】
これらの影響を回避するためには、燃焼場の変動が発生した後、最適燃焼状態へ戻すまでの時間が短い方が良いが、従来のストーカ炉では上記燃焼場の変動に伴なうその回復時間が10分程度以上かかり、変動が大きい場合には回復時間が30分以上かかる場合があった。
【0008】
また近年のごみの高カロリー化に伴ない都市から排出される一般廃棄物の平均LHVは1960年代の1,000kcal/kgと比べ2倍の2,000kcal/kg程度まで上昇し、都市ごみ焼却炉の最高の計画ごみ質では3,000kcal/kgを超えるものもある。またごみを燃料化したRDFではLHVが3,000〜5,000kcal/kgのものもあり、このような易燃性廃棄物をストーカ炉で燃焼する場合には、ごみ中の水分が少なく、ごみの乾燥・ガス化・着火が早いことから火炎の伝播が早く、ごみの燃焼による減容速度が速く、吹き抜けが発生しやすい。従来のストーカではごみ・灰の撹拌力が十分でなく吹き抜けが発生し燃焼変動・排ガス量及び含有有害物質量の変動があった。このため高カロリーごみ対応型のストーカでは、フィードテーブルからストーカ上へごみを投入した後すぐにごみを撹拌平滑化し、乾燥・燃焼中も撹拌頻度を上げるとともに、強い撹拌力で吹き抜けを防止し、安定燃焼するとともに火格子の損傷防止を図ることが必要である。
火格子の撹拌力向上により、火炎の伝播速度と同等の速度でストーカ上のごみを搬送しても、ある一定の移動距離内でごみの完全燃焼ができれば、ストーカ上のごみの滞留時間の短い、効率的でコンパクトな焼却炉にすることができる。
【0009】
さらに平成2年12月に厚生省から通達されたダイオキシン類発生防止等ガイドラインでは、新設の全連続炉に関して厳しい基準が示されており、さらに将来的には煙突出口ダイオキシン類濃度を現状の欧州等の規制値と同等程度とすることも検討されておりこの規制値をクリアする理想的な条件で常に焼却炉を運転するためには、最適な燃焼条件の維持が不可欠である。
また、ストーカから排出される焼却灰の完全溶融による減容無害化や骨材等への溶融スラグの再利用等にて現状ある土壌環境基準等の厳しいスラグ溶出基準への対応を考えた場合、常に安定したスラグ性状を得るためには、原料となる焼却灰の性状も安定していることが望ましく、そのためには、ストーカ上でのごみの最適な燃焼条件の維持が必要である。
【0010】
さらに、ボイラ付の焼却炉の場合には、サーマルリサイクルによるごみからのエネルギー回収率の向上のためのボイラ蒸気の高温・高圧化に伴なうボイラ効率の上昇も求められ、ごみの燃焼安定による排ガス量・温度の安定により、ボイラ蒸発量の変動を従来の±10%から±5%程度とすることが求められている。
【0011】
従って年間5,000万トンを超える一般廃棄物を焼却処理により衛生的に減容化し、排ガスの余熱を利用するサーマルリサイクルの主力であるストーカ炉は1日のごみ焼却量が300ton/基を超える大型炉の建設が可能であり、その性能向上は社会的責任であり、具体的には次のような問題の解決が求められている。
【0012】
1.ストーカ上のごみ・灰の撹拌力向上による大型炉のコンパクト化によるコストの低減
2.高カロリーごみ燃焼時の火格子の損傷防止
3.高カロリーごみ燃焼時の炉内壁へのクリンカー付着防止
4.焼却炉出口の排ガス中に含まれる有害物質の低減
5.火格子への砂塵等の噛み込み防止による火格子寿命の延長
6.焼却炉と灰溶融炉のシステムの連系
7.焼却炉の余熱利用ボイラの高温・高圧化
以上のような重要な使命を達成するための基本となるのは、ストーカの撹拌力向上でありこれが本発明の基本的な狙いである。
【0013】
【課題を解決するための手段】
請求項1記載の発明は、フィードテーブル上より固定火格子と移動火格子からなるストーカ上にごみ等の被焼却物を供給しながら乾燥燃焼を行う被焼却物燃焼用ストーカ炉において、
前記フィードテーブル終端側より燃焼後の被焼却物排出口に至るストーカ入口側より出口端までのストーカの段数を1段に設定するとともに、前記フィードテーブル終端側より燃焼後の被焼却物排出口に至るストーカ据付角度を被焼却物の搬送方向に上向きになるように10°〜20°とし、その上に火格子傾斜角度が前記ストーカ据付角度より大なる20°〜30°になるように配置し、前記ストーカ上に設けた火格子の背面傾斜角度を火格子上部に堆積する焼却灰の安息角と同等以上の急勾配で且つ被焼却物の搬送方向に前記火格子傾斜角度より大なる30°〜50°上向きになるように構成したことを特徴とする。
これにより後記に詳細に説明するように、本発明は火格子の背面傾斜角度を火格子上部に堆積する焼却灰の安息角と同等もしくはそれ以上の急勾配に設定しているために、ストーカ近傍の燃焼灰と上方の未燃焼分のごみとを効率良く混合できる。
尚、火格子の背面傾斜角度の上限50°に設定したのは、この角度以上に設定すると火格子のストロークが短くなり、所定の搬送力が得られない為である。
【0014】
そして本発明は特に前記ストーカの段数を1段に設定したものである。
前記従来技術は図21に開示したように、大型化に対応する為に3段程度の階段状に形成しているが、階段状に形成すると、段と段との間の接合部分を別途設けねばならず、構造面で不利であるが、本発明によればストーカの列を増設するだけでよく、また高さ方向にも段差がないためにコンパクトな構成が可能となる。
又従来技術では大塊物や、高カロリーごみを投入した際には、ストーカ段差下のごみ層が薄くなり、火格子表面の熱損傷やごみ層の薄い部分のごみの乾燥・ガス化が進み吹き抜けが発生し、この部分では一時的に空気過剰となり、他の部分では空気が不足するために燃焼が遅れ、ストーカの燃焼に影響し、排ガスの性状変動、焼却灰質の低下等の影響があったが、本発明ではこのようなことがない。
【0015】
又本発明によれば、前記効果とともに、特に前記ストーカの段数を1段に設定した場合において、ストーカ据付角度を10°〜20°程度上向きに設定することにより被燃焼物の対流時間を十分確保することが出来、より完全な燃焼が可能となる。
【0016】
請求項2記載の発明は、請求項1記載の被焼却物燃焼用ストーカ炉を特定し、前記ストーカの火格子群が、先端に二山若しくは頂部が平らな長い山にした突起を設けた移動火格子と突起を設けない固定火格子を左右方向に交互配置し、突起の有無による突き上げ力の差をもたらせながら被焼却物を搬送可能に構成したものである。
前記移動火格子に先端に二山若しくは頂部が平らな長い山にした突起を設けることにより火格子の突き上げと戻りの挙動により灰とごみとが効率的に混合できる。
この場合に前記ストーカの鉛直線に対する前面傾斜角度を42°〜60°の範囲に設定した火格子群が、先端に二山若しくは頂部が平らな長い山にした一山状の突起を設けた移動火格子と、突起を設けない固定火格子を左右方向に交互配置し、突起の有無による突き上げ力の差をもたらせながら被焼却物を搬送可能に構成し、更に移動火格子のストロークを220mm以上とするのがよい。
【0017】
請求項5記載の発明は、請求項1又は2若しくは3記載の被焼却物燃焼用ストーカ炉を更に特定し、 前記ストーカの火格子群が、先端に突起を設けた火格子(特に移動火格子)と突起を設けない火格子(特に移動火格子)を左右方向に交互配置し、突起の有無による突き上げ力の差をもたらせながら被焼却物を搬送可能に構成したものである。
かかる発明によれば、左右方向への混合拡散が起り効果的な混合が達成し得る。
なお、火格子の背面傾斜角度の上限50°に設定した場合に、移動火格子のストロークが短くなる為に、(移動火格子を固定火格子先端部を超えないようにストロークさせると角度が大きいほど短くなる)突起を大きく取ることが出来ず、突起形状は山一つの形状となる。
ところが火格子の背面傾斜角度の下限30°に設定すると、移動火格子のストロークが長く出来る為に、突起形状を大きく取ることが出来、突起形状は山の数を二山にしたり、又頂部が平らな長い山にすることが出来る。
このとき被燃焼物表面の形状はストーカ部分の形状を投影した形となる為に、山の数が多いほど滑らかにすることが出来る。
突起形状は表面の凹凸が大きいほど混合が不均一になりやすいが前記構成を取ることによりかかる不具合が解消できる。
【0018】
発明は、ストーカ上でのごみの乾燥・熱分解・ガス化燃焼・後燃焼の各工程でのごみの体積減少にあわせたごみ層厚さや灰層厚さの制御を可能に、ストーカをストーカを構成する火格子群下部の風箱をごみの流れ方向に複数に分割し、各々の風箱毎に独立した火格子駆動系を取り付けたことを特徴とし、好ましくは、前記ストーカの鉛直線に対する前面傾斜角度を42°〜60°の範囲に設定した火格子群が、先端に二山若しくは頂部が平らな長い山にした一山状の突起を設けた移動火格子と、突起を設けない固定火格子を左右方向に交互配置するものである。
これによりストーカを1段式に構成した場合においても、乾燥、燃焼、後燃焼の各機能が果たせる。
【0020】
次に本発明にて得られたストーカの往復動式火格子による火格子上のごみ・灰に対する強力な撹拌力により得られる効果について詳述する。
請求項1記載の本発明によるストーカの往復動式火格子による火格子上のごみ・灰に対する強力な撹拌力は、ごみの自重による滑り角と灰の安息角を利用して得ることを特長とする。
ごみの自重による滑り角と灰の安息角は30〜35°である。従来のストーカ炉はストーカの据付角度が0°若しくは階段状に下方に向けて構成されており、従ってストーカ面に対する火格子背面傾斜角度は20°程度であった。つまり水平面に対して火格子背面の傾斜角度(=ストーカの据付角度+火格子傾斜角度)が20°以下であり、ごみの自重による滑り角と灰の安息角である30〜35°よりも傾斜が緩く火格子を往復動させた時に、火格子上に堆積したごみと灰は火格子の往復動分しか動かなかった。
【0021】
本発明では、火格子背面の傾斜角度を30〜50°好ましくは40°程度に急勾配とすることを特長とする。すなわち火格子背面の傾斜角度(=ストーカの据付角度+火格子傾斜角度)が水平面に対して火格子上部に堆積する焼却灰の安息角度である30〜35°よりも急勾配で且つごみの自重による滑り角である30〜35°よりも急勾配とする。
この条件で移動火格子を往復動作すると火格子上に堆積した灰が突き上げられ安息角がくずれ前後・左右へ拡散し、灰の上層にあるごみも灰の拡散に巻き込まれるようにして拡散・混合する。この攪拌力は火格子先端に突起を取付することにより1.5〜2倍に増強される。
【0022】
移動火格子先端に突起を付ければ、前進時は固定火格子の背面側でごみと灰の突き上げがさらに効果的に行なわれ、後進時には固定火格子の前面側で戻りのごみと灰の突き上げが効果的に行なわれるとともに、移動火格子前面側への引き込みによる混合もさらに効果的に行なわれる。
さらに、突起の有る列と無い列を横方向に並べて交互に配置すれば、突起の有無による突き上げ力の差から、前進時には固定火格子の背面側で突き上げられたごみと灰が突起の有る列から無い列へ向けて左右方向の拡散が起こり、後進時には固定火格子の前面側で突き上げられたごみと灰が突起の有る列から無い列へ向けて左右方向の拡散が起こるとともに、移動火格子前面側への引き込みによりごみと灰が突起の無い列から有る列へ向けて左右方向の拡散が起こる。
【0023】
従って本発明によれば、火格子の背面傾斜は灰の安息角以上としており灰のなだれ現象を効果的に行なうことができフィーダから供給したごみを移動火格子の往復動作により上下・前後・左右方向へ3次元的に撹拌・混合しながら、適当なごみ層厚さに均すことができる。ストーカの上流側からごみを移動火格子の往復動作により下流側へ搬送しながら、ストーカ下の風箱から供給する空気等を利用してごみを乾燥・熱分解・ガス化燃焼・後燃焼する。
【0024】
このとき発明のように、ストーカ据付角度がごみの流れ方向へ向って上向きに10°〜20°傾斜することにより、ごみの滞留時間を長目に確保でき、攪拌・混合を十分行うことができる。ストーカ上でごみ燃焼した後の残留配分はストーカ後端から移動火格子の往復動作により排出する。
【0025】
また本発明によれば、ストーカ上のごみはその処理過程において、熱輸送、物質移動、現象/反応を促進することにより、処理の効率化を図る。すなわち3次元的撹拌・混合の促進と、火格子を貫通する均一な空気等の吹き込みにより、ストーカ上でのごみの完全燃焼を達成でき炉のコンパクト化が実現できる。
この場合、ストーカ上でのごみの乾燥・熱分解・ガス化燃焼・後燃焼の各工程での処理効率を最大限まで引き上げストーカをできるだけコンパクトにするためには、各工程でのごみの体積減少にあわせたごみ層厚さや灰層厚さの制御と発熱源の撹拌の促進が必要である。このためにストーカ下部の風箱はごみの流れ方向に複数に分割し、各々の風箱に各々1つの独立した火格子駆動系を取付するのがよい。
【0026】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
本発明の実施例の基本構成を、図1及び図16に基づいて説明するに、17は給塵装置で、ごみ投入ホッパ1及び投入シュート2の下部にフィードテーブル5を設置し、該テーブル上の往復動フィーダ3にて火格子7へごみ11を供給する。
尚、給塵装置の構成は、表1に示す通りである。
【0027】
即ち、往復動式フィーダの段数は1段〜6段、往復動式フィーダのストロークは0〜2,000mm(通常運転時 100〜300mm程度)、往復動式フィーダの駆動方法は油圧シリンダ、油圧モータ、電動シリンダ、電動リニアモータ等で代表される低速度(0〜100mm/sec無段又は段階的可変速)、高出力条件の駆動機にて円滑な駆動ができる。

Figure 0003794753
望ましくはごみ等の性状等により突起無し型及び突起付を使い分ける。
【0028】
【表1】
Figure 0003794753
【0029】
給塵装置17の下流側にストーカ6が設置されている。
ストーカ6は、前記フィードテーブル5終端側より燃焼後の被焼却物排出口12Aに至るストーカ入口側より出口端までのストーカの段数を一段に設定するとともに、該ストーカ据付角度を被焼却物の搬送方向に約10°上向きになるように固定火格子段16と移動火格子段15を交互に配置する。
【0030】
又火格子の傾斜角度を被焼却物の搬送方向に20〜30°上向きになるように配置し、結果として火格子7の背面傾斜角度が搬送方向に30〜40°程度上向きになるように配置されることでもよい。
本実施例のストーカ6はフィードテーブル上の往復動式フィーダにて火格子7上へごみ等を供給しそして火格子7上でごみ燃焼した後の残留灰分等はストーカ6後端から排出する。
・ストーカ6の据付角度は0°(水平)〜20°(上向き)、好ましくは10°に設定する。
・ストーカ6面に対する火格子傾斜角度は20°〜40°(上向き)、好ましくは20°〜30°に設定する。
【0031】
望ましくは、水平面に対して火格子背面の傾斜角度(=ストーカ6の据付角度+火格子傾斜角度)が火格子7上部に堆積する焼却灰の安息角度である30〜35°よりも急勾配であり30〜50°、好ましくは30〜50°程度とする。
Figure 0003794753
【0032】
Figure 0003794753
かかるストーカの構成を表2に示す。
【0033】
【表2】
Figure 0003794753
【0034】
尚、ストーカ6は図18に示すようにストーカ6上のごみ等の流れ方向に突起8の無い火格子列と突起8付の火格子列を長手方向に交互に並べて配置しストーカ6の一段の面全体を構成する。
【0035】
移動火格子15の駆動方法は油圧シリンダ、油圧モータ、電動シリンダ、電動リニアモータ等で代表される低速度(0〜100mm/sec無段又は段階的可変速)、高出力条件の駆動機にて円滑な駆動ができる。
火格子15の動作は手動、自動、遠隔操作やごみの燃焼制御等によりON/OFF動作や無段可変速等の動作をする。
【0036】
本実施例のストーカ6は一段で構成されているが駆動シリンダ等は1駆動系〜15駆動系に分割してで構成され、望ましくは、火格子15下部の風箱10の1区分当りに独立した1駆動系を取付するのがよい。
風箱10は燃焼用一次空気、排ガス再循環ガス、酸素富化空気、乾燥、熱分解・燃焼用等の単一(純粋)又は混合したガス及び蒸気、等を火格子7下部から炉内へ火格子7の側面・前面あるいは火格子7を貫通するスリット・穴又は細孔を通して供給するように構成されている。
【0037】
風箱10の分割数は搬送方向にそって1分割〜15分割を行い、望ましくはストーカ6を一段状に構成した場合でも、複数の風箱10を取付し、乾燥・熱分解・ガス化燃焼・後燃焼等、炉内でのごみ等の各々の処理過程に応じた空気等の配分をする。
尚、風箱10の巾方向には一体型又は分割式のいずれでもよい。
【0038】
尚、図1に示す風箱10の構成は表3に示す。
【0039】
【表3】
Figure 0003794753
【0040】
尚、前記火格子7群は、その下方に配置した風箱10により被焼却物搬送方向に沿って前記表3に示すように、4つに分割し、該分割した移動火格子15毎には連結棒9Aを介して1本の油圧シリンダ9で駆動するように構成する。
【0041】
従ってストーカ66の運転要素は、夫々の風箱10単位で1ヶの制御要素のみの操作で行ない、従って風箱10が4つあるので、燃焼用一次空気量制御系列、燃焼用空気温度制御系列、移動火格子157の往復動作によるごみの撹拌制御系列が夫々4系列存在する事になる。
【0042】
かかる実施例によれば不規則な変動を抑えた安定した定常燃焼を得ることができる。
例えばストーカ6上に形成される、ごみ層・灰層等の厚さは平均50〜1,500mmt 程度である。ストーカ6上でのごみ・灰等の滞留時間は平均10〜150分程度である。
ストーカ6上でのごみの乾燥・熱分解・ガス化燃焼・後燃焼の各工程での処理効率を最大限まで引き上げストーカ6をできるだけコンパクトにするためには、各工程でのごみの体積減少にあわせたごみ層厚さや灰層厚さの制御と発熱源の撹拌の促進が必要である。このために図1に示すようにストーカ6下部の風箱10はごみの流れ方向に複数に分割し、各々の風箱10に各々1つの独立した火格子15、16駆動系を取付するのがよい。
【0043】
尚、本実施例に用いる処理対象品は、都市ごみ・産業廃棄物等で代表される廃棄物、RDF(Refuse Derived Fuel)等の固形燃料等で代表されるリサイクル品、汚泥・汚水等で代表される前述の物質に混合して処理する物、等 成分…紙、プラスチック、木材、ゴム、等の原料、材料、半製品、製品、リサイクル品、廃棄物、等で、LHV=0〜12,000kcal/kg(低位発熱量)程度のものでも十分焼却可能である。
そして前記ごみ等のストーカ6上での処理方法は上記のごみ等を乾燥、可燃分の内の揮発分を熱分解した後ガス化燃焼し、可燃部の内の固定炭素分を固体燃焼した後に、残留灰分、等を排出する。
【0044】
表4は火格子7傾斜角度が30°上向き、火格子7背面傾斜角度が40°の火格子7断面形状を示し、図2〜図7に対応するものである。
【0045】
【表4】
Figure 0003794753
【0046】
図2は移動火格子15及び固定火格子16のいずれもが、先端に3角形状の突起8を有したもので、その詳細形状は図3及び図17に示す。
そして本実施例においては、移動火格子15ストロークが360mm、火格子の高さ130mmにした場合において、突起8形状は、突起8形成始端を火格子先端より90mmの位置に設定し、突起8高さを40mm、突起8先端角度を57°、前面傾斜角度を52°、後面傾斜角度を5°に設定している。
図4は先端突起8形状の種類を示し、大型直角三角形状、台形型、断面半円状の丸型、面取り型の夫々の突起8形状が開示されている。
【0047】
図5乃至図7は、図1に適用されるストーカ炉の先端突起8無し火格子列の一の側面図を示し、図5は火格子の先端角部をほぼ水平方向にカットしたもので、火格子の先端前端傾斜角度を52°に、カット部の傾斜角度を85°に夫々設定している。又カット高さは(130−75)mmに設定している。
図6は火格子の先端角部を僅かにR状に面取りしたもの、図7は大きな曲率でR状に形成したもので、火格子の先端前端傾斜角度を52°に、又火格子前端高さを130mmに設定している。
【0048】
そして図3〜図4に示される先端突起8付き火格子と図5乃至図7に示される先端突起8無し火格子7とを適宜選択して左右方向に交互配列して図18に示すストーカ炉の先端突起8無し及び先端突起8付を交互に配列した火格子7列のストーカ炉が形成できる。尚図中(A)は平面図、(B)は側面図である。
【0049】
表5は火格子傾斜角度が20°上向き、火格子背面傾斜角度が30°の火格子7断面形状を示し、図8〜図15に対応するものである。
【0050】
【表5】
Figure 0003794753
【0051】
図8は移動火格子15及び固定火格子16のいずれもが、先端に二山状の突起8を有したもので、本実施例においては、火格子の高さ130mmにした場合において、突起8形状は、二山の突起8形成始端を火格子先端より150mmの位置に設定し、突起8高さを40mm、突起8先端角度を75°、前面傾斜角度を42°、60°、後面傾斜角度を15°に設定している。
図9は二山の突起8形成始端を火格子先端より156mmの位置に設定し、突起8高さを40mm、突起8先端角度を74°、前面傾斜角度を42°、後面傾斜角度を32°に設定している。
【0052】
図10乃至図12は先端突起8形状の種類を示し、図10には大型台形型、小型台形型、面取り台形型の夫々の突起8形状が、又図11には水平台形型、前傾台形型、前面丸型の夫々の突起8形状が、更に図12には複数の台形を組合せた大型2山型、小型2山型、丸型2山の夫々の突起8形状が開示されている。
図13乃至図15は、ストーカ炉の先端突起8無し火格子列の一の側面図を示し、図13は火格子の先端角部を僅かに前傾方向にカットしたもので、火格子7の先端前端傾斜角度を42°に、カット部の傾斜角度を75°に夫々設定している。又カット高さは(130−75)mmに設定している。
図14は火格子7の先端角部を僅かにR状に面取りしたもの、図15は大きな曲率でR状に形成したもので、火格子7の先端前端傾斜角度を42°に、又火格子前端高さを130mmに設定している。
【0053】
図19は、図1と異なる本発明の他の実施例に係るストーカ炉の全体組立図を示し、図1の実施例との違いを説明するに、往復動フィーダ3は上下二段構成とし、又ストーカ6は一段で構成されているが風箱10は搬送方向に5つに区分して構成している。駆動シリンダ9は夫々の風箱10毎に独立した駆動系として取付るのではなく、複数の風箱10単位で夫々駆動系を設けている。
【0054】
図20はストーカ6を2段構成とした参考例であり、前記フィードテーブル5終端側より燃焼後の被焼却物排出口12Aに至るストーカ6を2段構成としつつ火格子7の背面傾斜角度を被焼却物の搬送方向に30〜50°上向きになるように配置してある。
尚、風箱10は第1段側のストーカ6を2つに区分して2つの風箱10を、又第2段側のストーカ6には1の風箱10を夫々設けている。駆動シリンダ9は各段毎に独立した駆動系として取付ている。
【0055】
【発明の効果】
以上記載のごとく本発明によれば火格子燃焼率(ごみ焼却量〜10,000t/日・炉程度)を向上させるとともに、強力なごみ・灰の攪拌力により250kg/m2 以上を達成(高カロリーごみでは400kg/m2 h以上も可能)した。
又本発明によれば火格子背面傾斜角度と火格子先端突起8形状の工夫により従来の1.5〜2倍以上を達成することが出来る。
更に本発明によれば高カローごみ燃焼時においても適切なごみ層と灰層の確保により火格子の損傷がないとともに、炉内の均一燃焼によりクリンカー付着が無くなる。
【図面の簡単な説明】
【図1】 本発明の第1実施例に係るストーカ炉の全体組立図(長手断面図・火格子背面傾斜角度40°)を示す。
【図2】 図1に適用されるストーカ炉の火格子駆動系の第1の組立図(長手断面図・火格子背面傾斜角度40°)を示す。
【図3】 図2に適用されるストーカ炉の先端突起付火格子列の側面図(火格子背面傾斜角度40°)を示す。
【図4】 図2に適用されるストーカ炉の各種火格子先端突起形状の側面図(火格子背面傾斜角度40°)を示す。
【図5】 図1に適用されるストーカ炉の先端突起無し火格子列の一の側面図(火格子背面傾斜角度40°)を示す。
【図6】 図1に適用されるストーカ炉の先端突起無し火格子列(角型)の側面(火格子背面傾斜角度40°)を示す。
【図7】 図1に適用されるストーカ炉の先端突起無し火格子列(丸型)の側面図(火格子背面傾斜角度40°)を示す。
【図8】 本発明の他の実施例に係るストーカ炉の先端突起付火格子列の側面図(火格子背面傾斜角度30°)を示す。
【図9】 本発明の他の実施例に係るストーカ炉の先端突起付火格子列の側面図(火格子背面傾斜角度30°)を示す。
【図10】 本発明の他の実施例に係るストーカ炉の各種火格子先端突起形状の側面図(火格子背面傾斜角度30°)を示す。
【図11】 本発明の他の実施例に係るストーカ炉の各種火格子先端突起形状の側面図(火格子背面傾斜角度30°)を示す。
【図12】 本発明の他の実施例に係るストーカ炉の各種火格子先端突起形状の側面図(火格子背面傾斜角度30°)を示す。
【図13】 本発明の他の実施例に係るストーカ炉の先端突起無し火格子列の側面図(火格子背面傾斜角度30°)を示す。
【図14】 本発明の他の実施例に係るストーカ炉の先端突起無し火格子列(角型)の側面図(火格子背面傾斜角度30°)を示す。
【図15】 本発明の他の実施例に係るストーカ炉の先端突起無し火格子列(丸型)の側面図(火格子背面傾斜角度30°)を示す。
【図16】 図1に対応する本発明の実施例に係るストーカ炉の全体組立図(鳥瞰図)を示す。
【図17】 図2に対応する先端突起付火格子の鳥瞰図である。
【図18】 本発明の実施例に係るストーカ炉の先端突起無し及び先端突起付を交互に配列した火格子列の平面図(A)と側面図(B)とを示す。
【図19】 図1と異なる本発明の他の実施例に係るストーカ炉の全体組立図(長手断面図)を示す。
【図20】 本発明の参考例に係るストーカ炉の先端突起無し及び先端突起付を交互に配列した火格子列の平面図(A)と側面図(B)とを示す。
【図21】 従来のストーカ炉の全体組立図(長手断面図・火格子背面傾斜角度20°)を示す。
【図22】 従来のストーカ炉の火格子駆動系の組立図(長手断面図・火格子背面傾斜角度20°)を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stoker furnace for burning incinerated materials applied to incineration processing and thermal recycling of waste, solid fuel, sludge, etc., and in particular, has a grate inclined at a predetermined angle in the direction of transporting waste incinerated materials. The present invention relates to a stoker furnace for burning incinerated materials such as garbage.
[0002]
[Prior art]
Combustion equipment at the waste incineration facility includes a stoker type, fluidized bed type, rotary furnace type, etc., and is selected according to the quality of the waste, the size of the incinerator, and the like. Various types of stoker systems have been devised for the purpose of efficient incineration without sorting a large amount of waste.
For example, in Japanese Utility Model Laid-Open No. 57-127129, the stoker is constructed in a stepped manner so that the functions of drying, combustion, and post-combustion can be performed.
[0003]
The configuration of such a prior art will be described with reference to FIG. 21. Reference numeral 17 denotes a dust supply device, in which a feed table 5 is installed below the waste input hopper 1 and the input chute 2, and the reciprocating feeder 3 on the table is used. The garbage 11 is supplied to the grate 7.
The stoker 6 is installed on the downstream side of the dust supply device 17.
In the stalker 6, drying, combustion, and post-combustion stalkers 6 are arranged stepwise from the upstream side, and the drop between the stalkers 6 is set to 100 ± 300 mm, similarly to the height of the feed table 5.
[0004]
As shown in FIG. 22, each stalker has a staircase shape in which fixed grate stages 16 and moving grate stages 15 are alternately arranged, and each moving grate row per stage is connected to a single connecting rod 9A. It is driven by a hydraulic cylinder 9. Moreover, the wind box 10 of the combustion primary air 13 for each stage of the stoker is constituted by one for each stage. The operation element of the stalker 6 is operated by operating only one control element for each stage. One series of combustion primary air amount control, one series of combustion air temperature control, and one agitation control of dust by reciprocating movement of the moving grate 15 Equipped with a series.
The installation angle of the stoker 6 is set to 0 °, the inclination angle of the back of the grate with respect to the surface of the stalker 6 is set to about 20 ° (the inclination angle of the back of the grate with respect to the horizontal plane), and the stroke of the moving grate 15 is set to about 450 ± 50 mm. .
[0005]
In such a conventional stoker furnace, in the case of municipal waste combustion, the bulk specific gravity is 0.1 to 0.3 t / m.Three When a certain amount of waste is supplied to the input hopper 1, the dust is consolidated in the chute 2 and has a bulk specific gravity of 0.4 t / m.Three Compressed to the extent. Garbage pushed out onto the feed table 5 is cut out by the reciprocating feeder 3 by 100 to 300 mm per stroke and supplied onto the stoker 6.
The waste 11 supplied on the stalker 6 is stirred and mixed by the reciprocating motion of the grate 7, while the waste is dried and burned at the feed table step, and when the dust falls on the stalker step, the waste is crushed and reversed. . Drying / combustion by contact of garbage and primary combustion air (50-280 ° C.), drying / combustion of waste by radiant heat from flame (900-1200 ° C.), stirring of garbage when moving grate 15 moves forward It is dried and burned by crushing and reversing garbage.
[0006]
[Problems to be solved by the invention]
However, in the conventional one control system per stage, there is a time delay from changing the set value of each control system to maintain the optimal combustion condition when there is a sudden change in dust quality until returning to the optimal combustion state. there were. Especially when large lump or high-calorie waste is thrown in, the dust layer under the feed table or under the stoker step becomes thin, the surface of the grate is exposed to flame, and the grate due to spalling, thermal shock, etc. The surface may be thermally damaged. In addition, the drying and gasification of the dust in the thin part of the dust layer progresses and blow-through occurs. In this part, the air temporarily becomes excessive, and in other parts, the air is insufficient and the combustion is delayed, so the combustion per stage of the stoker In the case of an incinerator equipped with a boiler, fluctuations in the properties of the exhaust gas, a decrease in incineration ash, and an increase in the amount of boiler evaporation occurred.
[0007]
In order to avoid these effects, it is better that the time required for returning to the optimum combustion state after the fluctuation of the combustion field occurs is shorter, but in a conventional stoker furnace, the recovery due to the fluctuation of the combustion field is necessary. It takes about 10 minutes or more, and when the fluctuation is large, the recovery time may take 30 minutes or more.
[0008]
In addition, the average LHV of municipal waste discharged from cities due to the recent increase in the calories of waste has increased to about 2,000 kcal / kg, compared with 1,000 kcal / kg in the 1960s. Some of the highest planned waste quality exceeds 3,000 kcal / kg. Some RDFs that use waste as fuel have an LHV of 3,000 to 5,000 kcal / kg. When such flammable waste is burned in a stoker furnace, there is little water in the waste, Because of the fast drying, gasification and ignition of the flame, the propagation of the flame is fast, the volume reduction rate due to the combustion of the waste is fast, and the blow-through is likely to occur. In conventional stokers, the agitation power of garbage and ash is not sufficient, and blow-through occurs, resulting in fluctuations in combustion, the amount of exhaust gas, and the amount of harmful substances contained. For this reason, in high-calorie waste-compatible stokers, waste is immediately agitated and smoothed after it is put on the stoker from the feed table, the agitation frequency is increased during drying and combustion, and blow-off is prevented with strong agitation power. It is necessary to achieve stable combustion and prevent damage to the grate.
If the dust on the stoker can be completely burned within a certain moving distance even if the dust on the stoker is transported at the same speed as the flame propagation speed by improving the stirring power of the grate, the residence time of the dust on the stoker is short. Can be an efficient and compact incinerator.
[0009]
Furthermore, the guidelines for the prevention of dioxins generated by the Ministry of Health and Welfare in December 1990 set forth strict standards for all newly established continuous furnaces. In order to always operate the incinerator under ideal conditions that satisfy this regulation value, it is indispensable to maintain optimum combustion conditions.
In addition, when considering the compliance with strict slag elution standards such as the existing soil environment standards by volume reduction detoxification by complete melting of incinerated ash discharged from the stoker and reuse of molten slag for aggregates, etc. In order to always obtain stable slag properties, it is desirable that the properties of the incinerated ash used as a raw material are also stable. For this purpose, it is necessary to maintain optimum combustion conditions for waste on a stoker.
[0010]
Furthermore, in the case of an incinerator with a boiler, an increase in boiler efficiency associated with higher temperature and pressure of boiler steam is also required to improve the energy recovery rate from waste by thermal recycling. Due to the stability of the amount of exhaust gas and temperature, it is required to change the boiler evaporation amount from about ± 10% to ± 5%.
[0011]
Therefore, the annual waste incineration amount exceeds 300 ton / unit in the stoker furnace which is the main power of thermal recycling that uses more than 50 million tons of general waste annually by incineration to reduce the volume of waste by incineration. Large-scale furnaces can be constructed, and improving their performance is a social responsibility. Specifically, it is required to solve the following problems.
[0012]
1. Reducing costs by reducing the size of large furnaces by improving the agitation power of waste and ash on the stoker
2. Preventing grate damage when burning high-calorie waste
3. Prevention of clinker from adhering to the inner wall of high calorie waste
4). Reduction of harmful substances contained in exhaust gas at incinerator outlet
5). Extending grate life by preventing dust from getting into the grate
6). Linkage of incinerator and ash melting furnace system
7). Increase the temperature and pressure of boilers using residual heat from incinerators
The basis for achieving such an important mission is to improve the stirring power of the stoker, which is the basic aim of the present invention.
[0013]
[Means for Solving the Problems]
  The invention according to claim 1 is an incinerator combustion stoker furnace that performs dry combustion while supplying an incineration object such as garbage onto a stoker composed of a fixed grate and a moving grate from a feed table.
  The number of stalker stages from the stalker inlet side to the outlet end from the feed table end side to the incinerator discharge port after combustion is determined.In one rowIn addition to setting, the stoker installation angle from the end of the feed table to the incinerator discharge port after combustion is set to 10 ° to 20 ° so as to be directed upward in the conveyance direction of the incinerator, and the grate inclination angle is set thereon. ButGreater than the stoker installation angleArranged so that the angle is 20 ° to 30 °, and the back inclination angle of the grate provided on the stokerIncineration on top of grateA steep slope equal to or greater than the angle of repose of ash and in the direction of incinerationGreater than the grate inclination angleIt is characterized by being configured to face upward by 30 ° to 50 °.
  Thus, as described in detail later, the present invention reduces the back slope angle of the grate.Incineration on top of grateSince the steep slope is set to be equal to or greater than the angle of repose of ash, the burned ash near the stoker can be efficiently mixed with the unburned waste above.
  The reason why the upper limit of the back inclination angle of the grate is set to 50 ° is that if it is set to be equal to or greater than this angle, the stroke of the grate becomes short and a predetermined conveying force cannot be obtained.
[0014]
  And in the present invention, the number of stages of the stoker isIn one rowIt is set.
  As disclosed in FIG. 21, the prior art is formed in a three-step staircase to cope with an increase in size, but if it is formed in a staircase, a joint portion between the steps is provided separately. Although this is disadvantageous in terms of structure, according to the present invention, it is only necessary to add a row of stokers, and since there is no step in the height direction, a compact configuration is possible.
  In addition, in the conventional technology, when lump or high-calorie waste is added, the dust layer under the stoker step becomes thinner, and heat damage on the grate surface and drying / gasification of the dust in the thin part of the dust layer progresses. Blow-out occurs, and air is temporarily excessive in this part, and air is insufficient in other parts, so combustion is delayed, affecting the combustion of the stoker, and there are effects such as fluctuations in exhaust gas properties and deterioration of incineration ash. However, this is not the case with the present invention.
[0015]
  According to the present invention, in addition to the above effects, the number of stages of the stoker is particularly reduced.In one rowIn the case of setting, by setting the stoker installation angle upward by about 10 ° to 20 °, a sufficient convection time for the combusted material can be secured, and more complete combustion becomes possible.
[0016]
  The invention according to claim 2 specifies the stoker furnace for burning incinerated objects according to claim 1, and the grate group of the stoker is at the tip.Two mountains or a long mountain with a flat topThe movable grate with protrusions and the fixed grate without protrusions are alternately arranged in the left-right direction,The incineration object can be produced while causing a difference in thrust force depending on the presence or absence of protrusions.It is configured to be transportable.
  On the moving grateTwo peaks at the tip or a long peak with a flat topBy providing the protrusions, ash and garbage can be mixed efficiently by pushing up and returning the grate.
  In this case,A grate group in which the front inclination angle with respect to the vertical line of the stoker is set in the range of 42 ° to 60 ° is at the tip.A mountain or a mountain with a flat topThe movable grate with protrusions and the fixed grate without protrusions are alternately arranged in the left-right direction,Configured to be able to transport the incineration object while causing a difference in thrust force depending on the presence or absence of protrusions,Furthermore, the stroke of the moving grate should be 220 mm or more.
[0017]
The invention according to claim 5 further specifies the incinerator combustion stoker furnace according to claim 1, 2, or 3, and the grate group of the stoker has a grate (particularly a moving grate) provided with a protrusion at the tip. ) And a grate (particularly a moving grate) not provided with protrusions are arranged alternately in the left-right direction so that the incinerated object can be conveyed while causing a difference in push-up force depending on the presence or absence of the protrusion.
According to this invention, mixing and diffusion in the left-right direction occurs, and effective mixing can be achieved.
In addition, when the upper limit of the back inclination angle of the grate is set to 50 °, the stroke of the moving grate is shortened. (If the moving grate is stroked so as not to exceed the fixed grate tip, the angle is large. The projections cannot be made large, and the shape of the projections is a single mountain shape.
However, if the lower limit of the back inclination angle of the grate is set to 30 °, the stroke of the moving grate can be lengthened, so that the projection shape can be made large. It can be a long flat mountain.
At this time, since the shape of the surface of the combusted object is a shape obtained by projecting the shape of the stalker portion, it can be made smoother as the number of peaks increases.
The projection shape is more likely to be non-uniformly mixed as the surface unevenness increases, but such a problem can be solved by adopting the above-described configuration.
[0018]
  BookThe invention makes it possible to control the waste layer thickness and ash layer thickness in accordance with the volume reduction of waste in each process of drying, pyrolysis, gasification combustion, and post-combustion of waste on the stoker. The wind box below the grate group to be configured is divided into a plurality of dust flow directions, and an independent grate drive system is attached to each wind box, preferably, the front of the stoker vertical line A grate group with an inclination angle set in the range of 42 ° -60 ° is at the tip.A mountain or a mountain with a flat topA moving grate provided with protrusions and a fixed grate not provided with protrusions are alternately arranged in the left-right direction.
  This makes the stoker1 stageEven when configured in this manner, the functions of drying, combustion, and post-combustion can be performed.
[0020]
Next, the effect obtained by the powerful stirring force against dust and ash on the grate by the reciprocating grate of the stoker obtained in the present invention will be described in detail.
According to the first aspect of the present invention, the strong stirring force for dust and ash on the grate by the reciprocating grate of the stoker according to the present invention is obtained by utilizing the slip angle and the repose angle of the ash by the weight of the garbage. To do.
The slip angle by the dead weight of trash and the angle of repose of ash are 30 to 35 °. The conventional stoker furnace is configured such that the installation angle of the stoker is 0 ° or downwards in a stepped manner, and therefore the inclination angle of the back surface of the grate relative to the stoker surface is about 20 °. In other words, the inclination angle of the rear surface of the grate (= stalker installation angle + grate inclination angle) is 20 ° or less with respect to the horizontal plane, and it is more inclined than the slip angle due to the dead weight of the garbage and the ash repose angle of 30 to 35 °. When the grate was reciprocated loosely, the dust and ash deposited on the grate moved only by the reciprocating movement of the grate.
[0021]
  In the present invention, the inclination angle of the back of the grate30-50 ° preferablyIt is characterized by a steep slope of about 40 °. That is, the inclination angle of the back of the grate (= stalker installation angle + grate inclination angle) is steeper than the repose angle of the incinerated ash deposited on the grate upper part with respect to the horizontal plane, and the dead weight of the garbage. The slope is steeper than 30 to 35 ° which is the sliding angle.
  When the moving grate is reciprocated under these conditions, the ash deposited on the grate is pushed up, the angle of repose is broken, diffuses to the front, back, left and right, and the dust in the upper layer of the ash is also diffused and mixed so that it is involved in the ash diffusion. To do. This stirring force is enhanced 1.5 to 2 times by attaching a protrusion to the tip of the grate.
[0022]
  MoveIf a protrusion is attached to the tip of the grate, dust and ash are pushed up more effectively on the back side of the fixed grate when moving forward, and return garbage and ash are pushed up on the front side of the fixed grate when moving backward. And mixing by drawing to the front side of the moving grate is more effectively performed.
  Furthermore, if the rows with protrusions and the rows without protrusions are arranged alternately in the horizontal direction, due to the difference in the push-up force due to the presence or absence of the protrusions, the dust and ash that are pushed up on the back side of the fixed grate during the advancement are the rows with the protrusions Diffusion in the left-right direction occurs toward the row that is not, and when moving backward, the dust and ash pushed up on the front side of the fixed grate diffuses in the left-right direction from the row with projections to the row that does not have protrusions. Dust and ash are diffused in the left-right direction from the row without projections to the row with protrusions by pulling in the front side.
[0023]
Therefore, according to the present invention, the back slope of the grate is greater than the repose angle of the ash, so that the ash avalanche phenomenon can be effectively performed, and the waste supplied from the feeder is moved up and down, front and rear, left and right by the reciprocating movement of the moving grate. While mixing and mixing three-dimensionally in the direction, it can be leveled to an appropriate dust layer thickness. While transporting waste from the upstream side of the stoker to the downstream side by the reciprocating motion of the moving grate, the waste is dried, pyrolyzed, gasified and post-combusted using the air supplied from the wind box under the stoker.
[0024]
  At this timeBookAs in the invention, the stoker installation angle is upward toward the direction of waste flow.10 ° -20 °By inclining, the residence time of the waste can be ensured for a long time, and stirring and mixing can be sufficiently performed. Residual distribution after waste burning on the stalker is discharged by the reciprocating motion of the moving grate from the rear end of the stalker.
[0025]
Further, according to the present invention, waste on the stoker promotes heat transport, mass transfer, phenomenon / reaction in the course of processing, thereby improving processing efficiency. That is, by promoting three-dimensional stirring and mixing and blowing in uniform air or the like penetrating the grate, complete combustion of the waste on the stoker can be achieved, and the furnace can be made compact.
In this case, in order to maximize the processing efficiency in each process of drying, pyrolysis, gasification combustion, and post-combustion of waste on the stoker, the volume of waste in each process is reduced in order to make the stoker as compact as possible. Therefore, it is necessary to control the thickness of the waste layer and the thickness of the ash layer and to promote stirring of the heat source. For this purpose, it is preferable to divide the wind box below the stoker into a plurality of dust flow directions, and attach one independent grate drive system to each wind box.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.
The basic configuration of the embodiment of the present invention will be described with reference to FIGS. 1 and 16. Reference numeral 17 denotes a dust supply device. A feed table 5 is installed below the dust input hopper 1 and the input chute 2. The reciprocating feeder 3 supplies the garbage 11 to the grate 7.
The structure of the dust supply device is as shown in Table 1.
[0027]
That is, the number of stages of the reciprocating feeder is 1 to 6, and the stroke of the reciprocating feeder is 0 to 2,000 mm (about 100 to 300 mm during normal operation). The driving method of the reciprocating feeder is a hydraulic cylinder and a hydraulic motor. Smooth drive is possible with a low-speed (0 to 100 mm / sec stepless or stepwise variable speed), high-output condition drive machine represented by an electric cylinder, an electric linear motor, or the like.
Figure 0003794753
Desirably, the type without protrusions and the type with protrusions are properly used depending on the properties of dust and the like.
[0028]
[Table 1]
Figure 0003794753
[0029]
The stoker 6 is installed on the downstream side of the dust supply device 17.
The stalker 6 sets the number of stalker stages from the stalker inlet side to the outlet end from the end side of the feed table 5 to the incinerated object discharge port 12A after combustion, and also sets the stoker installation angle to convey the incinerated object. The fixed grate stage 16 and the movable grate stage 15 are alternately arranged so as to be upward about 10 ° in the direction.
[0030]
In addition, the grate inclination angle is arranged to be upward by 20 to 30 ° in the conveying direction of the incineration object, and as a result, the rear inclination angle of the grate 7 is arranged to be upward by about 30 to 40 ° in the conveyance direction. It may be done.
The stoker 6 according to the present embodiment supplies dust and the like onto the grate 7 with a reciprocating feeder on the feed table, and the residual ash and the like after burning on the grate 7 is discharged from the rear end of the stoker 6.
The installation angle of the stoker 6 is set to 0 ° (horizontal) to 20 ° (upward), preferably 10 °.
The grate inclination angle with respect to the 6 surfaces of the stalker is set to 20 ° to 40 ° (upward), preferably 20 ° to 30 °.
[0031]
Desirably, the inclination angle of the rear surface of the grate (= installation angle of the stoker 6 + grating inclination angle) with respect to the horizontal plane is steeper than 30 to 35 ° which is the repose angle of the incinerated ash deposited on the upper portion of the grate 7. Yes, 30 to 50 °, preferably about 30 to 50 °.
Figure 0003794753
[0032]
Figure 0003794753
The structure of such a stoker is shown in Table 2.
[0033]
[Table 2]
Figure 0003794753
[0034]
As shown in FIG. 18, the stoker 6 is arranged in such a manner that a grate row without projections 8 and a grate row with projections 8 are alternately arranged in the longitudinal direction in the flow direction of dust or the like on the stoker 6. Configure the entire surface.
[0035]
The moving grate 15 is driven by a low speed (0 to 100 mm / sec continuously variable or stepped variable speed), high output condition drive machine represented by a hydraulic cylinder, hydraulic motor, electric cylinder, electric linear motor, etc. Smooth drive is possible.
The operation of the grate 15 is performed manually / automatically / remotely / with garbage combustion control, etc., such as ON / OFF operation and continuously variable speed.
[0036]
Although the stoker 6 of this embodiment is composed of one stage, the drive cylinder and the like are divided into 1 drive system to 15 drive systems, and preferably independently for each section of the wind box 10 below the grate 15. It is preferable to attach one drive system.
The wind box 10 supplies primary air for combustion, exhaust gas recirculation gas, oxygen-enriched air, single (pure) or mixed gas and steam for drying, pyrolysis / combustion, etc. from the bottom of the grate 7 into the furnace. The grate 7 is configured to be supplied through the side surface / front surface of the grate 7 or through a slit / hole or pore penetrating the grate 7.
[0037]
The number of divisions of the air box 10 is 1 to 15 along the conveying direction. Preferably, even when the stoker 6 is configured in a single stage, a plurality of air boxes 10 are attached, and drying, pyrolysis, and gasification combustion are performed.・ Distribute air etc. according to each treatment process such as post combustion, etc. in the furnace.
In the width direction of the wind box 10, either an integral type or a divided type may be used.
[0038]
The structure of the wind box 10 shown in FIG.
[0039]
[Table 3]
Figure 0003794753
[0040]
The grate 7 group is divided into four as shown in Table 3 along the direction of incinerated material conveyance by the wind box 10 disposed below, and for each divided moving grate 15. It is configured to be driven by one hydraulic cylinder 9 via a connecting rod 9A.
[0041]
Accordingly, the operating elements of the stoker 66 are operated by operating only one control element in each wind box 10 unit. Therefore, since there are four wind boxes 10, the combustion primary air amount control series, the combustion air temperature control series Thus, there are four series of garbage agitation control by the reciprocating motion of the moving grate 157, respectively.
[0042]
According to such an embodiment, it is possible to obtain stable steady combustion in which irregular fluctuations are suppressed.
For example, the thickness of the dust layer, ash layer, etc. formed on the stoker 6 is about 50 to 1,500 mmt on average. The residence time of garbage, ash, etc. on the stalker 6 is about 10 to 150 minutes on average.
In order to maximize the processing efficiency in each process of drying, pyrolysis, gasification combustion, and post-combustion of waste on the stoker 6, in order to make the stoker 6 as compact as possible, the volume of waste in each process is reduced. It is necessary to control the thickness of the combined dust layer and ash layer and to promote the stirring of the heat source. For this purpose, as shown in FIG. 1, the wind box 10 below the stalker 6 is divided into a plurality of garbage flow directions, and one independent grate 15 and 16 drive system is attached to each wind box 10. Good.
[0043]
The treated products used in this example are represented by waste represented by municipal waste and industrial waste, recycled products represented by solid fuel such as RDF (Refuse Derived Fuel), sludge, sewage, etc. Products mixed with the aforementioned substances to be processed, etc. Ingredients: raw materials such as paper, plastic, wood, rubber, materials, semi-finished products, products, recycled products, waste, etc., LHV = 0-12 Even a thing of about 000 kcal / kg (low heating value) can be incinerated sufficiently.
Then, the above-described method for treating the waste on the stoker 6 is to dry the above-mentioned waste, etc., pyrolyze the volatile matter in the combustible component, gasify and burn it, and solid-combust the fixed carbon component in the combustible portion. , Residual ash, etc. are discharged.
[0044]
Table 4 shows the cross-sectional shape of the grate 7 with a grate 7 inclination angle of 30 ° upward and a grate 7 backside inclination angle of 40 °, and corresponds to FIGS.
[0045]
[Table 4]
Figure 0003794753
[0046]
In FIG. 2, both the moving grate 15 and the fixed grate 16 have triangular projections 8 at their tips, and their detailed shapes are shown in FIGS.
In this embodiment, when the moving grate 15 stroke is 360 mm and the grate height is 130 mm, the shape of the projection 8 is set such that the projection 8 formation start end is 90 mm from the grate tip, and the projection 8 height The height of the projection 8 is set to 57 °, the front surface inclination angle is set to 52 °, and the rear surface inclination angle is set to 5 °.
FIG. 4 shows types of the shape of the tip protrusion 8, and each of the protrusion 8 shapes of a large right triangle shape, a trapezoidal shape, a round shape with a semicircular cross section, and a chamfered shape is disclosed.
[0047]
5 to 7 show a side view of one of the grate rows without the tip projection 8 of the stoker furnace applied to FIG. 1, and FIG. 5 is a diagram in which the corner of the grate is cut in a substantially horizontal direction. The inclination angle of the front end of the grate is set to 52 °, and the inclination angle of the cut portion is set to 85 °. The cut height is set to (130-75) mm.
FIG. 6 shows a case where the tip corner of the grate is slightly chamfered in an R shape, and FIG. 7 shows a case where the grate is formed in an R shape with a large curvature. The thickness is set to 130 mm.
[0048]
Then, the grate with the tip protrusion 8 shown in FIGS. 3 to 4 and the grate 7 without the tip protrusion 8 shown in FIGS. 5 to 7 are appropriately selected and alternately arranged in the horizontal direction, and the stoker furnace shown in FIG. Thus, it is possible to form a stoker furnace with seven rows of grate in which no tip projections 8 and tip projections 8 are alternately arranged. In the figure, (A) is a plan view and (B) is a side view.
[0049]
Table 5 shows the cross-sectional shape of the grate 7 with a grate inclination angle of 20 ° upward and a grate backside inclination angle of 30 °, and corresponds to FIGS.
[0050]
[Table 5]
Figure 0003794753
[0051]
FIG. 8 shows that both the movable grate 15 and the fixed grate 16 have a double projection 8 at the tip. In this embodiment, when the height of the grate is 130 mm, the projection 8 The shape is set such that the starting end of the two protrusions 8 is 150 mm from the tip of the grate, the height of the protrusion 8 is 40 mm, the protrusion 8 tip angle is 75 °, the front inclination angle is 42 °, 60 °, and the rear inclination angle. Is set to 15 °.
In FIG. 9, the starting end of the two protrusions 8 is set at a position 156 mm from the tip of the grate, the height of the protrusion 8 is 40 mm, the protrusion 8 tip angle is 74 °, the front inclination angle is 42 °, and the rear inclination angle is 32 °. Is set.
[0052]
10 to 12 show the types of the shape of the tip protrusion 8. FIG. 10 shows the protrusions 8 of a large trapezoidal shape, a small trapezoidal shape, and a chamfered trapezoidal shape. FIG. FIG. 12 discloses the shape of each of the projections 8 of the mold and the front round shape, and FIG. 12 shows the shape of each of the projections 8 of the large double mountain shape, the small double mountain shape, and the two round shapes.
13 to 15 show a side view of one of the grate trains without the tip projection 8 of the stoker furnace, and FIG. 13 is a diagram in which the tip corners of the grate are cut slightly in the forward tilt direction. The tip front end inclination angle is set to 42 °, and the inclination angle of the cut portion is set to 75 °. The cut height is set to (130-75) mm.
FIG. 14 shows a case where the tip corner of the grate 7 is slightly chamfered in an R shape, and FIG. 15 shows a case where the grate 7 is formed in an R shape with a large curvature. The front end height is set to 130 mm.
[0053]
FIG. 19 shows an overall assembly diagram of a stoker furnace according to another embodiment of the present invention different from that in FIG. 1. To explain the difference from the embodiment in FIG. 1, the reciprocating feeder 3 has a two-stage configuration, The stoker 6 is composed of one stage, but the wind box 10 is divided into five in the transport direction. The drive cylinder 9 is not mounted as an independent drive system for each wind box 10, but a drive system is provided for each of the plurality of wind boxes 10.
[0054]
  In FIG. 20, the stoker 6 has a two-stage configuration.referenceThis is an example, and the stoker 6 from the end side of the feed table 5 to the incinerated object discharge port 12A after combustion is configured in two stages, and the back inclination angle of the grate 7 is upward by 30 to 50 ° in the conveying direction of the incinerated object It is arranged to become.
  The wind box 10 is divided into two first-stage stokers 6 to provide two wind boxes 10, and the second-stage stoker 6 is provided with one wind box 10. The drive cylinder 9 is attached as an independent drive system for each stage.
[0055]
【The invention's effect】
As described above, according to the present invention, the grate burning rate (waste incineration amount to about 10,000 t / day / furnace) is improved and 250 kg / m is obtained due to strong dust / ash stirring force.2 hAchieved above (400kg / m for high calorie waste)2 h or more).
Further, according to the present invention, it is possible to achieve the conventional 1.5 to 2 times or more by devising the grate back inclination angle and the grate tip protrusion 8 shape.
Furthermore, according to the present invention,Re-Even when burning garbage, securing a proper dust layer and ash layer prevents damage to the grate and eliminates clinker adhesion due to uniform combustion in the furnace.
[Brief description of the drawings]
FIG. 1 is an overall assembly diagram (longitudinal sectional view / grate back tilt angle 40 °) of a stoker furnace according to a first embodiment of the present invention.
FIG. 2 shows a first assembly diagram (longitudinal sectional view / grating back inclination angle 40 °) of the grate drive system of the stoker furnace applied to FIG. 1;
FIG. 3 is a side view of a grate row with a tip protrusion of a stoker furnace applied to FIG. 2 (grate back side inclination angle 40 °).
FIG. 4 shows a side view of various grate tip protrusion shapes of the stoker furnace applied to FIG. 2 (grate back side inclination angle 40 °).
FIG. 5 shows a side view (grate back inclination angle 40 °) of one of the grate rows without a tip protrusion of the stoker furnace applied to FIG. 1;
6 shows a side surface (grate back inclination angle 40 °) of a grate row (square shape) without a tip protrusion of the stoker furnace applied to FIG. 1;
FIG. 7 shows a side view (grate back tilt angle 40 °) of a no-protrusion grate row (round shape) of a stoker furnace applied to FIG. 1;
FIG. 8 shows a side view of a grate row with tip protrusions of a stoker furnace according to another embodiment of the present invention (grate backside tilt angle 30 °).
FIG. 9 is a side view of a grate train with tip protrusions of a stoker furnace according to another embodiment of the present invention (grate back tilt angle 30 °).
FIG. 10 is a side view of various grate tip protrusion shapes of a stoker furnace according to another embodiment of the present invention (grate back inclination angle 30 °).
FIG. 11 is a side view of various grate tip protrusion shapes of a stoker furnace according to another embodiment of the present invention (grate back side inclination angle 30 °).
FIG. 12 is a side view of various grate tip protrusion shapes of a stoker furnace according to another embodiment of the present invention (grate back inclination angle 30 °).
FIG. 13 is a side view of a grate row without a tip protrusion of a stoker furnace according to another embodiment of the present invention (grate back tilt angle 30 °).
FIG. 14 shows a side view (grate back inclination angle 30 °) of a no-protrusion grate row (square shape) of a stoker furnace according to another embodiment of the present invention.
FIG. 15 shows a side view of a grate row (round shape) without a tip protrusion of a stoker furnace according to another embodiment of the present invention (grate back inclination angle 30 °).
FIG. 16 shows an overall assembly view (bird's eye view) of a stoker furnace according to an embodiment of the present invention corresponding to FIG. 1;
FIG. 17 is a bird's eye view of a grate with a tip protrusion corresponding to FIG. 2;
FIG. 18 shows a plan view (A) and a side view (B) of a grate array in which no tip protrusions and with tip protrusions of a stalker furnace according to an embodiment of the present invention are alternately arranged.
FIG. 19 is an overall assembly view (longitudinal sectional view) of a stoker furnace according to another embodiment of the present invention different from FIG.
FIG. 20 shows the present invention.referenceThe top view (A) and side view (B) of the grate row | line | column which alternately arranged the tip no protrusion of the stalker furnace which concerns on an example, and a tip protrusion are arranged.
FIG. 21 is an overall assembly diagram of a conventional stoker furnace (longitudinal sectional view / grating back tilt angle 20 °).
FIG. 22 shows an assembly drawing (longitudinal sectional view / grating back inclination angle 20 °) of a grate driving system of a conventional stoker furnace.

Claims (3)

フィードテーブル上より固定火格子と移動火格子からなるストーカ上にごみ等の被焼却物を供給しながら乾燥燃焼を行う被焼却物燃焼用ストーカ炉において、
前記フィードテーブル終端側より燃焼後の被焼却物排出口に至るストーカ入口側より出口端までのストーカの段数を1段に設定するとともに、前記フィードテーブル終端側より燃焼後の被焼却物排出口に至るストーカ据付角度を被焼却物の搬送方向に上向きになるように10°〜20°とし、その上に火格子傾斜角度が前記ストーカ据付角度より大なる20°〜30°になるように配置し、前記ストーカ上に設けた火格子の背面傾斜角度を火格子上部に堆積する焼却灰の安息角と同等以上の急勾配で且つ被焼却物の搬送方向に前記火格子傾斜角度より大なる30°〜50°上向きになるように構成したことを特徴とするごみ等の被焼却物燃焼用ストーカ炉。
In a stoker furnace for burning incinerators that performs dry combustion while supplying incinerators such as garbage on a stalker consisting of a fixed grate and a moving grate from the feed table,
The number of stalker stages from the stalker inlet side to the outlet end from the feed table end side to the incinerated waste outlet after combustion is set to one stage, and from the feed table end side to the incinerated waste outlet after combustion. The stoker installation angle is set to 10 ° to 20 ° so as to face upward in the conveying direction of the incinerated object, and the grate inclination angle is further arranged to be 20 ° to 30 ° larger than the stoker installation angle. large becomes 30 ° from the grate inclination angle in the conveying direction of the angle of repose equal to or more steep in and be incinerated incineration ash rear inclination angle deposited grate top grate provided on the stoker A stoker furnace for burning incinerated materials such as waste, which is configured to face upward by 50 °.
前記ストーカの火格子群が、先端に二山若しくは頂部が平らな長い山にした突起を設けた移動火格子と突起を設けない固定火格子を左右方向に交互配置し、突起の有無による突き上げ力の差をもたらせながら被焼却物を搬送可能に構成した請求項1記載の被焼却物燃焼用ストーカ炉。The stoker's grate group consists of a moving grate provided with protrusions with two peaks or a long peak with a flat top and a fixed grate without protrusions alternately arranged in the left-right direction, and the thrust force due to the presence or absence of protrusions The stoker furnace for burning an incinerated object according to claim 1, wherein the incinerated object can be conveyed while causing the difference. 前記ストーカの鉛直線に対する前面傾斜角度を42°〜60°の範囲に設定した火格子群が、先端に二山若しくは頂部が平らな長い山にした一山状の突起を設けた移動火格子と、突起を設けない固定火格子を左右方向に交互配置し、突起の有無による突き上げ力の差をもたらせながら被焼却物を搬送可能に構成した請求項1若しくは2記載の被焼却物燃焼用ストーカ炉。A grate group in which a front inclination angle with respect to the vertical line of the stoker is set in a range of 42 ° to 60 ° is a moving grate provided with a mountain-like projection having two peaks or a long peak with a flat top at the tip. 3. The incineration object combustion according to claim 1 or 2, wherein the fixed grate having no protrusions is arranged alternately in the left-right direction so that the incineration object can be conveyed while causing a difference in push-up force depending on the presence or absence of the protrusions. Stalker furnace.
JP11309896A 1996-04-10 1996-04-10 Stoker furnace for burning incinerated materials such as garbage Expired - Lifetime JP3794753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11309896A JP3794753B2 (en) 1996-04-10 1996-04-10 Stoker furnace for burning incinerated materials such as garbage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11309896A JP3794753B2 (en) 1996-04-10 1996-04-10 Stoker furnace for burning incinerated materials such as garbage

Publications (2)

Publication Number Publication Date
JPH09280520A JPH09280520A (en) 1997-10-31
JP3794753B2 true JP3794753B2 (en) 2006-07-12

Family

ID=14603439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11309896A Expired - Lifetime JP3794753B2 (en) 1996-04-10 1996-04-10 Stoker furnace for burning incinerated materials such as garbage

Country Status (1)

Country Link
JP (1) JP3794753B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929680A (en) * 2010-09-01 2010-12-29 重庆科技学院 Fire grate of incinerator with laterally arrayed fins
CN101929679B (en) * 2010-09-01 2013-07-17 重庆科技学院 Incinerator grate with transversely and longitudinally staggered head bosses
JP6130704B2 (en) * 2013-04-05 2017-05-17 川崎重工業株式会社 Stoker-type incinerator
JP2016023865A (en) * 2014-07-22 2016-02-08 宇部興産機械株式会社 Stoker furnace
CN107131503A (en) * 2017-06-09 2017-09-05 北京建筑材料科学研究总院有限公司 A kind of Multi-layer reciprocating formula gasification combustion furnace
JP6397107B1 (en) * 2017-10-17 2018-09-26 三菱重工環境・化学エンジニアリング株式会社 Stoker furnace for burning incinerated materials such as garbage
JP6484874B1 (en) * 2018-08-30 2019-03-20 三菱重工環境・化学エンジニアリング株式会社 Stalker furnace
CN111442283A (en) * 2020-04-28 2020-07-24 北京中投润天环保科技有限公司 Device and method for disposing industrial waste by utilizing multistage airflow separation fixed bed
CN111853794A (en) * 2020-07-28 2020-10-30 广州市顺创科技有限公司 Household garbage solid waste treatment is with burning device
KR102242849B1 (en) * 2020-08-14 2021-04-22 유해권 System for recycling waste heat using solid refuse fuel incinerator
EP3967926A1 (en) * 2020-09-09 2022-03-16 Hitachi Zosen Inova AG Grate block with rising lug

Also Published As

Publication number Publication date
JPH09280520A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
US4385567A (en) Solid fuel conversion system
JP3794753B2 (en) Stoker furnace for burning incinerated materials such as garbage
JPS59180213A (en) Step type stoker
JP6397107B1 (en) Stoker furnace for burning incinerated materials such as garbage
US20120247375A1 (en) Grate clearing and ash removal system for gasification furnace
KR100917928B1 (en) Multiple incinerator plant consist of duplex hopper and combustion
US4774908A (en) Dry ash handling system
CN2252939Y (en) Living garbage incinerator
CN2291583Y (en) Combined grated
WO1998023899A1 (en) Anti-erosion system of grate in stocker type incinerator
CN1538108A (en) Step motor-driven grate burniag device of garbage furnace
JPH0429932B2 (en)
JP6481231B1 (en) Stalker furnace
US4895084A (en) Stoker for refuse incinerators
JP2013133943A (en) Waste incineration plant and waste incinerator equipped with the same
WO2014006459A1 (en) Vibrating grate stoker
CN1285857C (en) Fire grate for motor grate combustion appts. and grate body for forming grate
CN205746865U (en) High temperature garbage gasification spray combustion tunnel system
CN210832027U (en) Fire grate structure of incinerator
CN213777690U (en) Biomass movable grate
WO2022163615A1 (en) Incinerator
CN201277561Y (en) Rubbish pre-heating and drying mechanism
CN220750146U (en) Two-stage counter-burning reciprocating grate structure
CN110953593A (en) General industrial waste incinerator with variable reverse-pushing grate angle
JPS5817371B2 (en) combustion device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term