JP3794261B2 - Method and apparatus for winding spiral electrode group and battery using the same - Google Patents

Method and apparatus for winding spiral electrode group and battery using the same Download PDF

Info

Publication number
JP3794261B2
JP3794261B2 JP2000338667A JP2000338667A JP3794261B2 JP 3794261 B2 JP3794261 B2 JP 3794261B2 JP 2000338667 A JP2000338667 A JP 2000338667A JP 2000338667 A JP2000338667 A JP 2000338667A JP 3794261 B2 JP3794261 B2 JP 3794261B2
Authority
JP
Japan
Prior art keywords
electrode plate
chuck
electrode
core
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000338667A
Other languages
Japanese (ja)
Other versions
JP2001202986A (en
Inventor
照久 石川
康史 田中
武治 中ノ瀬
善樹 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000338667A priority Critical patent/JP3794261B2/en
Publication of JP2001202986A publication Critical patent/JP2001202986A/en
Application granted granted Critical
Publication of JP3794261B2 publication Critical patent/JP3794261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム2次電池、ニッケル水素電池などのように、電池の正負両電極板にセパレータを介して重ね合わせ、渦巻き状に巻回して製造される電池用電極群の巻回方法とその装置並びにその電極群を内蔵した電池に関するものである。
【0002】
【従来の技術】
従来から、大量に生産されている小形高容量の2次電池の構造としては、帯状をした正極板、負極板、セパレータなどのそれぞれの電極材料を重ね合わせて、渦巻き状に巻き上げた電極群が一般的に用いられる。正負それぞれの電極板は導電性芯材に活物質を主成分とするペーストを充填、乾燥し、その後電極板の厚さ調整と、活物質層の高密度化のためにロールプレス加工を行い、その後スリッタを用いて所定の幅に切断し、帯状形状に加工され、さらにリード線なども取りつけられる。また、セパレータは帯状をした微孔性のポリプロピレンフイルムより成り、そのセパレータを介して、前記の正負両電極板を所定の位置関係に重ね合わせ、巻芯の回りに、渦巻き状に隙間なくしっかりと巻き付けて製造された電極群を用いるものが一般的である。
【0003】
このような渦巻き状の巻回体を電極群として用いる2次電池の製作に於いて、巻回体を作製するには、一般的に、4本の平行に配設された繰り出し軸に、正負それぞれの電極板と、第1のセパレータと第2のセパレータのそれぞれを、ロール状に巻き上げた原材料を装着する。さらに、これらの4本の繰り出し軸と平行に巻芯が設けられ、前記それぞれの電極材料の先端部を巻芯に仮固定し、巻芯を所定の方向に一定速度で回転させる。
【0004】
それぞれの電極材料には、電極群を巻回するに適した張力が働くように、電極材料移送経路にはテンション装置を組み込み、張力をコントロールしている。巻芯の回転に伴って、前記の電極群を構成するそれぞれの帯状材料は、繰り出し軸の回転に連れて巻芯の方向に移送され、巻芯の回りに巻き付けられる。
【0005】
ところで、上記のような電極群の巻回装置を利用して電極群を製造する場合には、繰り出し軸に装着されたロール状に巻き上げられた正負それぞれの電極板が、方向転換やテンション装置などの為に多数設けられたローラ外周と接触し、ローラの回転により搬送され走行している間に、正負それぞれの電極板の加工段階に於いて生じた端面ぶれや、部分的な厚さのバラツキ、また、リード線取り付けによる電極板の局部的な厚さ不同、及び巻回装置の電極板移送用ローラの加工精度不良、ローラ軸の取りつけ精度不良、などにより次第に正規の走行方向に対して垂直方向の速度成分をも有するようになり蛇行することとなる。そしてこれら電極板の蛇行が、電極群の「巻きずれ」の主要な原因となる。
【0006】
参考までに、リチウム2次電池において用いられている主要な電極材料の幅寸法について記すと、一般的に第1、第2のセパレータは同一幅に設定されて最も広く40〜60mm程度、次いで負極板の幅が広く、正極板の幅が最も狭い。そして、セパレータと負極板の幅寸法の差は2mm程度であり、負極板と正極板の差は1mm程度であり、電極群として巻回された際には、正極板はセパレータを挟んで対向する負極板の幅の内側に収まり、負極板もセパレータの幅からはみだすことのないように巻回される必要がある。また、上記電極材料3者間の相対的な位置的条件を満たしていても、それぞれの電極材料が巻回に連れて軸芯の軸方向に大きく変位していることも許されない。
【0007】
このような条件から逸脱する場合には、電池の内部短絡を起こしたり、電池容量が不安定となったり、極端な場合には、電池ケース内部に電極群を収容することが困難と成り、電池としての性能面のみならず、安全面、生産性の面からも問題である。
【0008】
そこで、従来から電極材料を繰り出し軸から巻芯に向けて移送する途中において、種々の蛇行防止装置が利用されているので、簡単に2〜3の例について紹介する。最も一般的な蛇行防止装置は、それぞれの電極材料の原反ロールを取りつけた繰り出し軸の部分で行っている。すなわち、原反ロールより送り出された電極材料のエッジの位置を、所定の基準位置と比較し、位置ずれを光センサなどを用いて検出し、この検出結果に基づいて原反ロールを装着した繰り出し軸を、軸芯方向に移動操作し、原材料のエッジ位置を所定の位置に、0.1mm単位の精度で戻すようにしている。この場合には、一般的に原反ロールの重量も大きく装置が大型化し応答性に劣り、高速、高精度を要求する巻回装置には不適当である。
【0009】
また、特開平11−40144号公報には、図6に示すような、正負それぞれの電極板1,3の走行する方向に垂直な2本の軸芯32a,33aを有し、且つ、前記2本の軸芯を互いに平行に配設し、軸芯の回りに回転可能に支持された一対のローラ32,33で、電極板の両面から挟み、電極板の走行に伴って、一対のローラはスリップすることなく回転可能に製作する。これら一対のローラの近傍に配設された、電極板のエッジの位置を検出するエッジ検出手段34による検出結果に基づいて、一対のローラを、ローラの軸芯方向に移動操作することにより、電極板のエッジの位置を、自動的に補正することを特徴とするものが開示されている。
【0010】
また、特開平9−120822号公報には、図7に示すように、電極材料1,3のそれぞれを所定の長さに切断して短冊状とし、それぞれの短冊状材料の巻取り終端部近傍を、ガイド手段28に沿って巻取り方向に摺動自在とした把持手段29により把持すると共に、前記把持手段に巻取り方向と反対方向の張力を加えながら、正極板1と負極板3とを固定テープ30を介して、セパレータ5aと共に巻芯7に巻き取る巻きずれ防止装置が開示されている。しかし、これら従来の技術によって電池を生産する場合、電極群そのものの生産性に難点があるか、電池の生産歩留まりが悪くなるか品質のばらつきが大きいというような問題がある。
【0011】
さらに、最終的にエッジコントロールを行う際にも、特開平11−40144号公報で開示される、一対のローラで電極板の両面を挟みエッジ位置を修正するエッジコントロール手段を巻芯近傍に設けた場合、電極板に大きい力が加わり電極板が破損する可能性があるため、巻芯の近くに設置することができない。これにより蛇行補正してから巻芯までの間で電極板がローラの回転と共に再び位置ずれが発生する恐れがある。
【0012】
また、ガイドに沿って移動可能な把持手段により、終端部を保持した短冊状電極材料を用い、さらに、正極板及び負極板それぞれの巻き始め部を、固定テープを用いてセパレータに固定した後、巻芯のスリットにセパレータを嵌め込み、巻芯を回転させて巻回する特開平9−120822号公報のエッジコントロール方式では、巻きずれはほとんど発生せず、電極群の巻きずれ精度は良好であると予想される。しかし、どのようにして自動的に且つ能率的に、電極用シート材の端末部を把持手段に供給し、把持させるのかは開示されていなく、充分な生産性が得られないと考えられる。また、電池の性能にとっては全く不要な固定テープを用いるこの方式は、性能面やコスト面からも問題がある。
【0013】
また、従来の巻芯7は図8の(a)に示すように、軸直角断面が円形であるため、同図(b)に示す巻回した円筒形状の電極群を押圧して偏平状に整形した場合、折れ位置が定まらず、電極のリード線取り出し位置が一定しないという問題があった。また、電極群の断面が同図(c)に示すように繭型形状になり、電極群を偏平に整形する時偏平性に悪影響を及ぼしている。
【0014】
近時、特開平6−96801号公報に開示されるような、軸直角断面が矩形形状である偏平な巻芯による巻回が行われるようになってきた。図9の(a)は偏平な巻芯の一例で、同図(b)および(c)にそれぞれ、この巻芯により巻回した電極群と、押圧して偏平状に整形した電極群の断面図を示す。この場合、電極群の電池ケース内に占める体積効率は優れているが、巻芯による巻き取り周速度が脈動して巻きずれが生じ易い、偏平な断面形状の巻芯を巻き上げた電極群から外しにくい、さらに余分なセパレータや空間部がないので、電解液を注入した時の保液性が悪いといった問題点があった。
【0015】
【発明が解決しようとする課題】
以上により、本発明は長い帯状の電極材料を電極群として巻回する際、正極板1、負極板3をはじめとする各種電極材料に発生する移送方向と直角方向の位置ずれを効率的に、精度良く補正して極めて巻きずれの少ない電極群を、電極材料を短冊状に切ることなく、連続的に製造することができるとともに、偏平性に優れた電極群の巻回方法とその装置並びに品質の安定した生産性に優れた電池を提供するものである。
【0016】
【課題を解決するための手段】
本発明にもとずく渦巻状の電極群の巻回方法は、長い帯状の正極、負極やセパレータの電極材料を繰り出し軸に装着し、繰り出し軸から電極材料を巻き取る巻芯に至る移送経路に設けた、蛇行防止装置、テンション装置、多数の電極材移送用ローラを介して、方向転換をさせながら巻芯に向けて移送し、巻芯近傍の所定位置に於いて、特に正負それぞれの帯状電極板のエッジ位置をエッジ検出手段により検出し、基準位置と比較してその結果に基づいて、電極板の端部から電極板の走行方向と直角方向に伸びたチャックの一対のフィンガでつかみ、サーボモータとボールねじで構成されるチャック駆動手段で電極板のエッジの電極板の走行方向と直角方向の位置ずれを修正する。
【0017】
一旦、電極板のエッジ位置を十分な精度で自動的に修正した後は、電極板の走行方向と直角方向の位置ずれを起こすことのないように、電極材料の移送方向と平行なガイドにより、電極板の移送方向と平行な方向のみにその移動を拘束された第2のチャックで渦巻状電極群1個分の巻回に必要な長さの電極板の終端部を保持し、さらに渦巻状電極群1個分の長さの電極板の終端部位で、電極板の移送方向と平行な方向のみにその移動を拘束された第3のチャックで電極板を保持し、位置ずれを起こさない状態で、巻芯に電極板の先端部を供給し、第2のチャックの作用によって位置ずれを防止すると共に、張力を加えながら電極群の巻回を行う。
【0018】
また、電極群の生産性を向上させるために、巻芯の近くに設けた電極切断用のカッタ装置とセパレータのカッタ装置とを順序付けて動作させ、正極板、負極板とも短冊状に切断することなく、連続的に製造できる方式であることを特徴とするものである。
【0019】
本発明にもとづく渦巻状の電極群の巻回装置は、長い帯状の電極材料を装着した繰り出し軸と、繰り出し軸から電極材料を巻き取る巻芯に至る移送経路に、蛇行防止装置、テンション装置、電極材を方向転換させながら巻芯に向けて移送するための多数の電極材移送用ローラを設けた電池用渦巻状電極群の巻回装置において、巻芯近傍の所定位置に、正負の電極板の最終的なエッジ位置の修正を行うために正負の両電極板の移送路のそれぞれに、電極板のエッジ位置を検出するエッジ位置検出装置を設け、基準位置と比較してエッジの位置を修正するための、電極板の走行方向と直角方向に伸びた一対のフィンガとサーボモータとボールねじとで駆動される構成のエッジ位置修正チャックを設ける。
【0020】
電極板のエッジ位置を十分な精度で修正した後に、電極板の走行方向と直角方向の位置ずれを起こすことのないように、ガイドにより電極板の移送方向と平行な方向のみにその移動を拘束され、張力を加えながら電極群の巻回を行うための第2のチャックを設け、電極板の位置ずれを起こさない状態で、巻芯に電極板の先端部を供給する第3のチャックを設け、第3のチャックと巻芯の間に極板カッタを設け、巻芯の直前の位置で電極板を切断することを特徴とするものである。
【0021】
また、本発明にもとずく渦巻式電極群を内蔵した電池は、品質の安定したしかも生産性に優れた電池であることを特徴とするものである。
【0022】
【発明の実施の形態】
以下、図を参照しながら本発明に係る電池用渦巻状電極群の巻回方法とその装置の実施形態について説明する。図1は本発明の電極群巻回装置のエッジ位置修正装置を、角形リチウム2次電池用として構成した場合の主要部を示す斜視図であり(但し、理解を容易化する為に、巻芯7に対して正極板1、または負極板3のみを巻き付けている様子を示し、その他の電極材料は省略し、図を簡略化して示している)、図2は本発明の電池用渦巻状電極群巻回装置全体について、概略の構成を示す図である。
【0023】
図2において、ロール状に巻かれた正負の両電極板2、4と第一のセパレータ6a、第二のセパレータ6bのそれぞれは、別々に繰り出し軸(図示せず)に取り付けられている。そして巻き取り装置部分は、ひとつの回転盤26に、図4に示すような、軸直角断面が略6角形をした巻芯7が4本取り付けられている。また、それぞれの電極材料の、繰り出し軸から巻芯に至る移送経路の途中には、テンション装置8、蛇行防止装置9、移送ローラ(個数が多数になる為に符号記入せず)などが設けられ、巻芯7の直前に図1に示すエッジ位置修正装置25が設けられている。正極板1は(正極板も負極板もエッジ位置修正方法は全く同じで、従って以下では、正極板の場合についてのみ説明し、負極板の場合については割愛する)右上から左下に図示される巻芯7に向かって移動するが、その経路の所定位置、1個の渦巻状電極群を巻回するに必要な電極長さの終端部分近くに、正極板1のエッジ位置を検出するためのエッジ位置検出装置10を設けてある。エッジ位置検出装置10の近くにはエッジ位置修正チャック11が設けられている。エッジ位置修正チャック11は、正極板の両面を正極板の走行方向と直角な方向から伸びるチャックの一対のフィンガーでつかみ、ボールねじ15とサーボモータ16によって正極板1の走行方向と直角方向に可動である。エッジ位置修正チャック11の近く巻芯7寄りに設けた張力付与チャック12は開閉操作部22によって正極板1を上下から狭持したり開放したり出来るとともに、サーボモータ20により駆動されるプーリ17とプーリ18の間に掛けられたベルト19によって正極板の走行方向と平行に設けられたガイド21に沿って摺動可能で、サーボモータ20の回転トルクとプーリ17の径などにより設定された、電極群の巻回に適した張力を加えることができる。張力付与チャック12と巻芯7の間に設けた頭出しチャック13も正極板1を上下から狭持したり開放したりするとともに、ボールねじ23とサーボモータ24によって、正極板1と平行に可動である。巻芯7に至る手前近傍に極板カッタ14があり、制御信号により正極板1を切断する。巻芯7の所定位置とその前に巻き取りを行った巻芯の中間位置にセパレータカッタ(図示せず)があり制御信号にしたがってセパレータを切断する構造になっている。
【0024】
次に本実施例の作用について述べる。ロール状に巻かれた正負の両極板2、4と第一のセパレータ6a、第二のセパレータ6bのそれぞれは、別々に4本の繰り出し軸(図示せず)に装着されている。それぞれの電極材料は、繰り出し軸から巻芯に至る移送途中では、蛇行防止装置9、テンション装置8、多数の移送ローラなどに案内され、巻芯7の回転による巻き取り力で、繰り出し軸の回転につれて、巻芯7に向けて送り出される。
【0025】
この移送途中において、ロール状に巻かれた極板は電極材料の厚みのバラツキ等が原因で、走行方向に対して垂直方向の速度成分を持つようになり、電極材料のエッジの位置が変化し電極群には巻きずれが発生することがある。
【0026】
そこで、それぞれの繰り出し軸に近い位置に設けたエッジ位置修正装置9によって、ロール状電極材料2、4、6a、6bなどを装着した繰り出し軸と共に、軸方向移動させて、電極材料のエッジ位置を修正する。
【0027】
その後も幾つもの電極材料移送ローラと接触しローラを回転させながら走行しているうちに、エッジ位置が変化する傾向がある。ここまでの状況は従来例と同じである。従って、巻きずれを嫌う正極板1または負極板3に対して、本発明による巻回方式では、それぞれエッジ位置修正装置25を用いて巻回を行う。続いてその詳細について説明する。
【0028】
巻芯7の回転によって電極群1個分の正極板1をほぼ巻き取ると巻芯7の回転が止まる。張力付与チャック12も巻芯7に最も近い位置で止まる。正極板1が一時的に走行を停止したタイミングに、頭出しチャック13が働き、次の電極群を構成する正極板1の先端付近を保持する。そこで、張力付与チャック開閉操作部22を働かせて、張力付与チャック12を開き、正極板1を保持し位置ずれを防止する役目を、頭出しチャック13に引継ぎ交代する。正極板保持の役目を開放された張力付与チャック12は、ガイド21に沿って張力付与サーボモータ20、プーリ17,18とベルト19によって駆動され、エッジ位置修正チャック11の近くに引き返して待機する。
【0029】
頭出しチャック13が正極板1を保持すると同時ぐらいに、極板カッタ14を作動させて、正極板1の長さを所定の寸法に切断し、次の電極群の巻回を開始するまで、頭出しチャック13は、そのままの位置で待機する。正極板1が極板カッタ14で切断されると、巻芯7に巻き付けられている正極板1の末端部は、全てのチャックから開放され、巻芯7を少し回転することによって、端末部は、セパレータ5a、5bなどと共に巻芯7に巻き取られ巻芯7の回転は停止する。この時の巻芯7の回転は僅かであるため、位置ずれが問題となることはない。
【0030】
1個の電極群に必要な両電極板の巻回が終わると巻芯7が載っている回転盤26が4分の1回転し、次の巻芯7が所定の位置に来る。その位置で巻芯7が軸方向に押し出され、セパレータ保持スリットの間でセパレータの保持を進めながら所定の位置に達すると、セパレータカッタ(図示せず)が作動し、セパレータ5a、5bが切断され、残部を巻き取り、先の巻芯7による電極群の巻回が完了する。
【0031】
この工程と同時ぐらいに、エッジ位置修正チャック11のフィンガで正極板1の上下両面から正極板1をしっかりとつかむ。同時にエッジ位置検出装置10により、正極板1のエッジ位置を検出し、その結果を制御回路に送り、現状の正極板のエッジ位置と基準のエッジ位置の変位を把握し、位置修正チャック11をボールねじ15とサーボモータ16を用いて、正極板の走行方向と直角方向に移動させ、正極板1のエッジ位置を基準位置と一致させる。
【0032】
正極板1のエッジ位置が、基準位置と一致するように修正されると、位置ずれを起こさないように修正状態を維持して、所定位置に待機していた張力付与チャック12が、1個の電極群に必要な電極長さの終端部分をしっかりとつかむ。その後に、エッジ位置修正チャック11を開き、シーケンス制御の指令にもとづいて、エッジ位置修正チャック11を待機位置に復帰させる。
【0033】
以上の工程が完了すると、巻芯7が回転を開始し、同時に待機していた頭出しチャック13が、サーボモータ24とボールねじ23の作用によって巻芯7の方向に動き、正極板1の先端部がセパレータの間に差し込まれる。巻回が始まると頭出しチャック13は開放され待機位置に戻る。正極板1が巻き取られるに連れて、張力付与チャック12はガイド21に沿って摺動し、サーボモータ20の回転トルクとプーリ17の径などにより設定された、電極群の巻回に適した張力を加えて正極板1を移送し、位置ずれを防止ししながら巻芯7側に移動する。
【0034】
巻芯7の回転によって電極群1個分の正極板1をほぼ巻き取ると巻芯7の回転が止まり、張力付与チャック12も巻芯7に最も近い位置で止まる。ついで頭出しチャック13と極板カッタ14が作動して正極板1が切断され、エッジ位置修正装置25の作用が繰り返される。
【0035】
上記の動作説明をより明確にするために、タイミングチャートを図3として示している。
【0036】
また、図4の(a)、(b)、(c)はそれぞれ本発明の軸直角断面が略6角形形状の巻芯、その巻芯を用いて巻回した電極群の断面図および押圧して偏平化した電極群の断面図である。図4(c)から分かるように、本発明の巻芯を用いれば、内周から外周まで均一で略小判状の断面を持つ電極群を得る事が出来る。
【0037】
次に、図5にもとづいて本発明による電極群を内蔵した電池について説明する。上端に開口部103を有する有底角筒状の電池ケース102の内底面上には、正極リード121の先端部が溶接により接続され、この正極リード121を正極側絶縁板122で電気絶縁状態に仕切った電池ケース102の内部には電極群123が挿入され、さらに、電極群123の上端部は負極側絶縁板124で電気絶縁される。一方、上記とは別工程において、電解液の注液孔107を側部に有する封口板104には、その中央部の取付孔127に、絶縁ガスケット128を介して電気絶縁した状態で負極端子129が取り付けられる。この負極端子129の下面には、電極群123から負極側絶縁板124の挿通孔124aを通じて導出された負極リード130が溶接により接続される。この封口板104は、電池ケース102の開口部103の所定位置に嵌入して、その周囲を電池ケース102の内周面に溶接することによって固着される。そののち、電池ケース102内には、封口板104の注液孔107から所定量の電解液(図示せず)が注入され、この電解液とこれが含浸した電極群123とによって発電要素が構成される。
【0038】
巻回が終わったときの本発明による電極群は、図4の(b)に示すように断面が6角形の筒状であり、偏平に整形する時に折れ位置が安定しているので、電極のリード線取り出し位置を一定にすることが出来る。また、本発明の巻芯のセパレータ保持スリット7aの寸法は、6角形断面の二面幅に等しいので、偏平な巻芯で巻回した時よりも巻き上がった電極群を巻芯から外す工程も容易であり、偏平性への悪影響の程度が少なく、図4(c)に示すような略小判状の均一な偏平形状の電極群が得られる。従って、電極群を偏平に整形する工程の作業性並びに、電極群を電池ケースに入れる工程の作業性がよくなる。さらに、電解液を注入した時の保液性にも優れ、本発明による電極群を内蔵した電池は高率放電性能が優れ、品質も安定している。
【0039】
【発明の効果】
以上のように本発明によれば、特にリチウム2次電池用の電極群を巻回する際に、正極板、負極板をはじめとする各種の電極材料に発生する移送方向と直角方向の位置ずれを、センサにより検出し、電極板をチャックでつかみ、チャックと共に電極板を、電極板の走行方向と直角方向に移動させて電極板の位置ずれを修正する。
【0040】
さらに、正確に位置を修正された電極板の一部を頭出しチャックでつかみ巻芯に供給して、その後も常に、電極板の一部をエッジ位置修正チャックまたは張力付与チャックでつかみ、適度な張力を電極板に加えて位置ずれを防止しながら、巻芯の回転に連れて断面形状6角形の巻芯の回りに電極板を巻き付けるので、極めて巻きずれの少ない偏平性に優れた電極群を製造可能な電極群巻回方式と電極群巻回装置を提供することが出来る。また、本発明による内周から外周まで均一で偏平性に優れた電極群を内蔵した電池は生産歩留まりがよく、品質も安定している。
【図面の簡単な説明】
【図1】本発明の主要部であるエッジ位置修正装置の斜視図
【図2】本発明の電極群巻回装置全体の概略の構成を示す正面図
【図3】本発明の電極群巻回装置主要部の動作についてのタイミングチャート
【図4】本発明の巻芯および本発明により得られた渦巻状電極群を示す図
(a)巻芯を示す図
(b)巻回した渦巻状電極群の断面図
(c)押圧して偏平化した渦巻状電極群の断面図
【図5】本発明による渦巻状電極群を内蔵した電池の断面図
【図6】従来のエッジ位置修正装置の1例についての主要部を示す図
【図7】従来のエッジ位置修正装置での他の1例についての主要部を示す図
【図8】従来の巻芯および従来の渦巻状電極群を示す図
(a)巻芯を示す図
(b)巻回した渦巻状電極群の断面図
(c)押圧して偏平化した渦巻状電極群の断面図
【図9】他の1例の従来の巻芯および渦巻状電極群を示す図
(a)巻芯を示す図
(b)巻回した渦巻状電極群の断面図
(c)押圧して偏平化した渦巻状電極群の断面図
【符号の説明】
1 正極板
2 ロール状正極板(原材料)
3 負極板
4 ロール状負極板(原材料)
5a 第1セパレータ
5b 第2セパレータ
6a ロール状第1セパレータ(原材料)
6b ロール状第2セパレータ(原材料)
7 巻芯
7a セパレータ保持スリット
8 テンション装置
9 蛇行防止(エッジ位置修正)装置
10 エッジ位置検出装置
11 エッジ位置修正チャック
12 張力付与チャック
13 頭出しチャック
14 極板カッタ
15 エッジ位置修正ボールねじ
16 エッジ位置修正サーボモータ
17 ベルト用プーリ
18 ベルト用プーリ
19 張力付与チャック搬送用ベルト
20 張力付与サーボモータ
21 張力付与チャックガイド
22 張力付与チャック開閉操作部
23 頭出しチャック用ボールねじ
24 頭出しチャックサーボモータ
25 本発明の主要部であるエッジ位置修正装置
26 回転盤
102 電池ケース
103 開口部
104 封口板
107 注液孔
121 正極リード
122 正極側絶縁板
123 電極群
124 負極側絶縁板
124a 挿通孔
127 取付孔
128 絶縁ガスケット
129 負極端子
130 負極リード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for winding a battery electrode group, such as a lithium secondary battery, a nickel metal hydride battery, and the like, which are produced by overlapping and winding spirally on both positive and negative electrode plates of a battery via a separator. The present invention relates to a battery incorporating the device and its electrode group.
[0002]
[Prior art]
Conventionally, the structure of a small high-capacity secondary battery that has been mass-produced includes an electrode group that is wound up in a spiral shape by laminating respective electrode materials such as a strip-like positive electrode plate, negative electrode plate, and separator. Generally used. Each of the positive and negative electrode plates is filled with a paste containing an active material as a main component in a conductive core material, dried, and then subjected to roll press processing for adjusting the thickness of the electrode plate and increasing the density of the active material layer, Thereafter, it is cut into a predetermined width using a slitter, processed into a strip shape, and a lead wire or the like is further attached. The separator is made of a band-shaped microporous polypropylene film, and the positive and negative electrode plates are overlapped in a predetermined positional relationship through the separator, and are firmly wound around the core in a spiral shape without gaps. Generally, an electrode group manufactured by winding is used.
[0003]
In the production of a secondary battery using such a spiral wound body as an electrode group, in order to produce a wound body, in general, four feeding shafts arranged in parallel are positive and negative. Each electrode plate, and the raw material which rolled up each of the 1st separator and the 2nd separator in roll shape are mounted | worn. Furthermore, a winding core is provided in parallel with these four feeding shafts, the tip portions of the respective electrode materials are temporarily fixed to the winding core, and the winding core is rotated at a constant speed in a predetermined direction.
[0004]
A tension device is incorporated in the electrode material transfer path to control the tension so that each electrode material has a tension suitable for winding the electrode group. Along with the rotation of the winding core, the respective band-shaped materials constituting the electrode group are transferred in the direction of the winding core with the rotation of the feeding shaft, and are wound around the winding core.
[0005]
By the way, when the electrode group is manufactured using the electrode group winding device as described above, each of the positive and negative electrode plates wound up in a roll attached to the feeding shaft has a direction change, a tension device, etc. For this reason, contact with the outer periphery of a large number of rollers, and transport and rotation of the rollers while running, end face blurring and partial thickness variations in the processing stage of each positive and negative electrode plate Also, it is gradually perpendicular to the normal running direction due to local thickness unevenness of the electrode plate due to the lead wire attachment, poor processing accuracy of the roller for transferring the electrode plate of the winding device, poor mounting accuracy of the roller shaft, etc. It will also have a direction velocity component and will meander. The meandering of these electrode plates is a major cause of “winding deviation” of the electrode group.
[0006]
For reference, the width dimensions of the main electrode materials used in the lithium secondary battery will be described. Generally, the first and second separators are set to the same width and are the widest about 40 to 60 mm, and then the negative electrode. The width of the plate is wide and the width of the positive electrode plate is the narrowest. And the difference of the width dimension of a separator and a negative electrode plate is about 2 mm, the difference of a negative electrode plate and a positive electrode plate is about 1 mm, and when wound as an electrode group, a positive electrode plate opposes on both sides of a separator The negative electrode plate needs to be wound so as to fit inside the width of the negative electrode plate and not protrude from the width of the separator. Further, even if the relative positional condition among the three electrode materials is satisfied, it is not permitted that each electrode material is greatly displaced in the axial direction of the shaft core as it is wound.
[0007]
When deviating from such conditions, internal short circuit of the battery occurs, battery capacity becomes unstable, and in extreme cases, it becomes difficult to accommodate the electrode group inside the battery case. This is a problem not only in terms of performance, but also in terms of safety and productivity.
[0008]
Thus, since various types of meandering prevention devices have been used in the middle of transferring the electrode material from the feed shaft toward the core, a few examples will be briefly introduced. The most common meandering prevention device is carried out at the part of the feed shaft to which the raw roll of each electrode material is attached. In other words, the position of the edge of the electrode material fed from the original fabric roll is compared with a predetermined reference position, the positional deviation is detected using an optical sensor or the like, and the feeding with the original fabric roll attached based on the detection result The shaft is moved in the axial direction so that the edge position of the raw material is returned to a predetermined position with an accuracy of 0.1 mm. In this case, in general, the weight of the raw roll is large and the apparatus becomes large and the response is inferior. Therefore, it is not suitable for a winding apparatus that requires high speed and high accuracy.
[0009]
Japanese Patent Application Laid-Open No. 11-40144 has two shaft cores 32a and 33a perpendicular to the traveling direction of the positive and negative electrode plates 1 and 3, as shown in FIG. A pair of rollers 32 and 33, which are arranged parallel to each other and supported so as to be rotatable around the shaft core, are sandwiched from both surfaces of the electrode plate, and as the electrode plate travels, Produced to be rotatable without slipping. By moving the pair of rollers in the axial direction of the roller based on the detection result by the edge detection means 34 that detects the position of the edge of the electrode plate disposed in the vicinity of the pair of rollers, There is disclosed an apparatus that automatically corrects the position of the edge of the plate.
[0010]
In addition, as shown in FIG. 7, in Japanese Patent Application Laid-Open No. 9-120822, each of the electrode materials 1 and 3 is cut into a predetermined length to form a strip, and the vicinity of the winding end portion of each strip-shaped material. Is gripped by the gripping means 29 that is slidable in the winding direction along the guide means 28, and the positive electrode plate 1 and the negative electrode plate 3 are moved while applying tension in the direction opposite to the winding direction to the gripping means. An anti-winding device that winds around a core 7 together with a separator 5a via a fixing tape 30 is disclosed. However, when batteries are produced by these conventional techniques, there are problems such as difficulty in productivity of the electrode group itself, deterioration in battery production yield, or large variations in quality.
[0011]
Furthermore, when performing edge control finally, edge control means disclosed in Japanese Patent Application Laid-Open No. 11-40144 is provided in the vicinity of the core to fix the edge position by sandwiching both surfaces of the electrode plate with a pair of rollers. In this case, since a large force is applied to the electrode plate and the electrode plate may be damaged, the electrode plate cannot be installed near the core. As a result, the electrode plate may be displaced again as the roller rotates between the meander correction and the winding core.
[0012]
In addition, by using a strip-shaped electrode material that holds the terminal portion by gripping means that can move along the guide, and further, after fixing the winding start portion of each of the positive electrode plate and the negative electrode plate to the separator using a fixing tape, In the edge control method of Japanese Patent Laid-Open No. 9-120822, in which a separator is fitted in the slit of the winding core and the winding core is rotated, winding deviation hardly occurs and the winding deviation accuracy of the electrode group is good. is expected. However, it is not disclosed how to automatically and efficiently supply and grip the terminal portion of the electrode sheet material to the gripping means, and it is considered that sufficient productivity cannot be obtained. In addition, this method using a fixing tape that is completely unnecessary for the performance of the battery has problems in terms of performance and cost.
[0013]
Further, as shown in FIG. 8 (a), the conventional core 7 has a circular cross section perpendicular to the axis, so that the wound cylindrical electrode group shown in FIG. 8 (b) is pressed into a flat shape. In the case of shaping, there has been a problem that the folding position is not fixed and the lead wire extraction position of the electrode is not constant. In addition, the cross section of the electrode group has a saddle shape as shown in FIG. 5C, which adversely affects the flatness when the electrode group is shaped flat.
[0014]
Recently, winding with a flat core having a rectangular cross section perpendicular to the axis as disclosed in JP-A-6-96801 has been performed. FIG. 9A is an example of a flat core. FIGS. 9B and 9C are cross-sections of the electrode group wound around the core and the electrode group pressed into a flat shape, respectively. The figure is shown. In this case, the volume efficiency of the electrode group in the battery case is excellent, but the winding peripheral speed of the winding core is pulsated, and the winding is liable to occur. In addition, there is a problem that the liquid retaining property is poor when an electrolyte is injected because there is no extra separator or space.
[0015]
[Problems to be solved by the invention]
As described above, when the present invention winds a long strip-shaped electrode material as an electrode group, the positional deviation in the direction perpendicular to the transfer direction generated in various electrode materials including the positive electrode plate 1 and the negative electrode plate 3 can be efficiently performed. Electrode group with extremely low deviation due to accurate correction can be manufactured continuously without cutting the electrode material into strips, and the electrode group winding method, apparatus and quality with excellent flatness It is intended to provide a battery having excellent stable productivity.
[0016]
[Means for Solving the Problems]
The winding method of the spiral electrode group based on the present invention is such that a long belt-like positive electrode, negative electrode or separator electrode material is attached to the feed shaft, and the transfer path from the feed shaft to the winding core for winding the electrode material is provided. Via the provided meandering prevention device, tension device, and a large number of electrode material transfer rollers, it is transferred toward the winding core while changing its direction. The edge position of the plate is detected by the edge detection means, and compared with the reference position, based on the result, it is grasped by a pair of chuck fingers extending from the end of the electrode plate in a direction perpendicular to the traveling direction of the electrode plate. A chuck driving means composed of a motor and a ball screw corrects the positional deviation in the direction perpendicular to the traveling direction of the electrode plate at the edge of the electrode plate.
[0017]
Once the edge position of the electrode plate is automatically corrected with sufficient accuracy, a guide parallel to the electrode material transfer direction is used so as not to cause a position shift in the direction perpendicular to the traveling direction of the electrode plate. The second chuck, whose movement is constrained only in the direction parallel to the transfer direction of the electrode plate, holds the terminal portion of the electrode plate having a length necessary for winding one spiral electrode group, and further spirals. A state in which the electrode plate is held by a third chuck whose movement is restricted only in the direction parallel to the transfer direction of the electrode plate at the terminal portion of the electrode plate having a length corresponding to one electrode group, and no displacement occurs. Thus, the tip of the electrode plate is supplied to the winding core, the position shift is prevented by the action of the second chuck, and the electrode group is wound while applying tension.
[0018]
In addition, in order to improve the productivity of the electrode group, the cutter device for cutting the electrode provided near the core and the cutter device for the separator are operated in order to cut both the positive electrode plate and the negative electrode plate into a strip shape. It is a system that can be continuously manufactured.
[0019]
A winding device for a spiral electrode group according to the present invention is provided with a feeding shaft on which a long strip-shaped electrode material is mounted, and a transfer path from the feeding shaft to a winding core for winding the electrode material, a meandering prevention device, a tension device, In a winding device for a spiral electrode group for a battery provided with a large number of electrode material transfer rollers for transferring an electrode material toward a core while changing its direction, a positive and negative electrode plate at a predetermined position in the vicinity of the core In order to correct the final edge position, an edge position detection device that detects the edge position of the electrode plate is provided in each of the transfer paths of the positive and negative electrode plates, and the edge position is corrected compared to the reference position. For this purpose, an edge position correcting chuck configured to be driven by a pair of fingers extending in a direction perpendicular to the traveling direction of the electrode plate, a servo motor, and a ball screw is provided.
[0020]
After correcting the edge position of the electrode plate with sufficient accuracy, the guide restrains its movement only in the direction parallel to the electrode plate transfer direction so as not to cause a displacement in the direction perpendicular to the traveling direction of the electrode plate. A second chuck is provided for winding the electrode group while applying tension, and a third chuck is provided for supplying the tip of the electrode plate to the winding core in a state where the electrode plate is not displaced. An electrode plate cutter is provided between the third chuck and the winding core, and the electrode plate is cut at a position immediately before the winding core.
[0021]
Further, a battery incorporating a spiral electrode group based on the present invention is characterized in that the battery has a stable quality and an excellent productivity.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a winding method and apparatus for a spiral electrode group for a battery according to the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a main part when an edge position correcting device of an electrode group winding device of the present invention is configured for a prismatic lithium secondary battery (however, in order to facilitate understanding, a winding core is used) 7 shows a state in which only the positive electrode plate 1 or the negative electrode plate 3 is wound around the other electrode material, omitting other electrode materials and simplifying the drawing, and FIG. 2 shows a spiral electrode for a battery according to the present invention. It is a figure which shows a schematic structure about the whole group winding apparatus.
[0023]
In FIG. 2, each of the positive and negative electrode plates 2, 4 wound in a roll shape, and the first separator 6a and the second separator 6b are separately attached to a feeding shaft (not shown). In the take-up device portion, four winding cores 7 each having a substantially hexagonal cross section perpendicular to the axis, as shown in FIG. In addition, a tension device 8, a meandering prevention device 9, a transfer roller (no code is entered due to the large number) are provided in the middle of the transfer path of each electrode material from the feed shaft to the core. An edge position correcting device 25 shown in FIG. 1 is provided immediately before the core 7. The positive electrode plate 1 has the same edge position correcting method for both the positive electrode plate and the negative electrode plate. Therefore, only the case of the positive electrode plate will be described below, and the case of the negative electrode plate will be omitted. An edge for detecting the edge position of the positive electrode plate 1 that moves toward the core 7 but close to a predetermined position on the path and an end portion of the electrode length necessary for winding one spiral electrode group A position detection device 10 is provided. An edge position correcting chuck 11 is provided near the edge position detecting device 10. The edge position correcting chuck 11 is gripped by a pair of chuck fingers extending from a direction perpendicular to the traveling direction of the positive electrode plate on both sides of the positive electrode plate, and is movable in a direction perpendicular to the traveling direction of the positive electrode plate 1 by a ball screw 15 and a servo motor 16. It is. A tension applying chuck 12 provided close to the core 7 near the edge position correcting chuck 11 can hold and release the positive electrode plate 1 from above and below by an opening / closing operation unit 22, and a pulley 17 driven by a servo motor 20. An electrode which is slidable along a guide 21 provided in parallel with the traveling direction of the positive electrode plate by a belt 19 hung between pulleys 18 and which is set by the rotational torque of the servo motor 20 and the diameter of the pulley 17. A tension suitable for winding the group can be applied. A cueing chuck 13 provided between the tension applying chuck 12 and the core 7 also holds the positive electrode plate 1 from above and below and releases it, and is movable in parallel with the positive electrode plate 1 by a ball screw 23 and a servo motor 24. It is. There is an electrode plate cutter 14 near the core 7 and cuts the positive electrode plate 1 by a control signal. A separator cutter (not shown) is provided at a predetermined position of the core 7 and an intermediate position of the core that has been wound before that, and the separator is cut according to a control signal.
[0024]
Next, the operation of this embodiment will be described. Each of the positive and negative bipolar plates 2, 4 and the first separator 6a and the second separator 6b wound in a roll shape are separately mounted on four feeding shafts (not shown). Each electrode material is guided by the meandering prevention device 9, the tension device 8, a number of transfer rollers, etc. during the transfer from the feed shaft to the core, and the feed shaft rotates by the winding force generated by the rotation of the core 7. As a result, it is sent out toward the core 7.
[0025]
In the middle of this transfer, the electrode plate wound in a roll shape has a velocity component perpendicular to the traveling direction due to variations in the thickness of the electrode material, and the position of the edge of the electrode material changes. Winding deviation may occur in the electrode group.
[0026]
Therefore, the edge position of the electrode material is moved in the axial direction by the edge position correcting device 9 provided at a position close to the respective feeding shafts together with the feeding shafts mounted with the roll electrode materials 2, 4, 6a, 6b, etc. Correct it.
[0027]
After that, the edge position tends to change while running while rotating the roller while contacting with several electrode material transfer rollers. The situation so far is the same as the conventional example. Accordingly, the positive electrode plate 1 or the negative electrode plate 3 that dislikes winding deviation is wound using the edge position correcting device 25 in the winding method according to the present invention. Next, the details will be described.
[0028]
When the positive electrode plate 1 for one electrode group is almost wound by the rotation of the winding core 7, the rotation of the winding core 7 is stopped. The tension applying chuck 12 also stops at a position closest to the core 7. The cueing chuck 13 works at the timing when the positive electrode plate 1 temporarily stops traveling, and holds the vicinity of the tip of the positive electrode plate 1 constituting the next electrode group. Therefore, the tension applying chuck opening / closing operation unit 22 is operated to open the tension applying chuck 12 and to take over the role of holding the positive electrode plate 1 and preventing positional deviation to the cue chuck 13. The tension applying chuck 12 released from the role of holding the positive electrode plate is driven by the tension applying servo motor 20, pulleys 17 and 18 and the belt 19 along the guide 21, and returns to the edge position correcting chuck 11 and stands by.
[0029]
As soon as the cueing chuck 13 holds the positive electrode plate 1, the electrode plate cutter 14 is operated, the length of the positive electrode plate 1 is cut to a predetermined dimension, and winding of the next electrode group is started. The cue chuck 13 stands by at the same position. When the positive electrode plate 1 is cut by the electrode plate cutter 14, the end portion of the positive electrode plate 1 wound around the core 7 is released from all the chucks, and by rotating the core 7 a little, the terminal portion is The core 7 is wound together with the separators 5a and 5b, and the rotation of the core 7 is stopped. At this time, the rotation of the winding core 7 is slight, so that the positional deviation does not become a problem.
[0030]
When the winding of the two electrode plates necessary for one electrode group is completed, the turntable 26 on which the core 7 is mounted rotates by a quarter, and the next core 7 comes to a predetermined position. When the core 7 is pushed in the axial direction at that position and reaches a predetermined position while the separator is being held between the separator holding slits, a separator cutter (not shown) is actuated, and the separators 5a and 5b are cut. The remainder is wound up, and the winding of the electrode group by the previous core 7 is completed.
[0031]
About the same time as this step, the positive electrode plate 1 is firmly held from both the upper and lower surfaces of the positive electrode plate 1 by the fingers of the edge position correcting chuck 11. At the same time, the edge position of the positive electrode plate 1 is detected by the edge position detection device 10, the result is sent to the control circuit, the displacement of the current positive electrode plate edge position and the reference edge position is grasped, and the position correction chuck 11 is The screw 15 and the servo motor 16 are used to move the positive electrode plate in the direction perpendicular to the traveling direction of the positive electrode plate 1 so that the edge position of the positive electrode plate 1 coincides with the reference position.
[0032]
When the edge position of the positive electrode plate 1 is corrected so as to coincide with the reference position, the tension applying chuck 12 that has been waiting at a predetermined position is maintained in a corrected state so as not to cause a positional shift. Grasp the end of the electrode length required for the electrode group. Thereafter, the edge position correcting chuck 11 is opened, and the edge position correcting chuck 11 is returned to the standby position based on a sequence control command.
[0033]
When the above steps are completed, the core 7 starts rotating, and the cueing chuck 13 that has been waiting at the same time moves in the direction of the core 7 by the action of the servo motor 24 and the ball screw 23, and the tip of the positive electrode plate 1. The part is inserted between the separators. When winding starts, the cueing chuck 13 is released and returned to the standby position. As the positive electrode plate 1 is wound up, the tension applying chuck 12 slides along the guide 21 and is suitable for winding the electrode group set by the rotational torque of the servo motor 20 and the diameter of the pulley 17. Applying tension, the positive electrode plate 1 is transferred and moved to the core 7 side while preventing displacement.
[0034]
When the positive electrode plate 1 for one electrode group is almost wound by the rotation of the winding core 7, the rotation of the winding core 7 stops and the tension applying chuck 12 also stops at the position closest to the winding core 7. Next, the cue chuck 13 and the electrode plate cutter 14 are operated to cut the positive electrode plate 1, and the operation of the edge position correcting device 25 is repeated.
[0035]
In order to clarify the above operation explanation, a timing chart is shown as FIG.
[0036]
4 (a), 4 (b), and 4 (c) are respectively a cross-sectional view and a press of an electrode group wound using the core, the core having a substantially hexagonal cross section perpendicular to the axis of the present invention. It is sectional drawing of the electrode group flattened. As can be seen from FIG. 4C, by using the core of the present invention, it is possible to obtain an electrode group having a uniform and substantially oval cross section from the inner periphery to the outer periphery.
[0037]
Next, a battery incorporating the electrode group according to the present invention will be described with reference to FIG. The tip of the positive electrode lead 121 is connected to the inner bottom surface of the bottomed rectangular tube-shaped battery case 102 having the opening 103 at the upper end by welding, and the positive electrode lead 121 is electrically insulated by the positive electrode side insulating plate 122. An electrode group 123 is inserted into the partitioned battery case 102, and the upper end of the electrode group 123 is electrically insulated by a negative-side insulating plate 124. On the other hand, in a step different from the above, the sealing plate 104 having the electrolyte injection hole 107 on the side is provided with a negative electrode terminal 129 in a state of being electrically insulated through an insulating gasket 128 to the mounting hole 127 at the center. Is attached. The negative electrode lead 130 led out from the electrode group 123 through the insertion hole 124a of the negative electrode side insulating plate 124 is connected to the lower surface of the negative electrode terminal 129 by welding. The sealing plate 104 is fixed by being fitted into a predetermined position of the opening 103 of the battery case 102 and welding the periphery thereof to the inner peripheral surface of the battery case 102. After that, a predetermined amount of electrolyte (not shown) is injected into the battery case 102 from the injection hole 107 of the sealing plate 104, and a power generation element is constituted by the electrolyte and the electrode group 123 impregnated with the electrolyte. The
[0038]
When the winding is finished, the electrode group according to the present invention has a hexagonal cross section as shown in FIG. 4 (b), and the folding position is stable when it is shaped flat. The lead wire extraction position can be made constant. Moreover, since the dimension of the separator holding slit 7a of the winding core of the present invention is equal to the two-sided width of the hexagonal cross section, the step of removing the electrode group wound up from the winding core with the flat winding core is also included. It is easy, and the degree of adverse effects on flatness is small, and a substantially flat and uniform electrode group as shown in FIG. 4C can be obtained. Therefore, the workability of the process of shaping the electrode group into a flat shape and the workability of the process of putting the electrode group into the battery case are improved. Furthermore, the liquid retaining property when injecting the electrolytic solution is excellent, and the battery incorporating the electrode group according to the present invention has excellent high-rate discharge performance and stable quality.
[0039]
【The invention's effect】
As described above, according to the present invention, especially when winding an electrode group for a lithium secondary battery, the displacement in the direction perpendicular to the transfer direction generated in various electrode materials such as a positive electrode plate and a negative electrode plate. Is detected by a sensor, the electrode plate is grasped by a chuck, and the electrode plate is moved together with the chuck in a direction perpendicular to the traveling direction of the electrode plate to correct the displacement of the electrode plate.
[0040]
In addition, a part of the electrode plate whose position has been accurately corrected is gripped by the chuck and supplied to the winding core. After that, a part of the electrode plate is always gripped by the edge position correcting chuck or the tension applying chuck, While applying tension to the electrode plate to prevent displacement, the electrode plate is wound around a hexagonal core having a cross-sectional shape as the core rotates, so that an electrode group with extremely low flatness and excellent flatness can be obtained. An electrode group winding method and an electrode group winding device that can be manufactured can be provided. Further, a battery incorporating a group of electrodes that are uniform from the inner periphery to the outer periphery and excellent in flatness according to the present invention has a good production yield and a stable quality.
[Brief description of the drawings]
FIG. 1 is a perspective view of an edge position correcting device which is a main part of the present invention.
FIG. 2 is a front view showing a schematic configuration of the entire electrode group winding device of the present invention.
FIG. 3 is a timing chart of the operation of the main part of the electrode group winding device of the present invention.
FIG. 4 is a view showing a core of the present invention and a spiral electrode group obtained by the present invention.
(A) Diagram showing the core
(B) Sectional view of a wound spiral electrode group
(C) Sectional view of a spiral electrode group pressed and flattened
FIG. 5 is a cross-sectional view of a battery incorporating a spiral electrode group according to the present invention.
FIG. 6 is a diagram showing a main part of an example of a conventional edge position correcting device.
FIG. 7 is a diagram showing a main part of another example of a conventional edge position correcting device.
FIG. 8 is a view showing a conventional winding core and a conventional spiral electrode group;
(A) Diagram showing the core
(B) Sectional view of a wound spiral electrode group
(C) Sectional view of a spiral electrode group pressed and flattened
FIG. 9 is a diagram showing another example of a conventional core and a spiral electrode group;
(A) Diagram showing the core
(B) Sectional view of a wound spiral electrode group
(C) Sectional view of a spiral electrode group pressed and flattened
[Explanation of symbols]
1 Positive electrode plate
2 Rolled positive plate (raw material)
3 Negative electrode plate
4 Rolled negative plate (raw material)
5a First separator
5b Second separator
6a Rolled first separator (raw material)
6b Rolled second separator (raw material)
7 core
7a Separator holding slit
8 Tension device
9 Meandering prevention (edge position correction) device
10 Edge position detection device
11 Edge position correction chuck
12 Tensioning chuck
13 Cue chuck
14 pole cutter
15 Edge position correction ball screw
16 Edge position correcting servo motor
17 Pulley for belt
18 Pulley for belt
19 Tensioning chuck conveyor belt
20 Tensioning servo motor
21 Tensioning chuck guide
22 Tensioning chuck opening / closing operation part
23 Ball screw for cue chuck
24 Cue servo motor
25. Edge position correcting device which is the main part of the present invention
26 Turntable
102 Battery case
103 opening
104 Sealing plate
107 Injection hole
121 Positive lead
122 Positive side insulating plate
123 Electrode group
124 Negative side insulating plate
124a Insertion hole
127 Mounting hole
128 Insulation gasket
129 Negative terminal
130 Negative lead

Claims (8)

連続した長い帯状の正極板、負極板、セパレータの電極材料を、巻芯によって、渦巻き状の電極群に巻回する電池用の電極群巻回方法であって、所定の位置に設けたエッジ位置検出装置によって電極板の幅方向エッジ位置を検出し、前記エッジ位置検出装置の検出結果に基づいて前記エッジ位置を修正後、前記巻芯の軸に対して直角方向に設けられたガイドに沿って摺動可能に設けた張力付与チャックにより前記電極板をつかみ、前記巻芯と前記張力付与チャックとの間において、前記電極板の走行方向に移動可能に設けた頭出しチャックによって前記電極板をつかみ、前記張力付与チャックによって前記電極板に張力を掛けながら前記電極板のエッジ位置を所定の位置に保った状態で、前記頭出しチャックによって前記電極板の先端部を前記巻芯の軸に対して直角な方向に移動させて、回転している前記巻芯に巻付け、前記張力付与チャックが前記巻芯に最も近づいた時点で、前記頭出しチャックで保持しながら、前記電極板を切断することを特徴とする電池用渦巻状電極群巻回方法。An electrode group winding method for a battery in which electrode materials for a continuous long belt-like positive electrode plate, negative electrode plate, and separator are wound around a spiral electrode group by a winding core, and an edge position provided at a predetermined position A width direction edge position of the electrode plate is detected by a detection device, and after correcting the edge position based on a detection result of the edge position detection device, along a guide provided in a direction perpendicular to the axis of the core. The electrode plate is grasped by a tension applying chuck provided slidably, and the electrode plate is grasped by a cue chuck provided movably in the traveling direction of the electrode plate between the winding core and the tension applying chuck. The front end of the electrode plate is moved forward by the cue chuck while the edge position of the electrode plate is maintained at a predetermined position while tension is applied to the electrode plate by the tension applying chuck. Move in a direction perpendicular to the axis of the winding core, wind around the rotating winding core, and when the tension applying chuck is closest to the winding core, hold it with the cue chuck, A method for winding a spiral electrode group for a battery, comprising cutting the electrode plate. エッジ位置修正チャックを正負の両電極板それぞれに対して設け、電極板の両面を電極板の走行方向と直角な方向から伸びるチャックの一対のフィンガでつかみ、サーボモータとボールねじにより構成されるチャック駆動手段により、電極板の走行方向と直角な方向に極板のエッジの位置を移動させ修正することを特徴とする請求項1に記載の電池用渦巻状電極群巻回方法。A chuck composed of a servo motor and a ball screw, provided with an edge position correcting chuck for each of the positive and negative electrode plates, and holding both sides of the electrode plate with a pair of chuck fingers extending from a direction perpendicular to the traveling direction of the electrode plate. 2. The spiral electrode group winding method for a battery according to claim 1, wherein the position of the edge of the electrode plate is moved and corrected by the driving means in a direction perpendicular to the traveling direction of the electrode plate. 極板カッタが巻芯の軸に対して直角な方向に移動し、正負の電極板が巻芯に向かって移動中に、電極板を切断することを特徴とする請求項1に記載の電池用渦巻状電極群巻回方法。2. The battery plate according to claim 1, wherein the electrode plate cutter moves in a direction perpendicular to the axis of the core, and the electrode plate is cut while the positive and negative electrode plates are moving toward the core. A spiral electrode group winding method. 前記巻芯の軸直角断面の形状が6角形状であることを特徴とする請求項1に記載の電池用渦巻状電極群巻回方法。The spiral electrode group winding method for a battery according to claim 1, wherein the shape of the winding core perpendicular to the axis is a hexagonal shape. 連続した長い帯状の正極板、負極板、セパレータの電極材料を、回転自在の巻芯によって、渦巻き状の電極群に巻回する電池用の電極群巻回装置であって、巻回装置として定めた所定の位置に電極板の幅方向エッジ位置を検出するエッジ位置検出装置を設け、前記エッジ位置検出装置の検出結果に基づいて前記エッジ位置を修正するエッジ位置修正チャックを設け、前記エッジ位置修正チャックの近く前記巻芯よりに、電極板を狭持したり開放したり出来る張力付与チャックを前記巻芯の軸に対して直角方向に設けられたガイドに沿って摺動可能に設け、前記張力付与チャックと前記巻芯の間に、前記電極板を狭持したり開放したりする頭出しチャックを、前記電極板の走行方向に移動可能に設け、前記頭出しチャックと前記巻芯の間に、前記電極板を切断する極板カッタを設けたことを特徴とする電池用渦巻状電極群巻回装置。An electrode group winding device for a battery in which a continuous long strip of positive electrode plate, negative electrode plate, and separator electrode material is wound around a spiral electrode group by a rotatable winding core, and is defined as a winding device An edge position detection device that detects an edge position in the width direction of the electrode plate at a predetermined position, an edge position correction chuck that corrects the edge position based on a detection result of the edge position detection device, and the edge position correction. A tension-applying chuck capable of sandwiching and releasing the electrode plate from the core near the chuck is provided so as to be slidable along a guide provided in a direction perpendicular to the axis of the core. A cueing chuck for clamping or opening the electrode plate is provided between the application chuck and the winding core so as to be movable in the traveling direction of the electrode plate, and between the cueing chuck and the winding core. ,in front Battery spiral electrode group winding device, characterized in that a plate cutter for cutting an electrode plate. エッジ位置修正チャックを正負の両電極板それぞれに対して設け、電極板の両面を電極板の走行方向と直角な方向から伸びるチャックの一対のフィンガでつかみ、サーボモータとボールねじにより構成されるチャック駆動手段により、電極板の走行方向と直角な方向に極板のエッジの位置を移動させ修正することを特徴とする請求項5に記載の電池用渦巻状電極群巻回装置。A chuck composed of a servo motor and a ball screw, provided with an edge position correcting chuck for each of the positive and negative electrode plates, and holding both sides of the electrode plate with a pair of chuck fingers extending from a direction perpendicular to the traveling direction of the electrode plate. 6. The spiral electrode group winding device for a battery according to claim 5, wherein the position of the edge of the electrode plate is moved and corrected by the driving means in a direction perpendicular to the traveling direction of the electrode plate. 前記巻芯の軸直角断面の形状が6角形状であることを特徴とする請求項5に記載の電池用渦巻状電極群巻回装置。6. The spiral electrode group winding device for a battery according to claim 5, wherein the shape of the core perpendicular to the axis is a hexagonal shape. 請求項4の方法により巻回された渦巻状電極群を押圧して偏平化し、電池ケースに収納し封口した電池。The battery which pressed and flattened the spiral electrode group wound by the method of Claim 4, and accommodated in the battery case and sealed.
JP2000338667A 1999-11-08 2000-11-07 Method and apparatus for winding spiral electrode group and battery using the same Expired - Fee Related JP3794261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000338667A JP3794261B2 (en) 1999-11-08 2000-11-07 Method and apparatus for winding spiral electrode group and battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-316736 1999-11-08
JP31673699 1999-11-08
JP2000338667A JP3794261B2 (en) 1999-11-08 2000-11-07 Method and apparatus for winding spiral electrode group and battery using the same

Publications (2)

Publication Number Publication Date
JP2001202986A JP2001202986A (en) 2001-07-27
JP3794261B2 true JP3794261B2 (en) 2006-07-05

Family

ID=26568784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000338667A Expired - Fee Related JP3794261B2 (en) 1999-11-08 2000-11-07 Method and apparatus for winding spiral electrode group and battery using the same

Country Status (1)

Country Link
JP (1) JP3794261B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569074B2 (en) * 2003-05-23 2010-10-27 住友化学株式会社 Method for manufacturing lithium secondary battery
JP4951876B2 (en) * 2005-05-13 2012-06-13 パナソニック株式会社 Manufacturing method of prismatic non-aqueous electrolyte battery
KR100731452B1 (en) 2005-12-29 2007-06-21 삼성에스디아이 주식회사 Electrode plate rolling device and rolling method for cylinder type battery
JP2007207649A (en) * 2006-02-03 2007-08-16 Matsushita Electric Ind Co Ltd Manufacturing method of square nonaqueous electrolyte battery
JP4912351B2 (en) * 2008-04-25 2012-04-11 シーケーディ株式会社 Winding device
JP5449027B2 (en) 2010-05-24 2014-03-19 Ckd株式会社 Winding device
CN101944608B (en) * 2010-09-16 2013-01-02 深圳市豪鹏科技有限公司 Battery winding supporting plate and manufacturing method thereof
JP5595309B2 (en) * 2011-03-14 2014-09-24 Ckd株式会社 Winding device
JP6030311B2 (en) * 2012-02-13 2016-11-24 日産自動車株式会社 Belt-shaped battery material transport device and transport method
JP6062880B2 (en) * 2014-03-24 2017-01-18 Ckd株式会社 Winding device
JP6443723B2 (en) * 2014-09-01 2018-12-26 株式会社Gsユアサ Winding machine and electrode winding method
WO2016174991A1 (en) * 2015-04-28 2016-11-03 日立オートモティブシステムズ株式会社 Secondary battery
CN109390636B (en) * 2018-08-31 2021-06-04 广州超音速自动化科技股份有限公司 Automatic winder pole piece deviation rectifying method, electronic equipment, storage medium and system
CN110120556A (en) * 2019-06-19 2019-08-13 常德烟草机械有限责任公司 A kind of lithium battery pole slice deviation correcting device

Also Published As

Publication number Publication date
JP2001202986A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
KR100421350B1 (en) Spiral electrode group winding method and device and battery using them
JP3794261B2 (en) Method and apparatus for winding spiral electrode group and battery using the same
US8128715B2 (en) Method and apparatus for producing wound electrode assembly, and method for producing battery
KR101156831B1 (en) Wound electrode body manufacturing method and apparatus, and electrode winding apparatus
KR101190211B1 (en) Take-up device
US6692542B1 (en) Apparatus for manufacturing spiral electrode assembly
JP5183691B2 (en) Winding device manufacturing equipment
JP5108917B2 (en) Winding device manufacturing equipment
JP5063736B2 (en) Winding element manufacturing equipment
JP2007184160A (en) Method of winding battery element, winding device, and winding core for winding battery element
US20040191634A1 (en) Electrode plate for secondary battery, method of manufacturing the same, and secondary battery using the same
EP2625739B1 (en) Coiling device for making an electrode assembly and methods of use
JP5139647B2 (en) Method for manufacturing electrode body
JPH1186877A (en) Winding method for spiral electrode body
JP5269132B2 (en) Winding device and winding element manufacturing method
JP4877684B2 (en) Winding device and winding element manufacturing method
JPH0935738A (en) Manufacture of winding type electrode and manufacturing device
JP2010049906A (en) Manufacturing method of strip electrode, manufacturing apparatus of strip electrode, and manufacturing method of battery
US20230050718A1 (en) Method of manufacturing battery
JP4912351B2 (en) Winding device
JP3336642B2 (en) Apparatus and method for manufacturing spiral structure
JP2000315518A (en) Device for manufacturing sheet-foam battery element
JP3821871B2 (en) Winding electrode manufacturing equipment
JP2003118896A (en) Winding device and winding method
US20230046533A1 (en) Method of manufacturing battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees