JP4951876B2 - Manufacturing method of prismatic non-aqueous electrolyte battery - Google Patents

Manufacturing method of prismatic non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4951876B2
JP4951876B2 JP2005140924A JP2005140924A JP4951876B2 JP 4951876 B2 JP4951876 B2 JP 4951876B2 JP 2005140924 A JP2005140924 A JP 2005140924A JP 2005140924 A JP2005140924 A JP 2005140924A JP 4951876 B2 JP4951876 B2 JP 4951876B2
Authority
JP
Japan
Prior art keywords
core
diagonal line
longest diagonal
electrode plate
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005140924A
Other languages
Japanese (ja)
Other versions
JP2006318787A (en
Inventor
真也 山平
健一 鈴木
綾司 大▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005140924A priority Critical patent/JP4951876B2/en
Publication of JP2006318787A publication Critical patent/JP2006318787A/en
Application granted granted Critical
Publication of JP4951876B2 publication Critical patent/JP4951876B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

本発明は、角型非水電解液電池の製造法に関し、特にその正極板と負極板とをセパレータを介して捲回し、極板群を構成する際の巻芯形状に関するものである。   The present invention relates to a method for manufacturing a prismatic nonaqueous electrolyte battery, and more particularly to a core shape when a positive electrode plate and a negative electrode plate are wound through a separator to constitute an electrode plate group.

従来の角型非水電解液電池では、捲回するための巻芯形状を平板に近づけたものが使用されていたが、捲回時の角速度の変動が大きく、極板テンションの変動が大きくなり、捲回速度を上げることができないため、生産性の低下を発生していた。   In conventional rectangular nonaqueous electrolyte batteries, the winding core shape for winding was close to that of a flat plate. However, the fluctuation in angular velocity during winding was large, and the fluctuation in electrode plate tension was large. Because the winding speed could not be increased, productivity was reduced.

そのため、さまざまな形状の巻芯が提案されている。例えば、極板群の捲回に際して、菱形巻芯、あるいは、巻芯形状を略六角形状にし、略六角形の向かい合う2辺の中央を通る溝を持つ巻芯が使用されていた。(特許文献1または特許文献2参照)
特開2002−75429号公報 特開2001−202986号公報
For this reason, various types of cores have been proposed. For example, when winding the electrode plate group, a rhombus core or a core having a substantially hexagonal core shape and a groove passing through the center of two opposite sides of the substantially hexagonal shape has been used. (See Patent Document 1 or Patent Document 2)
JP 2002-75429 A JP 2001-202986 A

しかしながら、前記従来の巻芯では、内周のセパレータ量が増大、あるいは、中央部に大きなスペースが発生するなどの問題があり、また、集電用のリードの位置がバラツキなどの課題があった。   However, the conventional winding core has problems such as an increase in the amount of separator on the inner periphery or a large space at the center, and problems such as variations in the position of current collecting leads. .

これらの従来の課題を解決するために、本発明による角型非水電解液電池の製造法は、使用する巻芯の形状が、1組の平行な長辺と2組の平行な短辺とからなる3組の平行な直線を辺とした略六角形状であり、かつ前記巻芯形状を六角形状に近似した場合の近似六角形の各頂点間を結ぶ最も長い対角線である最長対角線と前記長辺とが平行であり、前記巻芯溝は、前記最長対角線とその隣接する隣接対角線の間に配置され、前記巻芯溝により分割された巻芯部分同士は非線対称であり、かつ点対称であることを特徴とする。   In order to solve these conventional problems, the method for manufacturing a rectangular nonaqueous electrolyte battery according to the present invention is such that the shape of the core used is one set of parallel long sides and two sets of parallel short sides. The longest diagonal line that is the longest diagonal line connecting the vertices of the approximate hexagon when the core shape is approximated to a hexagonal shape, and the length Sides are parallel, the core groove is disposed between the longest diagonal line and the adjacent diagonal line adjacent to the longest diagonal line, and the core parts divided by the core groove are non-axisymmetric and point symmetric It is characterized by being.

本発明の略六角形状とは、近似六角形の頂点をR形状もしくは、C面取りを行ったものを含む。また、巻芯溝とは、第1の巻芯と第2の巻芯との組み合わせにより構成される巻芯であれば第1の巻芯と第2の巻芯が組み合わさったときにできる巻芯間のすき間のことであり、1本の巻芯で構成される巻芯であれば、巻芯に配する溝のことである。   The substantially hexagonal shape of the present invention includes a shape in which the apex of the approximate hexagon is rounded or chamfered. In addition, the winding core groove is a winding formed when the first winding core and the second winding core are combined as long as the winding core is configured by a combination of the first winding core and the second winding core. It is a gap between cores, and if it is a core composed of a single core, it is a groove disposed on the core.

本発明の点対称である巻芯を用いることによって、巻付け時に使用するセパレータの量を短尺化でき、かつ捲回群の形状が円形に近づくことにより、捲回速度を増加できるため、生産性を向上できることとなる。   By using the point-symmetrical winding core of the present invention, the amount of separator used at the time of winding can be shortened, and the winding speed can be increased by approaching the circular shape of the winding group. Can be improved.

さらに、巻芯の近似六角形は、前記最長対角線の長さAと、前記最長対角線から前記長辺に下ろした垂線の長さBの比A/Bが、1.5以上2.5以下であることが好ましく、前記巻芯溝は直線形状であり、前記巻芯溝と前記最長対角線とのなす角は、5°〜30°であることが好ましい。このような構成であると本発明の効果が顕著に表れる。   Further, in the approximate hexagon of the core, the ratio A / B of the length A of the longest diagonal line and the length B of the perpendicular line extending from the longest diagonal line to the long side is 1.5 or more and 2.5 or less. Preferably, the core groove has a linear shape, and an angle formed by the core groove and the longest diagonal is preferably 5 ° to 30 °. With such a configuration, the effect of the present invention is remarkably exhibited.

本発明によると、極板群の捲回において、捲回速度を増加できるだけでなく内周セパレータ量を減少させ、かつ集電用のリードの位置のバラツキを小さくできるため、生産性の良い角型非水電解液電池の製造法を提供することが出来る。   According to the present invention, in the winding of the electrode plate group, not only can the winding speed be increased, but also the amount of the inner separator can be reduced and the variation in the position of the current collecting leads can be reduced. A method for producing a nonaqueous electrolyte battery can be provided.

本発明の本旨は、極板群を構成する際の巻芯の形状が、1組の辺が長い略六角形状であり、かつ巻芯溝により分割された巻芯部分同士は非線対称であり、かつ点対称である1対の巻芯を使用することにより、集電用のリードの位置のバラツキを抑制でき、かつ巻付け時のセパレータの滑りを抑制できるため巻付け時に使用するセパレータの量を短尺化でき、かつ捲回群の形状が円形に近づくことにより、捲回速度を増加できるため、生産性を向上できることである。   The gist of the present invention is that the shape of the core when forming the electrode plate group is a substantially hexagonal shape with a long pair of sides, and the core portions divided by the core groove are non-axisymmetric. By using a pair of winding cores that are point-symmetric, it is possible to suppress variations in the position of the current collecting leads and to suppress slippage of the separator during winding, so the amount of separator used during winding Since the winding speed can be increased when the shape of the winding group approaches a circle, the productivity can be improved.

本発明による巻芯を図1(a)に示し、巻付け前の巻芯挿入状態を図1(b)、巻芯を約120°回転させ、負極を突入させた状態図を図1(c)、巻芯を180°回転させた状態を図1(d)、また巻芯に初期巻付けした状態を図1(e)に示す。   FIG. 1 (a) shows a core according to the present invention, FIG. 1 (b) shows the core insertion state before winding, and FIG. 1 (c) shows a state diagram in which the core is rotated about 120 ° and the negative electrode is inserted. ), A state where the winding core is rotated by 180 ° is shown in FIG. 1D, and a state where the winding core is initially wound around is shown in FIG.

図1(a)において、巻芯の形状は、1組の平行な長辺11と2組の平行な短辺12とからなる3組の平行な直線を辺とした略六角形状である。さらに巻芯形状を六角形状に近似した場合の近似六角形の各頂点間を結ぶ最も長い対角線である最長対角線1と長辺11とが平行である。巻芯溝3は、最長対角線1とその隣接する隣接対角線13の間に配置され、巻芯溝3により分割された巻芯部分2同士は非線対称であり、かつ点対称である。   In FIG. 1 (a), the shape of the core is a substantially hexagonal shape with three sets of parallel straight lines consisting of one set of parallel long sides 11 and two sets of parallel short sides 12 as sides. Further, the longest diagonal line 1 that is the longest diagonal line connecting the apexes of the approximate hexagon when the core shape is approximated to a hexagon is parallel to the long side 11. The core groove 3 is disposed between the longest diagonal line 1 and the adjacent diagonal line 13 adjacent thereto, and the core parts 2 divided by the core groove 3 are non-linearly symmetric and point-symmetric.

図1(a)のように巻芯溝3を最長対角線1と、最長対角線1と隣接する隣接対角線13の間に配置すると、巻芯を挿入した状態は図1(b)に示されるようになる。これを巻付けを行う際に、巻芯下方向から、セパニップローラー7で挟持することにより、テンションを加え、上下方向からのテンションバランスを取ることにより、巻芯下に配置されているセパレータ5と巻芯上からのセパレータ5を捲きつけていく。   When the core groove 3 is arranged between the longest diagonal line 1 and the adjacent diagonal line 13 adjacent to the longest diagonal line 1 as shown in FIG. 1 (a), the state where the core is inserted is as shown in FIG. 1 (b). Become. When this is wound, the separator 5 is disposed below the core by applying tension by sandwiching it with the separation nip roller 7 from the lower side of the core and balancing the tension in the vertical direction. And rub the separator 5 from above the core.

そして、巻芯が120°回転したところで、図1(c)のように負極板8を突入させる。すると、負極テンションが加わるため、上方向へのテンションが増加する。   Then, when the core is rotated by 120 °, the negative electrode plate 8 is plunged as shown in FIG. Then, since the negative electrode tension is applied, the upward tension increases.

しかし、この時点では、セパニップローラー7にセパレータ5が挟持されているため、テンションバランスは保たれる。   However, at this time, since the separator 5 is sandwiched between the separation nip rollers 7, the tension balance is maintained.

そして、巻芯が180°回転すると、図1(d)のようになり、巻芯下のセパレータ5の先端がセパニップローラー付近に達する。   Then, when the winding core is rotated 180 °, as shown in FIG. 1D, the tip of the separator 5 under the winding core reaches the vicinity of the separation nip roller.

さらに回転させ、セパニップローラーから、セパレータの先端が外れると下方向からのテンションがなくなる。この際に、上下のテンションバランスが崩れると、上方向からの巻き込みが停止し、巻芯の空回りが発生する。   When the separator is further rotated and the separator tip is detached from the separation nip roller, the downward tension disappears. At this time, if the upper and lower tension balance is lost, the winding from the upper direction stops, and the winding core idles.

これにより負極板8の位置ずれが発生し、集電用リード7位置のバラツキを発生していた。   As a result, the position of the negative electrode plate 8 is displaced, and the position of the current collecting lead 7 varies.

しかし、巻芯溝3の頂点6に位置するセパレータ5がすぐ上に配置される負極板8と接することにより、下方向へのテンションが発生するため、負極板8を捲回していくことができる。この負極板8を突入させるまでの回転数により、初期の巻付け時のセパレータ使用量が変化する。   However, since the separator 5 positioned at the apex 6 of the core groove 3 is in contact with the negative electrode plate 8 disposed immediately above, a downward tension is generated, so that the negative electrode plate 8 can be wound. . The amount of separator used during initial winding varies depending on the number of rotations until the negative electrode plate 8 is inserted.

従来の巻芯では、負極突入までの回転数が270°以上必要としていた。しかし、本発明の巻芯を用いることにより、巻芯溝3の頂点6に位置するセパレータ5が1枚上に配置される負極板8と少ない回転数で接触できるため、初期の巻付け時のセパレータ使用量を削減できる。   Conventional winding cores require a rotational speed of 270 ° or more before entering the negative electrode. However, by using the core of the present invention, the separator 5 positioned at the apex 6 of the core groove 3 can contact the negative electrode plate 8 disposed on one sheet with a small number of rotations, so that the initial winding can be performed. The amount of separator used can be reduced.

また、巻芯形状を非線対称とすることにより、巻芯溝3を最長対角線1に対し傾けることができるため、巻芯溝3の頂点6に位置するセパレータがその上に配置される負極板8と接するまでに必要な回転角度を削減できる。   Further, since the core groove 3 can be tilted with respect to the longest diagonal line 1 by making the core shape non-symmetrical, the negative electrode plate on which the separator located at the apex 6 of the core groove 3 is disposed. The rotation angle required until it contacts 8 can be reduced.

また、巻芯を非線対称とすることにより、巻芯溝3を最長対角線1と平行に近づけることが出来、図1(f)のように、巻芯を抜いた後の内周の極板のたるみをセパレータ5で止めることができる。   Also, by making the core non-symmetrical, the core groove 3 can be made parallel to the longest diagonal line 1, and the inner peripheral electrode plate after the core is removed as shown in FIG. 1 (f). The slack can be stopped by the separator 5.

さらに捲回群への加圧整形方向10と巻芯溝3が垂直に近づくため、負極集電用リード9の位置のバラツキを抑制できる。   Further, since the pressure shaping direction 10 for the winding group and the core groove 3 are close to being perpendicular, it is possible to suppress variations in the position of the negative electrode current collecting lead 9.

また、点対称とすることによりかつ捲回の際の回転中心は巻芯溝3上に設けることが出来るため、捲回の際の偏芯が無くなり、角速度の変動を小さく出来、捲回速度を増加でき、生産性を向上できる。   Further, since the center of rotation can be provided on the winding core groove 3 by using point symmetry, the eccentricity at the time of winding is eliminated, the fluctuation of angular velocity can be reduced, and the winding speed can be reduced. Can increase productivity.

また、近似六角形は、最長対角線1の長さAと、長辺11に下ろした垂線の長さBの比A/Bが、2.5以下であると、巻芯形状がより円形に近づくため、捲回時の巻芯の角速度の変動が小さくなるため、捲回速度をさらに増加でき、生産性を向上できる点で好ましい。   Further, in the approximate hexagon, when the ratio A / B of the length A of the longest diagonal line 1 and the length B of the perpendicular line dropped to the long side 11 is 2.5 or less, the core shape becomes closer to a circle. Therefore, since the fluctuation of the angular velocity of the winding core during winding is reduced, it is preferable in that the winding speed can be further increased and productivity can be improved.

ここで、2.5より大きくなると、捲回時の角速度の変動が大きくなり、捲回速度を低下させなければならないため、好ましくない。   Here, if it is larger than 2.5, the fluctuation of the angular velocity at the time of winding increases, and the winding speed must be lowered, which is not preferable.

また、1.5より小さいと、図1(e)の群加圧整形方向へのスペースが増大するため、内周の極板のたるむスペースが増大するため、扁平形状としたときに集電用リード9の位置のバラつきを発生するため好ましくない。   If it is smaller than 1.5, the space in the group pressure shaping direction of FIG. 1 (e) increases, and the space where the inner electrode plate sags increases. It is not preferable because the position of the lead 9 varies.

また、巻芯溝3は直線形状であり、巻芯溝3と最長対角線1とのなす角4は、5°〜30°であると、巻芯溝3に配置されるセパレータが捲回群の長辺方向に平行となるため、内周セパレータ重なり枚数を削減でき好ましい。   Moreover, the core groove | channel 3 is a linear shape, and when the angle | corner 4 which the core groove | channel 3 and the longest diagonal line 1 make is 5 degrees-30 degrees, the separator arrange | positioned at the core groove | channel 3 is a winding group. Since it is parallel to the long side direction, the number of overlapping inner circumferential separators can be reduced, which is preferable.

5°未満のときは、巻芯が抜けにくくなっていくため、巻芯を抜く複雑な機構が必要となるため好ましくなく、30°以上のときは、巻芯溝に配置されるセパレータがその上に配置される負極板8と接するために必要な回転角度が増加するため、内周セパレータ使用量が増加し、また巻芯溝3に配置されるセパレータが捲回群の長辺方向に垂直となっていくため、加圧整形したときに、巻芯溝3に配置されるセパレータがS字状に折れるため、内周セパレータ重なり枚数が増加するため好ましくない。   When the angle is less than 5 °, it is difficult to remove the core, which requires a complicated mechanism for removing the core. The rotation angle required to contact the negative electrode plate 8 is increased, so that the amount of inner circumferential separator used is increased, and the separator disposed in the core groove 3 is perpendicular to the long side direction of the winding group. Therefore, when the pressure shaping is performed, the separator disposed in the core groove 3 is bent in an S shape, which is not preferable because the number of overlapping inner peripheral separators increases.

本実施例では、捲回機は、皆藤製作所製KAW−4BTQH−Mを使用した。   In this example, KAW-4BTQH-M manufactured by Minato Seisakusho was used as the winding machine.

巻芯は、図4で示すように、近似六角形の各頂点をC面取りした略六角形状の巻芯を用い、第1の巻芯部分2と第2の巻芯部分2により構成され、第1の巻芯部分2と第2の巻芯部分2が組み合わさったときのすき間により巻芯溝3が構成されている。   As shown in FIG. 4, the core is formed of a first core portion 2 and a second core portion 2 using a substantially hexagonal core in which each apex of the approximate hexagon is chamfered. The core groove 3 is constituted by a gap when the one core portion 2 and the second core portion 2 are combined.

そして、最長対角線1と巻芯溝3のなす角4は、12°である。
この巻芯を巻芯1とする。この巻芯1では、第1の巻芯部分2と第2の巻芯部分2が、組み合わせた場合に線対称では無く、すなわち非線対称でかつ点対称となっている。
The angle 4 formed by the longest diagonal line 1 and the core groove 3 is 12 °.
This core is referred to as the core 1. In the core 1, the first core portion 2 and the second core portion 2 are not line-symmetric when combined, that is, non-linearly symmetric and point-symmetric.

さらに、最長対角線1の長さAと、最長対角線1から長辺11に下ろした垂線の長さBの比A/Bが、2.5である。   Further, the ratio A / B between the length A of the longest diagonal line 1 and the length B of the perpendicular line extending from the longest diagonal line 1 to the long side 11 is 2.5.

そして、比較例として従来公知の図3に示す平板巻芯を使用したものを巻芯2とする。   As a comparative example, a core 2 using a conventionally known flat core shown in FIG.

さらに、図2(a)で示す様に、巻芯1同様の略六角形状の巻芯を使用しているが、最長対角線と巻芯溝のなす角は、垂直(90°)である巻芯を巻芯3とする。
この巻芯3は、巻芯1と違い、点対称であるが線対称にもなっている。
Furthermore, as shown in FIG. 2A, a substantially hexagonal core similar to the core 1 is used, but the angle formed by the longest diagonal line and the core groove is vertical (90 °). Is the core 3.
Unlike the core 1, the core 3 is point-symmetric but line-symmetric.

以上の巻芯1から3の巻芯を前述の捲回機で捲回した時の生産タクトと内周セパレータの使用量を表1に示し、また、リード位置を各30個測定し、そのバラツキを同じく表1に示す。
Table 1 shows the production tact and the amount of use of the inner separator when the cores 1 to 3 are wound with the above-described winding machine, and 30 lead positions are measured for each, and the variation is shown. Is also shown in Table 1.

表1より本発明の巻芯を使用することにより、生産タクトが増加し、また、内周のセパレータ使用量も短尺化できた。さらに、集電用リード位置が安定することを確認した。   From Table 1, by using the core of the present invention, the production tact increased, and the amount of separator used on the inner periphery could be shortened. Furthermore, it was confirmed that the current collecting lead position was stable.

この理由は、巻芯2のように平板巻芯では、リード位置は安定するものの、捲回時の角速度の変動が大きく、極板テンションの変動が大きくなり、捲回速度を上げることができないため、生産タクトが低下する。   The reason for this is that, in a flat core like the core 2, the lead position is stable, but the fluctuation of the angular velocity during winding is large, the fluctuation of the electrode plate tension is large, and the winding speed cannot be increased. , Production tact is reduced.

また、巻芯3のように、垂直である巻芯を使用すると、図2(b)と図1(e)を比較すればわかるように、巻芯溝3の頂点6に位置するセパレータがその上に配置される負極板8と接するまでに必要な回転角度が増加するため、内周セパレータ使用量が増加し、セパレータを多く使用した極板群を捲回することになるためである。   Further, when a vertical core such as the core 3 is used, as can be understood by comparing FIG. 2B and FIG. This is because the rotation angle required to contact the negative electrode plate 8 disposed above increases, so that the amount of inner peripheral separator used increases, and the electrode plate group using many separators is wound.

そして巻芯3では、図2(c)のように、加圧方向に平行な方向に内周セパレータがたるむため、極板が内側に倒れこみ、倒れこんだ状態で加圧していたため、リード位置のバラツキが発生する。   In the core 3, as shown in FIG. 2C, the inner separator sag in a direction parallel to the pressurizing direction, so that the electrode plate collapses inward and pressurizes in a collapsed state. Variations occur.

しかし、本発明の巻芯1では最も長い対角線に平行にセパレータが存在するため、内周のたるみによる極板のたるみを抑制できるため、加圧時の内周極板の位置が安定し、集電用リード位置が安定する。   However, since the separator 1 exists in parallel with the longest diagonal line in the core 1 of the present invention, it is possible to suppress the slack of the electrode plate due to the slack of the inner periphery. The electric lead position is stable.

本実施例においても、捲回機は、皆藤製作所製KAW−4BTQH−Mを使用した。   Also in this example, KAW-4BTQH-M manufactured by Minato Seisakusho was used as the winding machine.

実施例1の巻芯1と同様の略六角形状であるが、図5から図8に示すようにA/Bを変化させた巻芯4から7を作成した。
ここで、最長対角線1と巻芯溝3のなす角4は、すべて12°である。
Cores 4 to 7 having substantially the same hexagonal shape as the core 1 of Example 1 but having A / B changed as shown in FIGS. 5 to 8 were prepared.
Here, the angles 4 formed by the longest diagonal line 1 and the core groove 3 are all 12 °.

そこで、以上の巻芯4から7の巻芯を前述の捲回機で捲回した際の巻芯の縦横比と生産
タクトおよび、集電用リード位置のバラツキを表2に示す。
Accordingly, Table 2 shows the aspect ratio and production tact of the core when the cores 4 to 7 are wound with the above-described winding machine, and variations in the current collecting lead position.

表2より、A/B、1.5以上2.5以下にすることは、生産性をさらに向上でき、かつ群加圧整形後の集電用リード位置のバラツキを抑制できるため、さらに好ましい。   From Table 2, it is more preferable to set A / B to 1.5 or more and 2.5 or less because productivity can be further improved and variation in the lead position for current collection after group pressure shaping can be suppressed.

この理由はA/Bが、2.5以下にすることにより、巻芯形状が、より円形に近づくため、捲回時の角速度の変動が小さくなり、捲回速度を速くできるため、生産性をさらに向上でき、また、1.5以上とすると、群加圧整形後の集電用リード位置のバラツキが抑制されるからである。   The reason for this is that when the A / B is 2.5 or less, the core shape is closer to a circle, so that the fluctuation of the angular velocity during winding is reduced, and the winding speed can be increased. This can be further improved, and if 1.5 or more, variations in the current collecting lead position after group pressure shaping are suppressed.

本実施例においても、捲回機は、皆藤製作所製KAW−4BTQH−Mを使用した。実施例1の巻芯1と同様の略六角形状であるが、図9に示すように、最長対角線1と巻芯溝3のなす角4を変化させた巻芯8から16を作成した。   Also in this example, KAW-4BTQH-M manufactured by Minato Seisakusho was used as the winding machine. Although substantially the same hexagonal shape as the core 1 of Example 1, as shown in FIG. 9, cores 8 to 16 were produced in which the angle 4 formed by the longest diagonal line 1 and the core groove 3 was changed.

ここで、最長対角線1の長さAと、最長対角線1から長辺11に下ろした垂線の長さBの比A/Bが、すべて2.5である。   Here, the ratios A / B of the length A of the longest diagonal line 1 and the length B of the perpendicular line extending from the longest diagonal line 1 to the long side 11 are all 2.5.

本発明の巻芯溝3と最長対角線1とのなす角4が変化することにより、内周のセパレータの長さ、あるいは加圧時のセパレータの折れ方による内周のセパレータ重なり枚数、さらには巻芯の抜け性が変わる。   By changing the angle 4 formed by the winding core groove 3 and the longest diagonal line 1 of the present invention, the length of the inner circumferential separator, or the number of overlapping inner circumferential separators depending on how the separators are folded during pressurization, and further the winding The detachability of the lead changes.

内周セパレータ重なり枚数の増加は群厚みの増加、巻芯の抜け性は、工程不良の増大に影響する。   An increase in the number of overlapping inner peripheral separators increases the thickness of the group, and the detachability of the core affects the increase in process defects.

そこで、以上の巻芯8から16の巻芯を前述の捲回機で捲回した際の内周セパレータ長、内周セパレータ重なり枚数、巻芯の抜け性の結果を表3に示す。   Therefore, Table 3 shows the results of the inner separator length, the number of overlapping inner peripheral separators, and the removal property of the core when the above-described cores 8 to 16 are wound with the aforementioned winding machine.


表3に示すように、内周のセパレータ長を短尺化でき、かつ巻芯抜け性を確保し、さらに内周セパレータ重なり枚数を抑制することができるため、本発明の巻芯溝と最長対角線とのなす角は、5°〜30°にすることはさらに好ましい。   As shown in Table 3, the length of the inner peripheral separator can be shortened, the core pull-out property can be secured, and the number of overlapping inner peripheral separators can be suppressed. It is more preferable that the angle formed by is 5 ° to 30 °.

本発明の生産性の良い角型非水電解液電池の製造法より製造された角型非水電解液電池は、安価な民生用のポータブル機器の電源などに有用である。   The prismatic nonaqueous electrolyte battery manufactured by the method for manufacturing a highly productive prismatic nonaqueous electrolyte battery of the present invention is useful as a power source for inexpensive portable equipment for consumer use.

(a)本発明の一実施の形態の巻芯の模式図、(b)巻付け前の巻芯挿入状態の説明図、(c)巻芯を120°回転させ、負極を突入させた状態の説明図、(d)巻芯を1180°回転させた状態の説明図、(e)巻芯にセパレータを巻きつけたときの説明図、(f)巻芯をぬいたときの説明図(A) Schematic diagram of the core of one embodiment of the present invention, (b) An explanatory diagram of the core inserted state before winding, (c) The state where the core is rotated 120 ° and the negative electrode is inserted. Explanatory drawing, (d) Explanatory drawing of the state in which the core is rotated by 1180 °, (e) Explanatory drawing when the separator is wound around the winding core, (f) Explanatory drawing when the winding core is removed (a)従来の巻芯の模式図、(b)巻芯にセパレータを巻きつけたときの説明図、(c)巻芯をぬいたときの説明図(A) Schematic diagram of a conventional core, (b) an explanatory diagram when the separator is wound around the core, (c) an explanatory diagram when the core is removed 従来の第2の巻芯の模式図Schematic diagram of conventional second core 本発明の実施例で用いた第1の巻芯の模式図The schematic diagram of the 1st core used in the Example of this invention 本発明の実施例で用いた第2の巻芯の模式図Schematic diagram of the second core used in the example of the present invention 本発明の実施例で用いた第3の巻芯の模式図The schematic diagram of the 3rd core used in the Example of this invention 本発明の実施例で用いた第4の巻芯の模式図The schematic diagram of the 4th core used in the Example of this invention 本発明の実施例で用いた第5の巻芯の模式図Schematic diagram of the fifth core used in the example of the present invention 本発明の実施例で用いた第6の巻芯の模式図Schematic diagram of the sixth core used in the example of the present invention

符号の説明Explanation of symbols

1 最長対角線
2 巻芯部分
3 巻芯溝
4 角
5 セパレータ
6 頂点
7 セパニップローラー
8 負極板
9 負極集電用リード
10 加圧整形方向
11 長辺
12 短辺
13 隣接対角線
DESCRIPTION OF SYMBOLS 1 Longest diagonal line 2 Winding core part 3 Winding core groove 4 Corner 5 Separator 6 Apex 7 Sepa nip roller 8 Negative electrode plate 9 Negative electrode current collection lead 10 Pressure shaping direction 11 Long side 12 Short side 13 Adjacent diagonal line

Claims (2)

正極板と負極板とをセパレーターを介し、巻芯溝を有する巻芯を用いて捲回構成した極板群と電解液をケース内に収容して作成する角型非水電解液電池の製造法において、
前記巻芯の形状が、1組の平行な長辺と2組の平行な短辺とからなる3組の平行な直線を辺とした略六角形状であり、かつ前記巻芯形状を六角形状に近似した場合の近似六角形の各頂点間を結ぶ最も長い対角線である最長対角線と前記長辺とが平行であり、前記巻芯溝は、前記最長対角線とその隣接する隣接対角線の間に配置され、前記巻芯溝により分割された巻芯部分同士は非線対称であり、かつ点対称であることを特徴とする角型非水電解液電池の製造法であって、前記近似六角形は、前記最長対角線の長さAと、前記最長対角線から前記長辺に下ろした垂線の長さBの比A/Bが、1.5以上2.5以下であることを特徴とする角型非水電解液電池の製造法
A method for manufacturing a rectangular nonaqueous electrolyte battery in which a positive electrode plate and a negative electrode plate are wound using a core having a core groove through a separator, and an electrode plate group and an electrolyte solution are accommodated in a case. In
The shape of the core is a substantially hexagonal shape with three sets of parallel straight lines consisting of a pair of parallel long sides and two sets of parallel short sides as sides, and the core shape is a hexagonal shape. The longest diagonal line that connects the vertices of the approximate hexagon when approximated is the longest diagonal line and the long side are parallel, and the core groove is disposed between the longest diagonal line and the adjacent diagonal line adjacent thereto. The core parts divided by the core groove are non-linearly symmetric and point-symmetric, and the method of manufacturing a rectangular nonaqueous electrolyte battery is characterized in that the approximate hexagonal shape is: A ratio A / B of the length A of the longest diagonal line and the length B of a perpendicular line extending from the longest diagonal line to the long side is 1.5 or more and 2.5 or less. Manufacturing method of electrolyte battery .
正極板と負極板とをセパレーターを介し、巻芯溝を有する巻芯を用いて捲回構成した極板群と電解液をケース内に収容して作成する角型非水電解液電池の製造法において、
前記巻芯の形状が、1組の平行な長辺と2組の平行な短辺とからなる3組の平行な直線を辺とした略六角形状であり、かつ前記巻芯形状を六角形状に近似した場合の近似六角形の各頂点間を結ぶ最も長い対角線である最長対角線と前記長辺とが平行であり、前記巻芯溝は、前記最長対角線とその隣接する隣接対角線の間に配置され、前記巻芯溝により分割された巻芯部分同士は非線対称であり、かつ点対称であることを特徴とする角型非水電解液電池の製造法であって、前記巻芯溝は直線形状であり、前記巻芯溝と前記最長対角線とのなす角は、5°〜30°であることを特徴とする角型非水電解液電池の製造法。
A method for manufacturing a rectangular nonaqueous electrolyte battery in which a positive electrode plate and a negative electrode plate are wound using a core having a core groove through a separator, and an electrode plate group and an electrolyte solution are accommodated in a case. In
The shape of the core is a substantially hexagonal shape with three sets of parallel straight lines consisting of a pair of parallel long sides and two sets of parallel short sides as sides, and the core shape is a hexagonal shape. The longest diagonal line that connects the vertices of the approximate hexagon when approximated is the longest diagonal line and the long side are parallel, and the core groove is disposed between the longest diagonal line and the adjacent diagonal line adjacent thereto. The core portions divided by the core groove are non- linearly symmetric and point-symmetric, and the method of manufacturing a rectangular nonaqueous electrolyte battery is characterized in that the core groove is a straight line. the shape, the angle between the longest diagonal line and the winding core grooves, prismatic non-aqueous electrolyte preparation of cells, which is a 5 ° to 30 °.
JP2005140924A 2005-05-13 2005-05-13 Manufacturing method of prismatic non-aqueous electrolyte battery Expired - Fee Related JP4951876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140924A JP4951876B2 (en) 2005-05-13 2005-05-13 Manufacturing method of prismatic non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140924A JP4951876B2 (en) 2005-05-13 2005-05-13 Manufacturing method of prismatic non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2006318787A JP2006318787A (en) 2006-11-24
JP4951876B2 true JP4951876B2 (en) 2012-06-13

Family

ID=37539268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140924A Expired - Fee Related JP4951876B2 (en) 2005-05-13 2005-05-13 Manufacturing method of prismatic non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4951876B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263924B2 (en) * 2007-11-29 2013-08-14 Necエナジーデバイス株式会社 Lithium ion battery and manufacturing method thereof
CN102473965A (en) * 2009-10-22 2012-05-23 松下电器产业株式会社 Flat secondary battery electrode group, method for manufacturing same, and flat secondary battery with flat secondary battery electrode group
KR101868172B1 (en) * 2013-10-30 2018-06-15 주식회사 엘지화학 Mandrel for fabricating electrode assembly of cylinderical secondary battery
JP6620970B2 (en) * 2015-03-24 2019-12-18 株式会社Gsユアサ Winding device, storage element manufacturing method, and storage element
KR102499324B1 (en) 2015-10-30 2023-02-13 삼성에스디아이 주식회사 Rolling Device for Secondary Battery
JP7208871B2 (en) * 2019-07-26 2023-01-19 ニチコン株式会社 CAPACITOR, CAPACITOR MANUFACTURING APPARATUS, AND CAPACITOR MANUFACTURING METHOD

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153519A (en) * 1994-11-25 1996-06-11 Sony Corp Winding device for electrode and insulating sheet of rectangular battery, and manufacture of rectangular battery
JPH08321324A (en) * 1995-05-24 1996-12-03 Sony Corp Band-shaped material winder, and method of winding band-shaped material
JP3794261B2 (en) * 1999-11-08 2006-07-05 松下電器産業株式会社 Method and apparatus for winding spiral electrode group and battery using the same
JP2001236996A (en) * 2000-02-22 2001-08-31 Sony Corp Method of producing nonaqueous electrolyte battery
JP2002075429A (en) * 2000-08-23 2002-03-15 Sony Corp Winding core and flat winding electrode
JP4972824B2 (en) * 2001-03-21 2012-07-11 新神戸電機株式会社 Flat winding group manufacturing method and winding apparatus
JP3614807B2 (en) * 2001-10-12 2005-01-26 シーケーディ株式会社 Winding device winding device and manufacturing method
JP2003249257A (en) * 2002-02-25 2003-09-05 Kaido Seisakusho:Kk Core for winder of cell element material

Also Published As

Publication number Publication date
JP2006318787A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4951876B2 (en) Manufacturing method of prismatic non-aqueous electrolyte battery
JP6128282B2 (en) Storage device manufacturing method and electrode manufacturing method
JP4984450B2 (en) Winding battery manufacturing method
US8852774B2 (en) Method of battery production
CN103891024A (en) Cell provided with spiral electrode, and method for manufacturing same
JP6946942B2 (en) Band-shaped electrode manufacturing equipment and manufacturing method
JP5501270B2 (en) Battery using coated electrode group
JP2021009814A (en) Secondary battery
CN106099206A (en) A kind of lithium cell electric core of coiled
JP2014102991A (en) Electrode manufacturing method and electrode manufacturing device
JP2013134881A (en) Power storage device and power storage device mounting vehicle
JP2006302799A (en) Manufacturing device of electrode for cylindrical battery
JP4846984B2 (en) Square cylindrical battery and method for manufacturing the same
JP2013097907A (en) Solid state battery and manufacturing method thereof
CN213042933U (en) Winding mechanism and winder
JP2009272055A (en) Non-aqueous electrolyte secondary battery manufacturing method
JP2015099739A (en) Power storage element and manufacturing method of the same
KR102183181B1 (en) Method of manufacturing wound electrode body
JP2012238427A (en) Electrochemical device and manufacturing method of electrochemical device
JP4905400B2 (en) Electrode winding device
KR101404700B1 (en) Guide Roll Device
KR101796282B1 (en) Mandrel structure for fabricating electrode assembly of prismatic secondary battery and method for fabricating electrode assembly using the same
CN219873658U (en) Battery double-winding-core winding mechanism, battery core structure and battery
CN219658770U (en) Winding needle mechanism, winding device, winding machine and battery production system
KR101562570B1 (en) Mandrel Having Double Structure for Preparation of Jelly-Roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees