JP3793424B2 - Method for producing epoxy compound - Google Patents
Method for producing epoxy compound Download PDFInfo
- Publication number
- JP3793424B2 JP3793424B2 JP2001142979A JP2001142979A JP3793424B2 JP 3793424 B2 JP3793424 B2 JP 3793424B2 JP 2001142979 A JP2001142979 A JP 2001142979A JP 2001142979 A JP2001142979 A JP 2001142979A JP 3793424 B2 JP3793424 B2 JP 3793424B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- carbon
- producing
- epoxy compound
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Epoxy Resins (AREA)
- Epoxy Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、エポキシ化合物の製造法に関する。詳しくは、エポキシ基と炭素ー炭素不飽和結合を有する化合物の不飽和結合を特定の触媒を用いて選択的に水素化する方法に関する。
本発明により得られたエポキシ樹脂は、塗料、コーティング材料、バインダー樹脂等への用途が期待される。
【0002】
【従来の技術】
エピクロロヒドリンとビスフェノールAとを反応させて得られるビスフェノールA型エポキシ樹脂は、汎用型エポキシ樹脂としてコーティング材料、電気絶縁材料、積層物、構造材料等に従来より広く使用されている。しかしながら、ビスフェノール型エポキシ樹脂は芳香環を有するために耐候性に難点があり、特に耐候性が必要な用途には、シクロヘキセン系の脂環状オレフィンを過酢酸によりエポキシ化したものが耐候性エポキシ樹脂として市販されている。
【0003】
一方、過酸によるエポキシ樹脂の代わりに、ビスフェノール型エポキシ樹脂の芳香環を水素化して対応する脂環状エポキシ樹脂を製造する試みが従来からいろいろと提案されている。この場合、核水素化の際に、エポキシ基の分解をできるだけ押さえることが必要である。
従来技術としては、例えば、米国特許第3336241号明細書にはロジウムまたはルテニウムを不活性な担体に担持した触媒を用いる方法、特開平8−48676号公報及び特開平8−53370号公報には均質ルテニウム触媒を用いる方法、特開平10−204002号公報には活性炭にルテニウムとナトリウムを担持した触媒を用いる方法、本発明者の提案に係る特開平11−217379号公報にはロジウムまたはルテニウムを比表面積が5〜600m2/gの範囲にある炭素質担体に担持した触媒を用いる方法及び特開2000−226380号公報にはルテニウム担持触媒を用いてエーテル溶媒中、脂肪酸エステルの存在下に反応を行う方法が開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来法におけるルテニウムを用いる触媒はロジウムに比べてメタルあたりの活性が非常に低いため、十分な活性を得るには触媒量を増やしたり、反応圧を上げる必要があった。また、ロジウム担持触媒についてはルテニウム触媒に比べて活性は高いものの、そのレベルは満足できるものでなかった。また、いずれの触媒でも反応温度を上げると水素化活性は向上するものの、エポキシ基の分解が増加し、生成物の品質が低下するという問題が生じるので、文献中には反応温度については150℃以下という記載はあるものの実施例ではいずれも80℃以下の温度が採用されており、90℃以上で行った例は見当らない。また、反応温度が90℃以上になると担体として活性炭を用いた場合には、エポキシ基の重合物が多量に生成し、濾過による触媒分離が困難となるという問題点があった。
【0005】
本発明はエポキシ基含有化合物の炭素−炭素不飽和結合を選択的に水素化する反応において、90℃以上の反応温度でもエポキシ基の分解が少なく、かつ触媒の濾過分離が容易な水素化触媒を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討した結果、公知の貴金属、とりわけロジウムを活性炭に担持した触媒は90℃以下で触媒リサイクル反応を行うとグラファイトに担持した触媒に比べ活性低下が大きいが、90℃以上で反応するとグラファイトに担持した触媒と同等の高活性及び選択性を示し、かつグラファイトに担持した触媒に比べて非常に良好な触媒濾過性を示すことを見出し、本発明を完成するに至った。
【0007】
即ち本発明は少なくとも1個の炭素−炭素不飽和結合及び少なくとも1個のエポキシ基を有する化合物の炭素−炭素不飽和結合を選択的に水素化してエポキシ化合物を製造する方法において、反応温度が90℃以上であり、ロジウムを活性炭に担持した後、アルカリ性水溶液で処理し、次いで液相で還元して得られる触媒を用いることを特徴とするエポキシ化合物の製造方法を要旨とするものである。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に用いられる出発原料は、少なくとも一個の炭素−炭素不飽和結合及び少なくとも一個のエポキシ基を有する化合物である。これは、モノマー、オリゴマー又はポリマーのいずれでもよい。具体的には、エポキシ基を有する芳香環化合物、不飽和脂肪族化合物、不飽和環状脂肪族化合物、不飽和復素環化合物等が挙げられる。中でも、炭素−炭素不飽和結合が芳香環を形成している化合物であるのが好ましい。
【0009】
この芳香環化合物の具体例としては、例えば、スチレンオキサイド、フェニルグリシジルエーテル、ハイドロキノンのジグリシジルエーテル、レゾルシンのジグリシジルエーテル、一般式(I)で表されるビスフェノールA又はビスフェノールFとエピクロルヒドリンとを原料とするエポキシ樹脂、一般式(II)で表されるフェノールノボラック樹脂又はクレゾールノボラック樹脂のポリグリシジルエーテル等が挙げられる。
【0010】
【化1】
【0011】
(式中、R1は水素原子又はメチル基を示し、nは0ないし40である)
この中、式(I)で示されるビスフェノールA型エポキシ樹脂、及び式(II)で表されるオルソクレゾールノボラックのポリグリシジルエーテルが好ましく、この中、ビスフェノールAのジグリシジルエーテル(式(I)のn=1)及びそのオリゴマーが特に好ましい。
【0012】
なお、ビスフェノールAのジグリシジルエーテルは例えばエピコート827、828として、又そのオリゴマーはエピコート834として、また、式(II)のものはエピコート152、154、180S65としてジャパンエポキシレジン株式会社より市販されている。
本発明に用いられる水素化触媒は、貴金属、とりわけロジウムを活性炭に担持した触媒であり、貴金属化合物、とりわけロジウム化合物を活性炭に担持させ、アルカリ性水溶液で処理し、次いで還元して得られる。
【0013】
本発明において使用するロジウム化合物としては加熱分解可能なものであれば特に制限はなく、塩化ロジウム、硝酸ロジウム、硫酸ロジウム等の無機塩、ロジウムアセチルアセトナート等の有機金属化合物、テトラロジウムドデカカルボニル等の配位化合物が挙げられるが、対アニオンのヘテロ元素が残存すると活性が低下したり、また、有機ロジウム化合物は高価であることから塩化ロジウムを用いることが好ましい。
【0014】
貴金属を活性炭に担持させる方法に特に制限はないが、通常の場合、浸漬法が用いられる。例えば上記触媒成分の金属化合物を溶解可能な溶媒、例えば、水に溶解して溶液とし、この溶液中に活性炭を浸漬して含浸担持させる。その後減圧下溶媒を留去し、必要に応じて還元処理を行う。還元処理としては気相還元法、あるいは液相還元法のいずれの方法でも行うことができるが、液相還元法で調製した方が低温で処理するためメタルを高分散に担持でき、より好ましい。
【0015】
例えば水素ガスを用いて気相で還元する場合、100〜600℃、好ましくは150〜500℃、より好ましくは200〜400℃の温度で行われる。ここで用いられる還元剤としては、水素以外に一酸化炭素が挙げられる。また、窒素、アルゴン等の不活性ガスで希釈した状態で用いてもよい。また、液相で還元する場合は、まず、貴金属化合物を担持した後、アルカリ性水溶液で処理して該貴金属化合物を水酸化物として不溶化、固定化しておき、これを還元処理するのが好ましい。不溶、固定化に用いるアルカリ性水溶液のアルカリの種類としてはアンモニア水や、水酸化ナトリウム、炭酸ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の水溶液が好ましく使用できるが、不溶、固定化後の水洗の容易さや、アルカリ金属カチオンの残存等の影響を考慮するとアンモニア水を用いるのが最も好ましい。
【0016】
使用するアルカリの量は貴金属に対して3〜100当量が好ましく、更には6〜50当量がより好ましい。アルカリ性水溶液による処理温度は20℃から90℃が好ましく、特にアンモニア水を用いる場合には、50℃より高温であるとアンモニアの脱離が著しくなるので20〜50℃がより好ましい。
アルカリ性水溶液で不溶、固定化した触媒はイオン交換水等で充分洗浄する。特にアルカリ金属水酸化物の水溶液を用いる場合、Na+、K+等のアルカリ金属カチオンが残存すると水素化活性が低下するので充分洗浄することが必要である。
【0017】
不溶、固定化した触媒はホルマリン、ギ酸あるいはメタノール等を用いて液相で還元することが好ましい。還元剤の使用量は貴金属に対して3〜100モル当量、好ましくは6〜50モル当量である。還元温度は20〜120℃、好ましくは50〜100℃である。液相で還元した触媒は濾過し、イオン交換水等で充分洗浄した後、乾燥して水素化反応に用いることができる。
【0018】
液相還元を用いると、イオン交換水等で洗浄して充分過剰の塩素を取り除くことができるのでより好ましい。
水素化反応に使用する触媒量は、反応原料100重量部に対して0.05〜100重量部、好ましくは0.1〜50重量部であるが、反応温度、又は反応圧力等の諸条件に応じ、実用的な反応速度が得られる範囲内において任意に選択できる。
【0019】
本発明の水素化反応での反応温度は、90〜150℃、好ましくは100〜120℃である。活性炭に担持した触媒が高温でグラファイトに担持した触媒に比べて活性が高く、重合物が付着しても濾過性が良い理由としては、活性炭は比表面積が大きく、吸着点が多いためにメタルへの有機物の付着が抑制され、劣化が低減されるためと考えられる。
また、反応圧力は通常1〜30MPa、好ましくは3〜10MPaである。
【0020】
反応方式としては液相懸濁反応或いは固定床反応のいずれも採用することができる。
また、反応溶媒としては出発原料の溶解性からTHF、ジオキサンのようなエーテル類や酢酸メチル、酢酸エチル、プロピオン酸メチルのようなエステル類が好ましく用いられる。
【0021】
本発明の方法に従って水素化反応を行った後、触媒を濾別し、その後蒸留により揮発成分を除去し、目的生成物を得ることが出来る。
【0022】
【実施例】
以下実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、これら実施例に限定されるものでない。
実施例1
40.0重量%Rhメタル含有塩化ロジウム水和物625mgを水6gに溶解させた中に市販の粉末活性炭4.75gを加え含浸担持した。その後エバポレーターで溶媒を除去した。これを28重量%アンモニア水0.78gを水 6mlに溶かした水溶液に加え、室温で固定化処理を行った。濾別後イオン交換水で洗浄した。この固定化した触媒をギ酸2gと水20mlの混合液に加え、加熱還流して5時間還元処理を行った。濾別後、得られた触媒をイオン交換水で洗浄した後、50℃で乾燥し、5重量%ロジウム/活性炭触媒を得た。
【0023】
この触媒0.16gを用いて200ml容量の誘導撹拌式オートクレーブにテトラヒドロフラン20g、2,2−ジ−(p−グリシドキシ−フェニル)―プロパン80g(ジャパンエポキシレジン社製 エピコート828 エポキシ当量186)を加え、水素を2MPa圧入した後、110℃まで昇温した。110℃で水素を8MPaに昇圧し、115℃に昇温して5.5時間反応した。反応後触媒を濾別し、減圧下揮発分を留去した。
【0024】
1H-NMRスペクトルの積分値より芳香環の水素化率を、過塩素酸滴定法(JIS K7236)によりエポキシ当量を求めた。ここでエポキシ当量とはエポキシ基1モルを含むエポキシ樹脂のグラム数を表す。
反応液の濾過条件は濾過温度20℃、濾紙No.5B、濾過面積12.5cm2, 真空度20mmHgであり、濾過時間をもって濾過性能を評価した。結果を表1に示す。
比較例1
グラファイト(TIMCAL社製 TIMREX HSAG100, 表面積130m2/g)を用いた以外実施例1と同様の方法で触媒を調製した。これを用いて反応時間を6時間にした以外実施例1と同様の方法で反応を行った。結果を表1に示す。
【0025】
【表1】
【0026】
【発明の効果】
本発明に従って、炭素−炭素不飽和結合及びエポキシ基を有する化合物を、ロジウムを活性炭に担持した後、アルカリ性水溶液で処理し、次いで液相で還元して得られる触媒を用いて90℃以上で水素化反応を行えば、エポキシ基の分解が少なく、炭素−炭素不飽和結合を選択的に水素化でき、しかも容易に触媒を濾過することができ、有利にエポキシ化合物を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an epoxy compound. Specifically, the present invention relates to a method of selectively hydrogenating an unsaturated bond of a compound having an epoxy group and a carbon-carbon unsaturated bond using a specific catalyst.
The epoxy resin obtained by the present invention is expected to be used for paints, coating materials, binder resins and the like.
[0002]
[Prior art]
Bisphenol A type epoxy resins obtained by reacting epichlorohydrin and bisphenol A have been widely used as coating materials, electrical insulating materials, laminates, structural materials and the like as general-purpose type epoxy resins. However, bisphenol-type epoxy resins have an aromatic ring, so they have difficulty in weather resistance. Especially for applications that require weather resistance, cyclohexene alicyclic olefins epoxidized with peracetic acid are used as weather-resistant epoxy resins. It is commercially available.
[0003]
On the other hand, various attempts have been proposed in the past to produce a corresponding alicyclic epoxy resin by hydrogenating the aromatic ring of a bisphenol type epoxy resin instead of an epoxy resin based on a peracid. In this case, it is necessary to suppress the decomposition of the epoxy group as much as possible during the nuclear hydrogenation.
As the prior art, for example, US Pat. No. 3,336,241 discloses a method using a catalyst in which rhodium or ruthenium is supported on an inert carrier, and JP-A-8-48676 and JP-A-8-53370 disclose a homogeneous method. A method using a ruthenium catalyst, Japanese Patent Application Laid-Open No. 10-204002 discloses a method using a catalyst in which ruthenium and sodium are supported on activated carbon, and Japanese Patent Application Laid-Open No. 11-217379 related to the present inventor proposes rhodium or ruthenium as a specific surface area. Is a method using a catalyst supported on a carbonaceous carrier in the range of 5 to 600 m 2 / g, and Japanese Patent Application Laid-Open No. 2000-226380 discloses a reaction using a ruthenium supported catalyst in an ether solvent in the presence of a fatty acid ester. A method is disclosed.
[0004]
[Problems to be solved by the invention]
However, since a catalyst using ruthenium in the conventional method has a very low activity per metal as compared with rhodium, it is necessary to increase the amount of catalyst or increase the reaction pressure in order to obtain sufficient activity. Further, although the rhodium-supported catalyst has higher activity than the ruthenium catalyst, its level is not satisfactory. Moreover, although the hydrogenation activity is improved by raising the reaction temperature in any catalyst, there is a problem that the decomposition of the epoxy group increases and the quality of the product is deteriorated. Although there is a description as follows, in the examples, temperatures of 80 ° C. or lower are adopted, and no examples performed at 90 ° C. or higher are found. Further, when activated carbon is used as a support when the reaction temperature is 90 ° C. or higher, a large amount of epoxy group polymer is generated, which makes it difficult to separate the catalyst by filtration.
[0005]
The present invention provides a hydrogenation catalyst in which the carbon-carbon unsaturated bond of an epoxy group-containing compound is selectively hydrogenated, and the decomposition of the epoxy group is small even at a reaction temperature of 90 ° C. or more, and the catalyst is easily separated by filtration. The purpose is to provide.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a catalyst having a known noble metal, especially rhodium supported on activated carbon, undergoes a catalyst recycling reaction at 90 ° C. or less, and the activity is reduced compared to a catalyst supported on graphite. Although it is large, it has been found that when it reacts at 90 ° C. or higher, it exhibits the same high activity and selectivity as the catalyst supported on graphite, and shows very good catalyst filterability compared to the catalyst supported on graphite. It came to be completed.
[0007]
That is, the present invention relates to a process for producing an epoxy compound by selectively hydrogenating a carbon-carbon unsaturated bond of a compound having at least one carbon-carbon unsaturated bond and at least one epoxy group. The gist of the present invention is a method for producing an epoxy compound, characterized in that a catalyst obtained by supporting rhodium on activated carbon after treating at rhodium and then treating with an alkaline aqueous solution and then reducing in a liquid phase is used.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The starting material used in the present invention is a compound having at least one carbon-carbon unsaturated bond and at least one epoxy group. This may be either a monomer, oligomer or polymer. Specific examples include an aromatic ring compound having an epoxy group, an unsaturated aliphatic compound, an unsaturated cycloaliphatic compound, and an unsaturated fluorinated ring compound. Among them, a compound in which a carbon-carbon unsaturated bond forms an aromatic ring is preferable.
[0009]
Specific examples of the aromatic ring compound include, for example, styrene oxide, phenyl glycidyl ether, hydroquinone diglycidyl ether, resorcin diglycidyl ether, bisphenol A or bisphenol F represented by the general formula (I) and epichlorohydrin as raw materials. And a polyglycidyl ether of a phenol novolak resin or a cresol novolak resin represented by the general formula (II).
[0010]
[Chemical 1]
[0011]
(Wherein R 1 represents a hydrogen atom or a methyl group, and n is 0 to 40)
Of these, the bisphenol A type epoxy resin represented by the formula (I) and the polyglycidyl ether of orthocresol novolak represented by the formula (II) are preferable. Among them, diglycidyl ether of bisphenol A (of the formula (I) n = 1) and oligomers thereof are particularly preferred.
[0012]
The diglycidyl ether of bisphenol A is commercially available, for example, as Epicoat 827 and 828, the oligomer thereof is Epicoat 834, and the one of formula (II) is commercially available from Japan Epoxy Resins Co., Ltd. as Epicoat 152, 154 and 180S65. .
The hydrogenation catalyst used in the present invention is a catalyst in which a noble metal, particularly rhodium, is supported on activated carbon. The noble metal compound, especially a rhodium compound, is supported on activated carbon, treated with an alkaline aqueous solution, and then reduced.
[0013]
The rhodium compound used in the present invention is not particularly limited as long as it is thermally decomposable, inorganic salts such as rhodium chloride, rhodium nitrate, rhodium sulfate, organometallic compounds such as rhodium acetylacetonate, tetrarhodium dodecacarbonyl, etc. However, it is preferable to use rhodium chloride because the activity decreases when the hetero element of the counter anion remains, and the organic rhodium compound is expensive.
[0014]
There is no particular limitation on the method for supporting the noble metal on the activated carbon, but the dipping method is usually used. For example, the metal compound of the catalyst component is dissolved in a solvent capable of dissolving, for example, water to form a solution, and activated carbon is immersed in this solution and impregnated and supported. Thereafter, the solvent is distilled off under reduced pressure, and reduction treatment is performed as necessary. The reduction treatment can be carried out by either a gas phase reduction method or a liquid phase reduction method, but it is more preferable to prepare it by the liquid phase reduction method because the metal can be supported in a highly dispersed state because it is treated at a low temperature.
[0015]
For example, when reducing in gaseous phase using hydrogen gas, it is performed at a temperature of 100 to 600 ° C, preferably 150 to 500 ° C, more preferably 200 to 400 ° C. The reducing agent used here includes carbon monoxide in addition to hydrogen. Moreover, you may use in the state diluted with inert gas, such as nitrogen and argon. In the case of reduction in a liquid phase, it is preferable to first carry a noble metal compound and then treat it with an alkaline aqueous solution to insolubilize and immobilize the noble metal compound as a hydroxide, followed by reduction treatment. As the type of alkali in the aqueous alkaline solution used for insolubilization and immobilization, aqueous ammonia and aqueous solutions of alkali metal hydroxides such as sodium hydroxide, sodium carbonate and potassium hydroxide can be preferably used. It is most preferable to use ammonia water in view of the ease of such effects and the influence of remaining alkali metal cations.
[0016]
The amount of alkali used is preferably 3 to 100 equivalents, more preferably 6 to 50 equivalents, relative to the noble metal. The treatment temperature with the alkaline aqueous solution is preferably 20 ° C. to 90 ° C., and particularly when aqueous ammonia is used, it is more preferably 20 ° C. to 50 ° C., since ammonia is remarkably released at a temperature higher than 50 ° C.
The catalyst insoluble and immobilized in the alkaline aqueous solution is thoroughly washed with ion exchange water or the like. In particular, when an aqueous solution of an alkali metal hydroxide is used, if an alkali metal cation such as Na + , K + or the like remains, the hydrogenation activity is lowered, and thus it is necessary to wash it sufficiently.
[0017]
The insoluble and immobilized catalyst is preferably reduced in the liquid phase using formalin, formic acid, methanol or the like. The amount of the reducing agent used is 3 to 100 molar equivalents, preferably 6 to 50 molar equivalents relative to the noble metal. The reduction temperature is 20 to 120 ° C, preferably 50 to 100 ° C. The catalyst reduced in the liquid phase is filtered, sufficiently washed with ion exchange water or the like, then dried and used for the hydrogenation reaction.
[0018]
Use of liquid phase reduction is more preferable because it can be washed with ion-exchanged water or the like to remove a sufficient excess of chlorine.
The amount of catalyst used in the hydrogenation reaction is 0.05 to 100 parts by weight, preferably 0.1 to 50 parts by weight, based on 100 parts by weight of the reaction raw material, but depending on various conditions such as reaction temperature or reaction pressure. Accordingly, it can be arbitrarily selected within a range in which a practical reaction rate can be obtained.
[0019]
The reaction temperature in the hydrogenation reaction of the present invention is 90 to 150 ° C, preferably 100 to 120 ° C. The reason why the catalyst supported on activated carbon is higher in activity than the catalyst supported on graphite at high temperature and the filterability is good even when polymerized is attached is because activated carbon has a large specific surface area and has many adsorption points. This is thought to be because the adhesion of organic matter is suppressed and deterioration is reduced.
Moreover, reaction pressure is 1-30 Mpa normally, Preferably it is 3-10 Mpa.
[0020]
As the reaction method, either a liquid phase suspension reaction or a fixed bed reaction can be employed.
As the reaction solvent, ethers such as THF and dioxane and esters such as methyl acetate, ethyl acetate and methyl propionate are preferably used because of the solubility of the starting materials.
[0021]
After carrying out the hydrogenation reaction according to the method of the present invention, the catalyst is filtered off, and then the volatile components are removed by distillation to obtain the desired product.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples, unless the summary is exceeded.
Example 1
Into 6 g of water was dissolved 625 mg of rhodium chloride hydrate containing 40.0 wt% Rh metal, and 4.75 g of commercially available powdered activated carbon was added and impregnated. Thereafter, the solvent was removed by an evaporator. This was added to an aqueous solution in which 0.78 g of 28% by weight aqueous ammonia was dissolved in 6 ml of water, and fixed at room temperature. After filtration, it was washed with ion exchange water. This immobilized catalyst was added to a mixed solution of 2 g of formic acid and 20 ml of water, and heated to reflux for a reduction treatment for 5 hours. After separation by filtration, the resulting catalyst was washed with ion exchange water and then dried at 50 ° C. to obtain a 5 wt% rhodium / activated carbon catalyst.
[0023]
Using 0.16 g of this catalyst, 20 g of tetrahydrofuran and 80 g of 2,2-di- (p-glycidoxy-phenyl) -propane (Epicoat 828 epoxy equivalent 186 manufactured by Japan Epoxy Resin Co., Ltd.) were added to an induction-stirring autoclave having a capacity of 200 ml. After injecting 2 MPa of hydrogen, the temperature was raised to 110 ° C. Hydrogen was raised to 8 MPa at 110 ° C., heated to 115 ° C., and reacted for 5.5 hours. After the reaction, the catalyst was filtered off, and volatile components were distilled off under reduced pressure.
[0024]
The hydrogenation rate of the aromatic ring was determined from the integral value of the 1 H-NMR spectrum, and the epoxy equivalent was determined by the perchloric acid titration method (JIS K7236). Here, the epoxy equivalent represents the number of grams of an epoxy resin containing 1 mol of an epoxy group.
The filtration conditions of the reaction solution were a filtration temperature of 20 ° C., filter paper No. 5B, a filtration area of 12.5 cm 2 , and a degree of vacuum of 20 mmHg. The filtration performance was evaluated with the filtration time. The results are shown in Table 1.
Comparative Example 1
A catalyst was prepared in the same manner as in Example 1 except that graphite (TIMREX HSAG100 manufactured by TIMCAL, surface area 130 m 2 / g) was used. The reaction was carried out in the same manner as in Example 1 except that the reaction time was changed to 6 hours. The results are shown in Table 1.
[0025]
[Table 1]
[0026]
【The invention's effect】
In accordance with the present invention, a compound having a carbon-carbon unsaturated bond and an epoxy group is supported at 90 ° C. or higher using a catalyst obtained by supporting rhodium on activated carbon , treating it with an alkaline aqueous solution, and then reducing it in a liquid phase. By carrying out the oxidization reaction, the decomposition of the epoxy group is small, the carbon-carbon unsaturated bond can be selectively hydrogenated, the catalyst can be easily filtered, and the epoxy compound can be advantageously produced.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001142979A JP3793424B2 (en) | 2001-05-14 | 2001-05-14 | Method for producing epoxy compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001142979A JP3793424B2 (en) | 2001-05-14 | 2001-05-14 | Method for producing epoxy compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002338658A JP2002338658A (en) | 2002-11-27 |
JP3793424B2 true JP3793424B2 (en) | 2006-07-05 |
Family
ID=18989185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001142979A Expired - Lifetime JP3793424B2 (en) | 2001-05-14 | 2001-05-14 | Method for producing epoxy compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3793424B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0539409A (en) * | 1991-08-02 | 1993-02-19 | Idemitsu Petrochem Co Ltd | Epoxy resin composition |
JP2002037856A (en) * | 2000-07-28 | 2002-02-06 | Dainippon Ink & Chem Inc | Epoxy resin composition |
JP2002249488A (en) * | 2001-02-21 | 2002-09-06 | Mitsubishi Chemicals Corp | Method for producing epoxy compound |
-
2001
- 2001-05-14 JP JP2001142979A patent/JP3793424B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002338658A (en) | 2002-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20160080379A (en) | Rh-C3N4 Heterogeneous catalyst for acetic acid synthesis by carbonylation reaction | |
EP1140751A1 (en) | Process for making 2,3-dihalopropanols | |
CN113272055B (en) | Carbon-based noble metal-transition metal composite catalyst and preparation method thereof | |
EP0921141B1 (en) | Process for producing compound having epoxy group | |
KR20190081064A (en) | Noble metal-transition metal complex catalyst of carbon coated silica-alumina and preparation method of thereof | |
JPH0474141A (en) | Production of cycloolefin | |
JPH0350744B2 (en) | ||
JP4122589B2 (en) | Method for producing epoxy compound | |
US7230145B2 (en) | Catalyst for producing both end-hydroxyl group-terminated diols, process for producing the catalyst, process for producing the diols by using the catalyst, and both end-hydroxyl group-terminated diols obtained by the process | |
CN113769741A (en) | Copper-based catalyst for ethylene carbonate catalytic hydrogenation, and preparation method and application thereof | |
JPS63255253A (en) | Production of amines | |
JPS60191020A (en) | Molybdenum salt soluble in hydrocarbon | |
JP3793424B2 (en) | Method for producing epoxy compound | |
JP2002249488A (en) | Method for producing epoxy compound | |
JP4268796B2 (en) | Method for producing epoxy compound | |
JP3955349B2 (en) | Nuclear hydrogenation process for substituted aromatic compounds | |
JP2002338560A (en) | Method for producing epoxy compound | |
JP3791556B2 (en) | Catalyst regeneration method | |
JP2002338562A (en) | Method for producing epoxy compound | |
JP2002338561A (en) | Method for producing epoxy compound | |
JP3815045B2 (en) | Process for producing alkylene glycols | |
JP2002338559A (en) | Method for producing epoxy compound | |
EP1194237A1 (en) | Silver or mercury exchanged macroporous organofunctional polysiloxane resins | |
KR20220028804A (en) | Novel copper metal organic frameworks compound and method of preparation of five-membered cyclic carbonates by using the same as catalyst | |
JP4182659B2 (en) | A method for producing a glycidyl group-containing alicyclic compound. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060407 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3793424 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |