JP2002338562A - Method for producing epoxy compound - Google Patents

Method for producing epoxy compound

Info

Publication number
JP2002338562A
JP2002338562A JP2001142982A JP2001142982A JP2002338562A JP 2002338562 A JP2002338562 A JP 2002338562A JP 2001142982 A JP2001142982 A JP 2001142982A JP 2001142982 A JP2001142982 A JP 2001142982A JP 2002338562 A JP2002338562 A JP 2002338562A
Authority
JP
Japan
Prior art keywords
producing
carbon
epoxy compound
catalyst
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001142982A
Other languages
Japanese (ja)
Inventor
Hiroko Takahashi
裕子 高橋
Yoshinori Hara
善則 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001142982A priority Critical patent/JP2002338562A/en
Publication of JP2002338562A publication Critical patent/JP2002338562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an epoxy compound with slight epoxy group decomposition by selectively and efficiently hydrogenating the carbon-carbon double bond(s) in a compound having the double bond(s) and epoxy group(s). SOLUTION: This method for producing the objective epoxy compound involves a hydrogenation in the presence of a catalyst which is prepared by bearing active carbon with a mineral acid salt of a noble metal except its chloride followed by reducing the salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エポキシ化合物の
製造法に関する。詳しくは、エポキシ基と炭素ー炭素不
飽和結合を有する化合物の不飽和結合を特定の触媒を用
いて選択的に水素化する方法に関する。本発明により得
られたエポキシ樹脂は、塗料、コーティング材料、バイ
ンダー樹脂等への用途が期待される。
[0001] The present invention relates to a method for producing an epoxy compound. More specifically, the present invention relates to a method for selectively hydrogenating an unsaturated bond of a compound having an epoxy group and a carbon-carbon unsaturated bond using a specific catalyst. The epoxy resin obtained by the present invention is expected to be used for paints, coating materials, binder resins and the like.

【0002】[0002]

【従来の技術】エピクロロヒドリンとビスフェノールA
とを反応させて得られるビスフェノールA型エポキシ樹
脂は、汎用型エポキシ樹脂としてコーティング材料、電
気絶縁材料、積層物、構造材料等に従来より広く使用さ
れている。しかしながら、ビスフェノール型エポキシ樹
脂は芳香環を有するために耐候性に難点があり、特に耐
候性が必要な用途には、シクロヘキセン系の脂環状オレ
フィンを過酢酸によりエポキシ化したものが耐候性エポ
キシ樹脂として市販されている。
2. Description of the Related Art Epichlorohydrin and bisphenol A
The bisphenol A type epoxy resin obtained by reacting the above is widely used as a general-purpose type epoxy resin in coating materials, electric insulating materials, laminates, structural materials and the like. However, bisphenol-type epoxy resins have difficulty in weather resistance due to having an aromatic ring.In particular, for applications requiring weather resistance, cyclohexene-based alicyclic olefins epoxidized with peracetic acid are used as weather-resistant epoxy resins. It is commercially available.

【0003】一方、過酸によるエポキシ樹脂の代わり
に、ビスフェノール型エポキシ樹脂の芳香環を水素化し
て対応する脂環状エポキシ樹脂を製造する試みが従来か
らいろいろと提案されている。この場合、核水素化の際
に、エポキシ基の分解をできるだけ押さえることが必要
である。従来技術としては、例えば、米国特許第333
6241号明細書にはロジウムまたはルテニウムを不活
性な担体に担持した触媒を用いる方法、特開平8−48
676号公報及び特開平8−53370号公報には均質
ルテニウム触媒を用いる方法、特開平10−20400
2号公報には活性炭にルテニウムとナトリウムを担持し
た触媒を用いる方法、本発明者の提案に係る特開平11
−217379号公報にはロジウムまたはルテニウムを
比表面積が5〜600m2/gの範囲にある炭素質担体
に担持した触媒を用いる方法及び特開2000−226
380号公報にはルテニウム担持触媒を用いてエーテル
溶媒中、脂肪酸エステルの存在下に反応を行う方法が記
載されている。
On the other hand, various attempts have been made to produce a corresponding alicyclic epoxy resin by hydrogenating an aromatic ring of a bisphenol-type epoxy resin instead of an epoxy resin using a peracid. In this case, it is necessary to suppress the decomposition of the epoxy group as much as possible during nuclear hydrogenation. As the prior art, for example, US Pat.
Japanese Patent No. 6241 discloses a method using a catalyst in which rhodium or ruthenium is supported on an inert carrier.
676 and JP-A-8-53370 disclose a method using a homogeneous ruthenium catalyst, and JP-A-10-20400.
No. 2 discloses a method using a catalyst in which ruthenium and sodium are supported on activated carbon, and Japanese Patent Application Laid-Open No.
Japanese Patent Application Laid-Open No. 2000-226 discloses a method using a catalyst in which rhodium or ruthenium is supported on a carbonaceous carrier having a specific surface area in the range of 5 to 600 m 2 / g.
No. 380 describes a method in which a reaction is carried out in an ether solvent using a ruthenium-supported catalyst in the presence of a fatty acid ester.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来法
におけるルテニウムを用いる触媒はロジウムに比べてメ
タルあたりの活性が非常に低く、十分な活性を得るには
触媒量を増やしたり、反応圧を上げる必要があった。ま
た、ロジウム担持触媒についてはルテニウム触媒に比べ
て活性は高いものの、そのレベルは十分満足できるもの
でなかった。
However, the catalyst using ruthenium in the conventional method has a very low activity per metal as compared with rhodium. To obtain sufficient activity, it is necessary to increase the amount of the catalyst or increase the reaction pressure. was there. The activity of the rhodium-supported catalyst was higher than that of the ruthenium catalyst, but the level was not sufficiently satisfactory.

【0005】本発明はエポキシ基含有化合物の炭素−炭
素不飽和結合を選択的に水素化する反応において、エポ
キシ基の分解が少なく、かつ活性の高い水素化触媒を提
供することを目的とする。
[0005] It is an object of the present invention to provide a hydrogenation catalyst which has a low activity and a high activity in the reaction for selectively hydrogenating carbon-carbon unsaturated bonds of an epoxy group-containing compound.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために触媒調製法を鋭意検討した結果、鉱酸
塩を貴金属原料として活性炭に担持した触媒を調製する
と、エポキシ基の分解が少なくかつ水素化活性が高い触
媒が得られることを見いだし、本発明を完成するに至っ
た。
Means for Solving the Problems The present inventors have intensively studied a catalyst preparation method for solving the above-mentioned problems, and as a result, when preparing a catalyst in which a mineral salt is supported on activated carbon as a noble metal raw material, an epoxy group having an epoxy group The inventors have found that a catalyst with little decomposition and high hydrogenation activity can be obtained, and the present invention has been completed.

【0007】即ち、本発明は少なくとも1個の炭素−炭
素不飽和結合及び少なくとも1個のエポキシ基を有する
化合物の炭素−炭素不飽和結合を選択的に水素化してエ
ポキシ化合物を製造する方法において、貴金属の塩化物
を除く鉱酸塩を活性炭に担持し、還元して得られる触媒
を用いることを特徴とするエポキシ化合物の製造方法を
要旨とするものである。
That is, the present invention provides a method for producing an epoxy compound by selectively hydrogenating a carbon-carbon unsaturated bond of a compound having at least one carbon-carbon unsaturated bond and at least one epoxy group. A gist of the present invention is a method for producing an epoxy compound, which comprises using a catalyst obtained by supporting a mineral acid salt excluding a noble metal chloride on activated carbon and reducing the same.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いられる出発原料は、少なくとも一個の炭素
−炭素不飽和結合及び少なくとも一個のエポキシ基を有
する化合物である。これは、モノマー、オリゴマー又は
ポリマーのいずれでもよい。具体的には、エポキシ基を
有する芳香環化合物、不飽和脂肪族化合物、不飽和環状
脂肪族化合物、不飽和復素環化合物等が挙げられる。中
でも、炭素−炭素不飽和結合が芳香環を形成している化
合物であるのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The starting material used in the present invention is a compound having at least one carbon-carbon unsaturated bond and at least one epoxy group. It may be a monomer, oligomer or polymer. Specific examples include an aromatic ring compound having an epoxy group, an unsaturated aliphatic compound, an unsaturated cyclic aliphatic compound, and an unsaturated polycyclic compound. Among them, a compound in which a carbon-carbon unsaturated bond forms an aromatic ring is preferable.

【0009】この芳香環化合物の具体例としては、例え
ば、スチレンオキサイド、フェニルグリシジルエーテ
ル、ハイドロキノンのジグリシジルエーテル、レゾルシ
ンのジグリシジルエーテル、一般式(I)で表されるビ
スフェノールA又はビスフェノールFとエピクロルヒド
リンとを原料とするエポキシ樹脂、一般式(II)で表さ
れるフェノールノボラック樹脂又はクレゾールノボラッ
ク樹脂のポリグリシジルエーテル等が挙げられる。
Specific examples of the aromatic ring compound include styrene oxide, phenylglycidyl ether, diglycidyl ether of hydroquinone, diglycidyl ether of resorcinol, bisphenol A or bisphenol F represented by the general formula (I) and epichlorohydrin. And a glyceryl ether of a phenol novolak resin or a cresol novolak resin represented by the general formula (II).

【0010】[0010]

【化1】 Embedded image

【0011】(式中、R1は水素原子又はメチル基を示
し、nは0ないし40である) この中、式(I)で示されるビスフェノールA型エポキ
シ樹脂、及び式(II)で表されるオルソクレゾールノボ
ラックのポリグリシジルエーテルが好ましく、この中、
ビスフェノールAのジグリシジルエーテル(式(I)の
n=1)及びそのオリゴマーが特に好ましい。
(Wherein, R 1 represents a hydrogen atom or a methyl group, and n is 0 to 40) wherein the bisphenol A type epoxy resin represented by the formula (I) and the formula (II) Orthocresol novolak polyglycidyl ether is preferred, wherein
Diglycidyl ethers of bisphenol A (n = 1 in formula (I)) and oligomers thereof are particularly preferred.

【0012】なお、ビスフェノールAのジグリシジルエ
ーテルは例えばエピコート827、828として、又そ
のオリゴマーはエピコート834として、また、式(I
I)のものはエピコート152、154、180S65
としてジャパンエポキシレジン株式会社より市販されて
いる。本発明に用いられる水素化触媒は、貴金属、とり
わけロジウムを活性炭に担持した触媒である。本発明に
用いられる触媒は、貴金属化合物を活性炭に担持させ、
還元処理を施して調製される。
The diglycidyl ether of bisphenol A is, for example, as Epikote 827 or 828, and its oligomer is as Epikote 834.
For I), Epicoat 152, 154, 180S65
Commercially available from Japan Epoxy Resin Co., Ltd. The hydrogenation catalyst used in the present invention is a catalyst in which a noble metal, particularly rhodium, is supported on activated carbon. The catalyst used in the present invention supports a noble metal compound on activated carbon,
It is prepared by performing a reduction treatment.

【0013】本発明で使用する貴金属化合物、例えば、
ロジウム化合物としては加熱分解可能なものであれば特
に制限はなく、硝酸ロジウム、硫酸ロジウム、リン酸ロ
ジウム等の塩化物以外の鉱酸塩が挙げられるが、この中
でも硝酸ロジウムを用いるとエポキシの分解が少なくか
つ活性が高いのでより好ましい。一般的に液相還元で触
媒を調製する場合には、硝酸塩を用いると調製過程で硝
酸根が残存しやすくその影響で芳香環の水素化活性が低
下する。例えば、グラファイトの担体の場合には塩化物
を用いた方が硝酸塩を用いた場合より、活性が高くなっ
ている。しかし、活性炭を担体に用いた場合には驚くべ
きことに逆の傾向を示した。
The noble metal compound used in the present invention, for example,
The rhodium compound is not particularly limited as long as it can be thermally decomposed, and examples thereof include mineral salts other than chlorides such as rhodium nitrate, rhodium sulfate, and rhodium phosphate. Is more preferred because of its low activity and high activity. In general, when a catalyst is prepared by liquid phase reduction, when a nitrate is used, a nitrate group tends to remain in the preparation process, and the hydrogenation activity of the aromatic ring is reduced due to the influence. For example, in the case of a graphite carrier, the activity using chloride is higher than that using nitrate. However, when activated carbon was used as the carrier, the opposite tendency was surprisingly shown.

【0014】貴金属、例えばロジウムを活性炭に担持さ
せる方法に特に制限はないが、通常の場合、浸漬法が用
いられる。例えば上記触媒成分の硝酸塩等の金属化合物
を溶解可能な溶媒、例えば、水に溶解して溶液とし、こ
の溶液中に活性炭を浸漬して含浸担持させる。その後減
圧下溶媒を留去し、還元処理を行う。還元処理としては
気相還元法、あるいは液相還元法のいずれの方法でも行
うことができるが、液相還元で調製した方が低温で処理
するためメタルを高分散に担持でき、より好ましい。
There is no particular limitation on the method of supporting a noble metal, for example, rhodium on activated carbon, but in general, an immersion method is used. For example, the catalyst component is dissolved in a solvent capable of dissolving a metal compound such as a nitrate, for example, water to form a solution, and activated carbon is immersed in the solution to be impregnated and supported. Thereafter, the solvent is distilled off under reduced pressure to carry out a reduction treatment. The reduction treatment can be performed by either a gas phase reduction method or a liquid phase reduction method. However, it is more preferable to prepare by liquid phase reduction because the metal can be supported in a highly dispersed state because it is processed at a low temperature.

【0015】例えば水素ガスを用いて気相で還元する場
合、100〜600℃、好ましくは150〜500℃、
より好ましくは200〜400℃の温度で行われる。こ
こで用いられる還元剤としては、水素以外に一酸化炭素
が挙げられる。また、窒素、アルゴン等の不活性ガスで
希釈した状態で用いてもよい。また、液相で還元する場
合は、まず、貴金属化合物、例えばロジウム化合物を担
持した後、アルカリ性水溶液で処理して該貴金属を水酸
化物として不溶化、固定化しておき、これを還元処理す
るのが好ましい。
For example, when reducing in the gas phase using hydrogen gas, 100 to 600 ° C., preferably 150 to 500 ° C.,
It is more preferably performed at a temperature of 200 to 400 ° C. Examples of the reducing agent used here include carbon monoxide in addition to hydrogen. Further, it may be used after being diluted with an inert gas such as nitrogen or argon. In the case of reduction in the liquid phase, first, a noble metal compound, for example, a rhodium compound is supported, and then treated with an alkaline aqueous solution to insolubilize the noble metal as a hydroxide, fixed, and then reduced. preferable.

【0016】不溶、固定化に用いるアルカリ性水溶液の
アルカリの種類としてはアンモニア水や、水酸化ナトリ
ウム、炭酸ナトリウム、水酸化カリウム等のアルカリ金
属水酸化物の水溶液が好ましく使用できるが、不溶、固
定化後の水洗の容易さや、アルカリ金属カチオンの残存
等の影響を考慮するとアンモニア水を用いるのが最も好
ましい。
As the kind of alkali of the alkaline aqueous solution used for insolubilization and immobilization, aqueous ammonia and aqueous solutions of alkali metal hydroxides such as sodium hydroxide, sodium carbonate and potassium hydroxide can be preferably used. It is most preferable to use ammonia water in consideration of the easiness of washing with water later and the influence of remaining alkali metal cations.

【0017】使用するアルカリの量は貴金属に対して3
〜100当量が好ましく、更には6〜50当量がより好
ましい。アルカリ性水溶液による処理温度は20℃から
90℃が好ましく、特にアンモニア水を用いる場合に
は、50℃より高温であるとアンモニアの脱離が著しく
なるので20〜50℃がより好ましい。アルカリ性水溶
液で不溶、固定化した触媒はイオン交換水等で充分洗浄
する。特にアルカリ金属水酸化物の水溶液を用いる場
合、Na+、K+等のアルカリ金属カチオンが残存すると
水素化活性が低下するので充分洗浄することが必要であ
る。
The amount of alkali used is 3 per noble metal.
-100 equivalents are preferred, and 6-50 equivalents are more preferred. The treatment temperature with the alkaline aqueous solution is preferably from 20 ° C to 90 ° C, and particularly when using aqueous ammonia, if the temperature is higher than 50 ° C, the desorption of ammonia becomes remarkable, so it is preferably from 20 to 50 ° C. The catalyst which is insoluble and fixed in the alkaline aqueous solution is sufficiently washed with ion-exchanged water or the like. In particular, when an aqueous solution of an alkali metal hydroxide is used, if the alkali metal cations such as Na + and K + remain, the hydrogenation activity decreases, so that sufficient washing is required.

【0018】不溶、固定化した触媒はホルマリン、ギ酸
あるいはメタノール等を用いて液相で還元することが好
ましい。還元剤の使用量は貴金属に対して3〜100モ
ル当量、好ましくは6〜50モル当量である。還元温度
は20〜120℃、好ましくは50〜100℃である。
液相で還元した触媒は濾過し、イオン交換水等で充分洗
浄した後、乾燥して水素化反応に用いることができる。
The insoluble and immobilized catalyst is preferably reduced in a liquid phase using formalin, formic acid, methanol or the like. The amount of the reducing agent used is 3 to 100 molar equivalents, preferably 6 to 50 molar equivalents with respect to the noble metal. The reduction temperature is from 20 to 120C, preferably from 50 to 100C.
The catalyst reduced in the liquid phase can be filtered, sufficiently washed with ion-exchanged water and the like, and then dried and used for the hydrogenation reaction.

【0019】液相還元を用いることにより、担体上に担
持した金属粒子の粒径が小さくなり、かつ、金属が均一
に担持されるため、エポキシ損失率が低くおさえられの
でより好ましい。水素化反応に使用する触媒量は、反応
原料100重量部に対して0.05〜100重量部、好
ましくは0.1〜50重量部であることが好ましいが、
反応温度、又は反応圧力等の諸条件に応じ、実用的な反
応速度が得られる範囲内において任意に選択できる。
The use of the liquid phase reduction is more preferable because the particle diameter of the metal particles supported on the carrier is reduced and the metal is uniformly supported, so that the epoxy loss rate is kept low. The amount of the catalyst used in the hydrogenation reaction is preferably 0.05 to 100 parts by weight, and more preferably 0.1 to 50 parts by weight based on 100 parts by weight of the reaction raw material.
It can be arbitrarily selected within a range where a practical reaction rate can be obtained according to various conditions such as a reaction temperature and a reaction pressure.

【0020】本発明の水素化反応での反応温度は、30
〜150℃、好ましくは70〜120℃である。また、
反応圧力は通常1〜30MPa、好ましくは3〜10M
Paである。反応方式としては液相懸濁反応或いは固定
床反応のいずれも採用することができる。また、反応溶
媒としては出発原料の溶解性からTHF、ジオキサンの
ようなエーテル類や酢酸メチル、酢酸エチル、プロピオ
ン酸メチルのようなエステル類が好ましく用いられる。
The reaction temperature in the hydrogenation reaction of the present invention is 30
To 150 ° C, preferably 70 to 120 ° C. Also,
The reaction pressure is usually 1 to 30 MPa, preferably 3 to 10 M
Pa. As a reaction method, either a liquid phase suspension reaction or a fixed bed reaction can be adopted. As the reaction solvent, ethers such as THF and dioxane and esters such as methyl acetate, ethyl acetate and methyl propionate are preferably used in view of the solubility of the starting materials.

【0021】本発明の方法に従って水素化反応を行った
後、触媒を濾別し、その後蒸留により揮発成分を除去
し、目的生成物を得ることが出来る。
After the hydrogenation reaction is carried out according to the method of the present invention, the catalyst is filtered off and then the volatile components are removed by distillation to obtain the desired product.

【0022】[0022]

【実施例】以下実施例により本発明を更に詳細に説明す
るが、本発明は、その要旨を超えない限り、これら実施
例に限定されるものでない。 実施例1 5.1重量%Rhメタル含有硝酸ロジウム水溶液4.9
0gに水1gを加えた中に市販の粉末活性炭4.75g
を加え含浸担持した。その後エバポレーターで溶媒を除
去した。これを28重量%アンモニア水0.78gを水
6mlに溶かした水溶液に加え、室温で固定化処理を
行った。濾別後イオン交換水で洗浄した。この固定化し
た触媒をギ酸2gと水20mlの混合液に加え、加熱還
流して5時間還元処理を行った。濾別後、得られた触媒
をイオン交換水で洗浄した後、50℃で乾燥し、5重量
%ロジウム/活性炭触媒を得た。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the invention. Example 1 Rhodium nitrate aqueous solution containing 5.1 wt% Rh metal 4.9
4.75 g of commercially available powdered activated carbon in 1 g of water added to 0 g
Was added to carry out impregnation. Thereafter, the solvent was removed by an evaporator. This was added to an aqueous solution obtained by dissolving 0.78 g of 28% by weight aqueous ammonia in 6 ml of water, and immobilization treatment was performed at room temperature. After filtration, the precipitate was washed with ion-exchanged water. This immobilized catalyst was added to a mixed solution of 2 g of formic acid and 20 ml of water, and the mixture was heated under reflux to perform a reduction treatment for 5 hours. After filtration, the obtained catalyst was washed with ion-exchanged water and dried at 50 ° C. to obtain a 5% by weight rhodium / activated carbon catalyst.

【0023】この触媒0.5gを用いて200ml容量
の誘導撹拌式オートクレーブにテトラヒドロフラン50
g、2,2−ジ−(p−グリシドキシーフェニル)―プ
ロパン50g(ジャパンエポキシレジン社製 エピコー
ト828 エポキシ当量186)50gを加え、水素を
2MPa圧入した後、75℃まで昇温した。75℃で水
素を7MPaに昇圧し、85℃に昇温して2.5時間反
応した。反応後触媒を濾別し、減圧下揮発分を留去し
た。1H-NMRスペクトルの積分値より芳香環の水素化率
を、過塩素酸滴定法(JIS K7236)によりエポキシ当量を
求めた。ここでエポキシ当量とはエポキシ基1モルを含む
エポキシ樹脂のグラム数を表す。反応結果を表1に示
す。 比較例1 硝酸ロジウムの代わりに塩化ロジウムを用いた以外、実
施例1と同様の方法で触媒を調製し、反応を行った。結
果を表1に示した。比較例2粉末活性炭に替えてグラフ
ァイト(TIMCAL社製 TIMREX HSAG100, 表面積130m2
/g)を用いた以外実施例1と同様の方法で触媒を調製
し、反応を行った。結果を表1に示す。
Using 0.5 g of this catalyst, 50 ml of tetrahydrofuran was introduced into an induction-stirring autoclave having a capacity of 200 ml.
g, 50 g of 2,2-di- (p-glycidoxy-phenyl) -propane (Epicoat 828, epoxy equivalent 186, manufactured by Japan Epoxy Resin Co., Ltd.) was added, hydrogen was injected at 2 MPa, and the temperature was raised to 75 ° C. The pressure of hydrogen was increased to 7 MPa at 75 ° C., and the temperature was increased to 85 ° C., and the reaction was performed for 2.5 hours. After the reaction, the catalyst was filtered off, and volatile components were distilled off under reduced pressure. The hydrogenation rate of the aromatic ring was determined from the integrated value of the 1 H-NMR spectrum, and the epoxy equivalent was determined by a perchloric acid titration method (JIS K7236). Here, the epoxy equivalent indicates the number of grams of an epoxy resin containing 1 mol of an epoxy group. The reaction results are shown in Table 1. Comparative Example 1 A catalyst was prepared and reacted in the same manner as in Example 1, except that rhodium chloride was used instead of rhodium nitrate. The results are shown in Table 1. Comparative Example 2 Graphite (TIMREX HSAG100 manufactured by TIMCAL, surface area 130 m 2) was used instead of powdered activated carbon.
A catalyst was prepared and reacted in the same manner as in Example 1 except that / g) was used. Table 1 shows the results.

【0024】[0024]

【表1】 表1 担体 Rh原料 芳香環水素化率 エポキシ当量 % 実施例1 活性炭 硝酸ロジウム 100 198 比較例1 活性炭 塩化ロジウム 70 197 比較例2 グラファイト 硝酸ロジウム 82 198Table 1 Carrier Rh raw material Aromatic ring hydrogenation rate Epoxy equivalent%% Example 1 Activated carbon rhodium nitrate 100 198 Comparative Example 1 Activated carbon rhodium chloride 70 197 Comparative Example 2 Graphite Rhodium nitrate 82 198

【0025】[0025]

【発明の効果】本発明に従って、貴金属の鉱酸塩、とり
わけ硝酸ロジウムを原料として活性炭に担持した貴金属
触媒を使用して、炭素−炭素不飽和結合及びエポキシ基
を有する化合物の炭素−炭素不飽和結合を選択的に水素
化することにより、エポキシ基の分解が少なくかつ高い
水素化率でエポキシ化合物を製造することができる。
According to the present invention, a carbon-carbon unsaturated bond of a compound having a carbon-carbon unsaturated bond and an epoxy group can be prepared by using a noble metal catalyst supported on activated carbon using a noble metal salt, particularly rhodium nitrate as a raw material. By selectively hydrogenating the bond, an epoxy compound can be produced with less decomposition of the epoxy group and at a higher hydrogenation rate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4C048 AA01 BB10 CC02 UU05 XX02 XX05 4G069 AA03 AA08 BA08A BA08B BB02A BB02B BB10C BB12C BB14C BC69A BC69C BC71A BC71B CB02 CB62 FA02 FB20 FB43 FB44 FB45 FC02 4H039 CA60 CB20 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // C07B 61/00 300 C07B 61/00 300 F term (reference) 4C048 AA01 BB10 CC02 UU05 XX02 XX05 4G069 AA03 AA08 BA08A BA08B BB02A BB02B BB10C BB12C BB14C BC69A BC69C BC71A BC71B CB02 CB62 FA02 FB20 FB43 FB44 FB45 FC02 4H039 CA60 CB20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1個の炭素−炭素不飽和結合
及び少なくとも1個のエポキシ基を有する化合物の炭素
−炭素不飽和結合を選択的に水素化してエポキシ化合物
を製造する方法において、貴金属の塩化物を除く鉱酸塩
を活性炭に担持し、還元して得られる触媒を用いること
を特徴とするエポキシ化合物の製造方法。
1. A method for producing an epoxy compound by selectively hydrogenating a carbon-carbon unsaturated bond of a compound having at least one carbon-carbon unsaturated bond and at least one epoxy group, the method comprising: A method for producing an epoxy compound, comprising using a catalyst obtained by supporting a mineral acid salt excluding a substance on activated carbon and reducing the same.
【請求項2】 貴金属がロジウムである請求項1に記載
のエポキシ化合物の製造方法。
2. The method according to claim 1, wherein the noble metal is rhodium.
【請求項3】 貴金属の鉱酸塩が硝酸塩である請求項1
又は2に記載のエポキシ化合物の製造方法。
3. The precious metal mineral salt is a nitrate.
Or the method for producing an epoxy compound according to 2.
【請求項4】 貴金属の塩化物を除く鉱酸塩を活性炭に
担持した後、アルカリ性水溶液で処理し、次いで液相で
還元して得られる触媒を用いる請求項1〜3のいずれか
に記載のエポキシ化合物の製造方法。
4. The catalyst according to any one of claims 1 to 3, wherein a catalyst obtained by supporting a mineral acid salt excluding noble metal chloride on activated carbon, treating with an alkaline aqueous solution, and then reducing in a liquid phase is used. A method for producing an epoxy compound.
【請求項5】 少なくとも1個の炭素−炭素不飽和結合
が芳香環を形成しているものである請求項1〜4のいず
れかに記載のエポキシ化合物の製造方法。
5. The method for producing an epoxy compound according to claim 1, wherein at least one carbon-carbon unsaturated bond forms an aromatic ring.
【請求項6】 反応溶媒としてエーテル類又はエステル
類を用いる請求項1〜5のいずれかに記載のエポキシ化
合物の製造方法。
6. The method for producing an epoxy compound according to claim 1, wherein an ether or an ester is used as a reaction solvent.
【請求項7】 水素化反応を反応温度30〜150℃、
かつ水素圧1〜30MPaで行う請求項1〜6のいずれ
かに記載のエポキシ化合物の製造方法。
7. The hydrogenation reaction is carried out at a reaction temperature of 30 to 150 ° C.
The method for producing an epoxy compound according to any one of claims 1 to 6, wherein the method is performed at a hydrogen pressure of 1 to 30 MPa.
【請求項8】 化合物がエピクロロヒドリンと多価フェ
ノールとを反応させて得られた化合物である請求項1〜
7のいずれかに記載のエポキシ化合物の製造方法。
8. The compound according to claim 1, wherein the compound is obtained by reacting epichlorohydrin with a polyhydric phenol.
8. The method for producing an epoxy compound according to any one of 7.
JP2001142982A 2001-05-14 2001-05-14 Method for producing epoxy compound Pending JP2002338562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142982A JP2002338562A (en) 2001-05-14 2001-05-14 Method for producing epoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142982A JP2002338562A (en) 2001-05-14 2001-05-14 Method for producing epoxy compound

Publications (1)

Publication Number Publication Date
JP2002338562A true JP2002338562A (en) 2002-11-27

Family

ID=18989188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142982A Pending JP2002338562A (en) 2001-05-14 2001-05-14 Method for producing epoxy compound

Country Status (1)

Country Link
JP (1) JP2002338562A (en)

Similar Documents

Publication Publication Date Title
CN1080732C (en) Process for producing epoxy compound
EP0921141B1 (en) Process for producing compound having epoxy group
CN113272055B (en) Carbon-based noble metal-transition metal composite catalyst and preparation method thereof
JP4122589B2 (en) Method for producing epoxy compound
JPH0350744B2 (en)
US20100105945A1 (en) Noble metal catalysts
JP5017964B2 (en) Method for producing aromatic ring-containing amino compound and catalyst
JP2002249488A (en) Method for producing epoxy compound
JPS60191020A (en) Molybdenum salt soluble in hydrocarbon
US6541575B2 (en) Process for producing an epoxidized polymer
JP2002338562A (en) Method for producing epoxy compound
CN111437826A (en) Supported silver catalyst and preparation method and application thereof
JP3793424B2 (en) Method for producing epoxy compound
JPH0625198B2 (en) Method for reducing the content of hydrolyzable chlorine in glycidyl compounds
JP4268796B2 (en) Method for producing epoxy compound
JP2002338559A (en) Method for producing epoxy compound
JP3955349B2 (en) Nuclear hydrogenation process for substituted aromatic compounds
JP2002338560A (en) Method for producing epoxy compound
JP2001172211A (en) Method for producing both of cyclododecanone and cyclododecanol
JP2002338561A (en) Method for producing epoxy compound
JP2000080053A (en) Production of cyloalkyldimethanol
EP3116864B1 (en) Epoxy resin compositions
US5286906A (en) Process for the preparation of 3-aminomethyl-3,5,5-trialkylcyclohexylamine
CN111437816B (en) Supported silver catalyst and preparation method and application thereof
CN115487821B (en) Application of inorganic oxide supported multi-metal catalyst in catalyzing hydrogenation reaction of hydroquinone or bisphenol A

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507