JP3793179B2 - Nitride film quality improving method and semiconductor device manufacturing method - Google Patents

Nitride film quality improving method and semiconductor device manufacturing method Download PDF

Info

Publication number
JP3793179B2
JP3793179B2 JP2003168349A JP2003168349A JP3793179B2 JP 3793179 B2 JP3793179 B2 JP 3793179B2 JP 2003168349 A JP2003168349 A JP 2003168349A JP 2003168349 A JP2003168349 A JP 2003168349A JP 3793179 B2 JP3793179 B2 JP 3793179B2
Authority
JP
Japan
Prior art keywords
nitride film
film
chlorine
manufacturing
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003168349A
Other languages
Japanese (ja)
Other versions
JP2005005537A (en
Inventor
岳志 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003168349A priority Critical patent/JP3793179B2/en
Priority to KR1020040042782A priority patent/KR100753942B1/en
Publication of JP2005005537A publication Critical patent/JP2005005537A/en
Application granted granted Critical
Publication of JP3793179B2 publication Critical patent/JP3793179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、半導体装置等に用いられる窒化膜の膜質改善方法及びその窒化膜を用いた半導体装置の製造方法に関する。
【0002】
【従来の技術】
従来、SiHCl、SiCl、SiClのような塩素含有Si原料ガスとNHガスとを用いたLPCVD(Low Pressure Chemical Vapor Deposition)法により窒化膜を成膜していた。このLPCVD法では、650℃〜800℃の成膜温度が一般的に用いられていた。
【0003】
【発明が解決しようとする課題】
しかしながら、熱履歴(Thermal Budget)を低減するために、上記成膜温度を600℃以下に低温化した場合、窒化膜中に不純物として塩素が多く残留してしまい、窒化膜の膜質が劣化してしまうという問題があった。
さらに、かかる窒化膜を半導体装置に適用した場合、窒化膜中に残留する塩素が他の素子に拡散してしまい、半導体装置の信頼性が低下する可能性があった。例えば、ゲート電極側壁のサイドウォールを窒化膜により形成する場合には、窒化膜の不純物がゲート電極に拡散してしまい、ゲート電極中の不純物濃度が変化してしまうという問題があった。
【0004】
本発明は、上記従来の課題を解決するためになされたもので、成膜温度を増加させることなく、窒化膜中の塩素含有量を低減することを目的とする。
【0005】
【課題を解決するための手段】
この発明に係る窒化膜の膜質改善方法は、基板上に、塩素含有Si原料ガスとNHガスを用いてLPCVD法により窒化膜を形成する工程と、前記窒化膜を水素ラジカル又は水素イオンに曝し、前記窒化膜内の塩素を前記窒化膜内から除去する工程とを含み、前記窒化膜を形成する工程は、600℃以下の温度で行なうことを特徴とするものである。
【0006】
この発明に係る膜質改善方法において、前記窒化膜内の塩素を前記窒化膜内から除去する工程は、プラズマにより前記水素ラジカル又は水素イオンを発生させる工程を含むことが好適である。
【0007】
この発明に係る膜質改善方法において、前記窒化膜を形成する工程と、前記窒化膜内の塩素を前記窒化膜内から除去する工程とを同一の製造装置内で連続して行うことが好適である。
【0008】
この発明に係る半導体装置の製造方法は、基板上に、半導体要素を形成する工程と、前記半導体要素上に、塩素含有Si原料ガスとNHガスを用いてLPCVD法により窒化膜を形成する工程と、前記窒化膜を水素ラジカル又は水素イオンに曝し、前記窒化膜内の塩素を前記窒化膜内から除去する工程とを含み、前記窒化膜を形成する工程は、600℃以下の温度で行なうことを特徴とするものである。
【0009】
この発明に係る製造方法において、前記窒化膜内の塩素を前記窒化膜内から除去する工程は、プラズマにより前記水素ラジカル又は水素イオンを発生させる工程を含むことが好適である。
【0010】
この発明に係る製造方法において、前記窒化膜を形成する工程と、前記窒化膜内の塩素を前記窒化膜内から除去する工程とを同一の製造装置内で連続して行うことが好適である。
【0011】
この発明の係る製造方法において、前記半導体要素はゲート電極であり、
前記窒化膜を水素ラジカル又は水素イオンに曝した後、前記窒化膜をエッチングすることにより前記ゲート電極の側壁にサイドウォールを形成する工程を更に含むことが好適である。
この発明に係る膜質改善方法又は製造法において、前記窒化膜を形成する工程は、600℃以下の温度で行なうことが好適である。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。図中、同一または相当する部分には同一の符号を付してその説明を簡略化ないし省略することがある。
【0013】
実施の形態1.
図1は、本発明の実施の形態1による窒化膜の膜質改善方法を説明するための工程断面図である。
先ず、図1(a)に示すように、基板11としてのシリコン基板上に、SiClのような塩素含有ガスを用いて600℃以下の成膜温度でLPCVD法により窒化膜12を形成する。
ここで、窒化膜12の成膜条件は、例えば、SiCl流量:10〜50sccm;NH流量:300〜1000sccm;圧力:1.33×10Pa(1Torr);温度:450℃である。また、窒化膜12の形成膜厚は、以下に述べる水素ラジカル14の導入を考慮すると、例えば、1nm〜100nmが好適であり、1nm〜50nmがより好適である。このように、塩素含有ガスを用い、600℃以下の低温で成膜された窒化膜12中には、不純物としての塩素13が多く含まれる。
【0014】
次に、図1(b)に示すように、水素ラジカル又は水素イオン(以下「水素ラジカル」という。)14を含むプラズマを発生させ、このプラズマ中に窒化膜12を曝す。これにより、窒化膜12中に水素ラジカル14が導入され、導入された水素ラジカル14は塩素13と結合して、塩化水素15を生成する。この生成した塩化水素15は窒化膜12から離脱する。
ここで、処理条件は、例えば、H流量;5〜20sccm;RF電力:1kw;温度:400℃である。
また、本処理を行う時間は、窒化膜12中の塩素13の減少量に応じて適宜決定すればよく、例えば、10minである。この場合、窒化膜12中の塩素13が30%減少することを本発明者は確認した。
また、本処理の温度は、上記400℃に限らず、窒化膜12の成膜温度以下であればよい。
【0015】
以上説明したように、本実施の形態1では、塩素含有ガスを用いて600℃以下の温度でLPCVD法により窒化膜12を形成した後、窒化膜12内に水素ラジカル14を導入した。窒化膜12内に導入された水素ラジカル14と、窒化膜12中の塩素13とを結合させて除去することにより、窒化膜12中の塩素13を減少させることができ、窒化膜12の膜質を改善することができる。
また、窒化膜12の成膜と、窒化膜12への水素ラジカル14の導入とを、同一の製造装置(LPCVD装置)で行うことにより、スループットを向上させることができる。さらに、窒化膜12の成膜温度と、水素ラジカル14の生成・導入温度とを同一温度にすることにより、スループットを更に向上させることができる。
【0016】
なお、本実施の形態1では、プラズマを発生させることにより水素ラジカル14を生成したが、熱的方法や触媒を用いて水素ラジカルを生成させてもよい(後述する実施の形態2についても同様)。但し、熱的方法を用いる場合には、窒化膜の成膜温度以下にする必要がある。
また、塩素含有のSi原料ガスとしては、上記SiCl以外に、SiHCl、SiClを用いることができる。
【0017】
実施の形態2.
図2は、本発明の実施の形態2による半導体装置の製造方法を説明するための工程断面図である。
本実施の形態2は、前述した実施の形態1の膜質改善方法を、半導体装置の製造方法に適用した一例である。
【0018】
先ず、図2(a)に示すように、基板21としてのシリコン基板上に、熱酸化法を用いてゲート絶縁膜22としてのゲート酸化膜を形成する。次に、ゲート絶縁膜22上にポリシリコン膜を形成し、該ポリシリコン膜をパターニングすることにより、ポリシリコン膜からなるゲート電極(半導体要素)23を形成する。なお、ゲート電極23は、ポリシリコン膜とシリサイド膜との積層構造のように、その構造は任意であってもよい。
【0019】
次に、図2(b)に示すように、ゲート電極23上に、SiClおよびNHを用いて成膜温度450℃でLPCVD法により窒化膜24を形成する。窒化膜24の処理条件及び膜厚は、前述した実施の形態1と同様であるので、説明を省略する。このように、塩素含有ガスを用い、600℃以下の低温で成膜された窒化膜24中には、不純物としての塩素25が多く含まれる。
【0020】
次に、図2(c)に示すように、水素ラジカル26を含むプラズマを発生させ、このプラズマ中に窒化膜24を曝す。これにより、窒化膜24中に水素ラジカル26が導入され、導入された水素ラジカル26は塩素25と結合して、塩化水素27を生成する。この生成した塩化水素27は窒化膜24から離脱する。
本処理の処理条件は、前述した実施の形態1と同様であるので、説明を省略する。
【0021】
さらに、図2(d)に示すように、窒化膜24をドライエッチング等の異方性エッチングすることにより、ゲート電極23の側壁に窒化膜からなるサイドウォール28を形成する。
【0022】
以上説明したように、本実施の形態2では、ゲート電極23を覆うように、塩素含有ガスを用いて600℃以下の温度でLPCVD法により窒化膜24を形成した後、窒化膜24内に水素ラジカル26を導入した。窒化膜24内に導入された水素ラジカル26と、窒化膜24中の塩素25を結合させて除去することにより、窒化膜24中の塩素25を減少させることができ、窒化膜24の膜質を改善することができる。
さらに、窒化膜24をエッチングすることにより、ゲート電極23の側壁を覆うサイドウォール28を形成した。膜質が改善された窒化膜からなるサイドウォール28は塩素濃度が低いため、後工程で熱が加わった場合でも、サイドウォール28からゲート電極23に不純物が拡散しない。従って、膜質が改善された窒化膜を半導体装置に適用することにより、半導体装置の信頼性を向上させることができる。
【0023】
なお、本実施の形態2では、半導体要素としてのゲート電極23上に窒化膜24を形成する場合について説明したが、これに限らず、例えば、窒化膜をライナーとして形成する場合についても適用できる。
【0024】
【発明の効果】
本発明によれば、成膜温度を増加させることなく、窒化膜中の塩素含有量を低減することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による窒化膜の膜質改善方法を説明するための工程断面図である。
【図2】 本発明の実施の形態2による半導体装置の製造方法を説明するための工程断面図である。
【符号の説明】
11,21 基板(シリコン基板)
12,24 窒化膜
13,25 塩素
14,26 水素ラジカル
15,27 塩化水素
22 ゲート絶縁膜(ゲート酸化膜)
23 ゲート電極
28 サイドウォール
[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for improving the quality of a nitride film used in a semiconductor device or the like and a method for manufacturing a semiconductor device using the nitride film.
[0002]
[Prior art]
Conventionally, a nitride film has been formed by LPCVD (Low Pressure Chemical Vapor Deposition) method using a chlorine-containing Si source gas such as SiH 2 Cl 2 , SiCl 4 , and Si 2 Cl 6 and NH 3 gas. In this LPCVD method, a film forming temperature of 650 ° C. to 800 ° C. is generally used.
[0003]
[Problems to be solved by the invention]
However, when the film formation temperature is lowered to 600 ° C. or lower in order to reduce the thermal history, a large amount of chlorine remains as an impurity in the nitride film, and the film quality of the nitride film deteriorates. There was a problem that.
Furthermore, when such a nitride film is applied to a semiconductor device, chlorine remaining in the nitride film diffuses to other elements, which may reduce the reliability of the semiconductor device. For example, when the sidewall of the gate electrode side wall is formed of a nitride film, there is a problem in that the impurity of the nitride film diffuses into the gate electrode and the impurity concentration in the gate electrode changes.
[0004]
The present invention has been made to solve the above-described conventional problems, and an object thereof is to reduce the chlorine content in a nitride film without increasing the film formation temperature.
[0005]
[Means for Solving the Problems]
Quality improving method of the nitride film according to the present invention, on a substrate, forming a nitride film by the LPCVD method using a chlorine-containing Si source gas and NH 3 gas, exposing the nitride layer to hydrogen radicals or hydrogen ions chlorine only contains a step of removing from said nitride film in the nitride film, the step of forming the nitride film is characterized in that performed at 600 ° C. or lower.
[0006]
In the film quality improving method according to the present invention, it is preferable that the step of removing chlorine in the nitride film from the nitride film includes a step of generating the hydrogen radicals or hydrogen ions by plasma.
[0007]
In the film quality improving method according to the present invention, it is preferable that the step of forming the nitride film and the step of removing chlorine in the nitride film from the nitride film are continuously performed in the same manufacturing apparatus. .
[0008]
The method of manufacturing a semiconductor device according to the present invention includes a step of forming a semiconductor element on a substrate, and a step of forming a nitride film on the semiconductor element by LPCVD using a chlorine-containing Si source gas and NH 3 gas. And a step of exposing the nitride film to hydrogen radicals or hydrogen ions and removing chlorine in the nitride film from the nitride film, and the step of forming the nitride film is performed at a temperature of 600 ° C. or lower. It is characterized by.
[0009]
In the manufacturing method according to the present invention, it is preferable that the step of removing chlorine in the nitride film from the nitride film includes a step of generating the hydrogen radicals or hydrogen ions by plasma.
[0010]
In the manufacturing method according to the present invention, it is preferable that the step of forming the nitride film and the step of removing chlorine in the nitride film from the nitride film are continuously performed in the same manufacturing apparatus.
[0011]
In the manufacturing method according to the present invention, the semiconductor element is a gate electrode,
After the nitride film into hydrogen radicals or hydrogen ions, it is preferable that further comprising the step of forming a sidewall on a sidewall of the gate electrode by etching the nitride film.
In the film quality improving method or manufacturing method according to the present invention, the step of forming the nitride film is preferably performed at a temperature of 600 ° C. or lower.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof may be simplified or omitted.
[0013]
Embodiment 1 FIG.
FIG. 1 is a process cross-sectional view for explaining a film quality improvement method for a nitride film according to Embodiment 1 of the present invention.
First, as shown in FIG. 1A, a nitride film 12 is formed on a silicon substrate as a substrate 11 by LPCVD using a chlorine-containing gas such as Si 2 Cl 6 at a film forming temperature of 600 ° C. or lower. To do.
Here, conditions for forming the nitride film 12 is, for example, Si 2 Cl 6 flow rate: 10~50sccm; NH 3 flow rate: 300~1000Sccm; pressure: 1.33 × 10 2 Pa (1Torr ); Temperature: at 450 ° C. is there. Further, the film thickness of the nitride film 12 is preferably, for example, 1 nm to 100 nm, and more preferably 1 nm to 50 nm in consideration of introduction of the hydrogen radical 14 described below. Thus, the nitride film 12 formed at a low temperature of 600 ° C. or less using a chlorine-containing gas contains a large amount of chlorine 13 as an impurity.
[0014]
Next, as shown in FIG. 1B, plasma containing hydrogen radicals or hydrogen ions (hereinafter referred to as “hydrogen radicals”) 14 is generated, and the nitride film 12 is exposed to the plasma. As a result, hydrogen radicals 14 are introduced into the nitride film 12, and the introduced hydrogen radicals 14 are combined with chlorine 13 to generate hydrogen chloride 15. The generated hydrogen chloride 15 is detached from the nitride film 12.
Here, the processing conditions are, for example, H 2 flow rate; 5 to 20 sccm; RF power: 1 kW; temperature: 400 ° C.
In addition, the time for performing this process may be appropriately determined according to the amount of decrease of chlorine 13 in the nitride film 12, and is, for example, 10 min. In this case, the present inventor confirmed that chlorine 13 in the nitride film 12 is reduced by 30%.
In addition, the temperature of this process is not limited to the above-described 400 ° C., and may be any temperature below the deposition temperature of the nitride film 12.
[0015]
As described above, in the first embodiment, after the nitride film 12 is formed by the LPCVD method using a chlorine-containing gas at a temperature of 600 ° C. or less, the hydrogen radicals 14 are introduced into the nitride film 12. By combining and removing the hydrogen radicals 14 introduced into the nitride film 12 and the chlorine 13 in the nitride film 12, the chlorine 13 in the nitride film 12 can be reduced, and the film quality of the nitride film 12 can be reduced. Can be improved.
Further, the throughput can be improved by forming the nitride film 12 and introducing the hydrogen radicals 14 into the nitride film 12 with the same manufacturing apparatus (LPCVD apparatus). Furthermore, the throughput can be further improved by setting the deposition temperature of the nitride film 12 and the generation / introduction temperature of the hydrogen radical 14 to the same temperature.
[0016]
In Embodiment 1, hydrogen radicals 14 are generated by generating plasma. However, hydrogen radicals may be generated using a thermal method or a catalyst (the same applies to Embodiment 2 described later). . However, when a thermal method is used, it is necessary to set the temperature to be equal to or lower than the nitride film formation temperature.
In addition to Si 2 Cl 6 , SiH 2 Cl 2 and SiCl 4 can be used as the chlorine-containing Si source gas.
[0017]
Embodiment 2. FIG.
FIG. 2 is a process sectional view for explaining the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
The second embodiment is an example in which the film quality improvement method of the first embodiment described above is applied to a method for manufacturing a semiconductor device.
[0018]
First, as shown in FIG. 2A, a gate oxide film as a gate insulating film 22 is formed on a silicon substrate as a substrate 21 by using a thermal oxidation method. Next, a polysilicon film is formed on the gate insulating film 22, and the polysilicon film is patterned to form a gate electrode (semiconductor element) 23 made of the polysilicon film. The gate electrode 23 may have an arbitrary structure, such as a stacked structure of a polysilicon film and a silicide film.
[0019]
Next, as shown in FIG. 2B, a nitride film 24 is formed on the gate electrode 23 by LPCVD using Si 2 Cl 6 and NH 3 at a film formation temperature of 450 ° C. Since the processing conditions and film thickness of the nitride film 24 are the same as those in the first embodiment described above, description thereof will be omitted. Thus, the nitride film 24 formed at a low temperature of 600 ° C. or less using a chlorine-containing gas contains a large amount of chlorine 25 as an impurity.
[0020]
Next, as shown in FIG. 2C, a plasma containing hydrogen radicals 26 is generated, and the nitride film 24 is exposed to this plasma. Thereby, hydrogen radicals 26 are introduced into the nitride film 24, and the introduced hydrogen radicals 26 are combined with chlorine 25 to generate hydrogen chloride 27. The generated hydrogen chloride 27 is detached from the nitride film 24.
Since the processing conditions of this processing are the same as those in the first embodiment, the description thereof is omitted.
[0021]
Further, as shown in FIG. 2D, the nitride film 24 is anisotropically etched such as dry etching to form a sidewall 28 made of a nitride film on the sidewall of the gate electrode 23.
[0022]
As described above, in the second embodiment, a nitride film 24 is formed by LPCVD using a chlorine-containing gas at a temperature of 600 ° C. or less so as to cover the gate electrode 23, and then the hydrogen in the nitride film 24 is formed. Radical 26 was introduced. By combining and removing the hydrogen radicals 26 introduced into the nitride film 24 and the chlorine 25 in the nitride film 24, the chlorine 25 in the nitride film 24 can be reduced, and the film quality of the nitride film 24 is improved. can do.
Further, by etching the nitride film 24, a sidewall 28 covering the side wall of the gate electrode 23 was formed. Since the side wall 28 made of a nitride film with improved film quality has a low chlorine concentration, impurities are not diffused from the side wall 28 to the gate electrode 23 even when heat is applied in a later step. Therefore, the reliability of the semiconductor device can be improved by applying the nitride film with improved film quality to the semiconductor device.
[0023]
In the second embodiment, the case where the nitride film 24 is formed on the gate electrode 23 as a semiconductor element has been described. However, the present invention is not limited to this. For example, the present invention can also be applied to the case where a nitride film is formed as a liner.
[0024]
【The invention's effect】
According to the present invention, the chlorine content in the nitride film can be reduced without increasing the film formation temperature.
[Brief description of the drawings]
FIG. 1 is a process cross-sectional view for explaining a nitride film quality improvement method according to a first embodiment of the present invention.
FIG. 2 is a process sectional view for explaining the method for manufacturing the semiconductor device according to the second embodiment of the present invention;
[Explanation of symbols]
11, 21 Substrate (silicon substrate)
12, 24 Nitride films 13, 25 Chlorine 14, 26 Hydrogen radicals 15, 27 Hydrogen chloride 22 Gate insulating film (gate oxide film)
23 Gate electrode 28 Side wall

Claims (8)

基板上に、塩素含有Si原料ガスとNHガスを用いてLPCVD法により窒化膜を形成する工程と、
前記窒化膜を水素ラジカル又は水素イオンに曝し、前記窒化膜内の塩素を前記窒化膜内から除去する工程とを含み、
前記窒化膜を形成する工程は、600℃以下の温度で行なうことを特徴とする窒化膜の膜質改善方法。
Forming a nitride film on the substrate by LPCVD using chlorine-containing Si source gas and NH 3 gas;
Exposing the nitride film to hydrogen radicals or hydrogen ions, and removing chlorine in the nitride film from the nitride film ,
The method for improving the quality of a nitride film, wherein the step of forming the nitride film is performed at a temperature of 600 ° C. or lower .
請求項1に記載の膜質改善方法において、
前記窒化膜内の塩素を前記窒化膜内から除去する工程は、プラズマにより前記水素ラジカル又は水素イオンを発生させる工程を含むことを特徴とする窒化膜の膜質改善方法。
In the film quality improvement method according to claim 1,
The method for improving the quality of a nitride film, wherein the step of removing chlorine in the nitride film from the nitride film includes a step of generating the hydrogen radicals or hydrogen ions by plasma.
請求項1又は2に記載の膜質改善方法において、
前記窒化膜を形成する工程と、前記窒化膜内の塩素を前記窒化膜内から除去する工程とを同一の製造装置内で連続して行うことを特徴とする窒化膜の膜質改善方法。
In the film quality improvement method according to claim 1 or 2,
A method of improving a film quality of a nitride film, wherein the step of forming the nitride film and the step of removing chlorine in the nitride film from the nitride film are continuously performed in the same manufacturing apparatus.
基板上に、半導体要素を形成する工程と、
前記半導体要素上に、塩素含有Si原料ガスとNHガスを用いてLPCVD法により窒化膜を形成する工程と、
前記窒化膜を水素ラジカル又は水素イオンに曝し、前記窒化膜内の塩素を前記窒化膜内から除去する工程とを含み、
前記窒化膜を形成する工程は、600℃以下の温度で行なうことを特徴とする半導体装置の製造方法。
Forming a semiconductor element on a substrate;
Forming a nitride film on the semiconductor element by LPCVD using chlorine-containing Si source gas and NH 3 gas;
Exposing the nitride film to hydrogen radicals or hydrogen ions, and removing chlorine in the nitride film from the nitride film ,
The method of manufacturing a semiconductor device, wherein the step of forming the nitride film is performed at a temperature of 600 ° C. or lower .
請求項に記載の製造方法において、
前記窒化膜内の塩素を前記窒化膜内から除去する工程は、プラズマにより前記水素ラジカル又は水素イオンを発生させる工程を含むことを特徴とする半導体装置の製造方法。
In the manufacturing method of Claim 4 ,
The method of removing a chlorine in the nitride film from the nitride film includes a step of generating the hydrogen radicals or hydrogen ions by plasma.
請求項又はに記載の製造方法において、
前記窒化膜を形成する工程と、前記窒化膜内の塩素を前記窒化膜内から除去する工程とを同一の製造装置内で連続して行うことを特徴とする半導体装置の製造方法。
In the manufacturing method of Claim 4 or 5 ,
A method of manufacturing a semiconductor device, wherein the step of forming the nitride film and the step of removing chlorine in the nitride film from the nitride film are continuously performed in the same manufacturing apparatus.
請求項からの何れかに記載の製造方法において、
前記半導体要素はゲート電極であり、
前記窒化膜を水素ラジカル又は水素イオンに曝した後、前記窒化膜をエッチングすることにより前記ゲート電極の側壁にサイドウォールを形成する工程を更に含むことを特徴とする半導体装置の製造方法。
In the manufacturing method in any one of Claim 4 to 6 ,
The semiconductor element is a gate electrode;
A method of manufacturing a semiconductor device, further comprising: forming a sidewall on the sidewall of the gate electrode by etching the nitride film after exposing the nitride film to hydrogen radicals or hydrogen ions.
請求項に記載の製造方法において、
前記窒化膜は、ライナー膜として形成されることを特徴とする半導体装置の製造方法。
In the manufacturing method of Claim 4 ,
The method of manufacturing a semiconductor device, wherein the nitride film is formed as a liner film.
JP2003168349A 2003-06-12 2003-06-12 Nitride film quality improving method and semiconductor device manufacturing method Expired - Fee Related JP3793179B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003168349A JP3793179B2 (en) 2003-06-12 2003-06-12 Nitride film quality improving method and semiconductor device manufacturing method
KR1020040042782A KR100753942B1 (en) 2003-06-12 2004-06-11 Method for improving quality of nitride film and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168349A JP3793179B2 (en) 2003-06-12 2003-06-12 Nitride film quality improving method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2005005537A JP2005005537A (en) 2005-01-06
JP3793179B2 true JP3793179B2 (en) 2006-07-05

Family

ID=34093871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168349A Expired - Fee Related JP3793179B2 (en) 2003-06-12 2003-06-12 Nitride film quality improving method and semiconductor device manufacturing method

Country Status (2)

Country Link
JP (1) JP3793179B2 (en)
KR (1) KR100753942B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541127B2 (en) 2015-11-06 2020-01-21 Samsung Electronics Co., Ltd. Material layers, semiconductor devices including the same, and methods of fabricating material layers and semiconductor devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7972663B2 (en) * 2002-12-20 2011-07-05 Applied Materials, Inc. Method and apparatus for forming a high quality low temperature silicon nitride layer
JP2008283051A (en) * 2007-05-11 2008-11-20 Toshiba Corp Semiconductor storage device and manufacturing method of semiconductor storage device
JP5247781B2 (en) * 2010-09-07 2013-07-24 東京エレクトロン株式会社 Silicon nitride film forming method, silicon nitride film forming apparatus and program
US11823907B2 (en) * 2019-10-16 2023-11-21 Wonik Ips Co., Ltd. Processing method for substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3998403B2 (en) * 2000-06-21 2007-10-24 株式会社東芝 Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541127B2 (en) 2015-11-06 2020-01-21 Samsung Electronics Co., Ltd. Material layers, semiconductor devices including the same, and methods of fabricating material layers and semiconductor devices

Also Published As

Publication number Publication date
JP2005005537A (en) 2005-01-06
KR100753942B1 (en) 2007-08-31
KR20040107387A (en) 2004-12-20

Similar Documents

Publication Publication Date Title
TWI464802B (en) Low-temperature dielectric film formation by chemical vapor deposition
JP4669679B2 (en) Method for manufacturing silicon nitride film and method for manufacturing semiconductor device
JP6027531B2 (en) MOS transistor including SiON gate dielectric with increased nitrogen concentration at its sidewall
TWI604562B (en) Method of selective nitridation
US20060024959A1 (en) Thin tungsten silicide layer deposition and gate metal integration
JP2002075972A (en) Method for fabricating semiconductor device
JP2010251654A (en) Deposition method and manufacturing method of semiconductor device
JP2002184981A (en) Manufacturing method of semiconductor device using damascene metal gate
JP2007042884A (en) Deposition method and apparatus therefor
JP2002359371A (en) Semiconductor device and its manufacturing method
JP5703590B2 (en) Manufacturing method of semiconductor device
JP3793179B2 (en) Nitride film quality improving method and semiconductor device manufacturing method
TW201830485A (en) Film formation method of nitride film
JP3189771B2 (en) Method for manufacturing semiconductor device
JP3756894B2 (en) Nitride film quality improving method and semiconductor device manufacturing method
JP2914282B2 (en) Method for manufacturing semiconductor device
JP2000022096A (en) Manufacture of semiconductor device
KR20070018223A (en) Method of manufacturing a semiconductor device
JP2847645B2 (en) Semiconductor integrated circuit device manufacturing method and semiconductor device titanium silicide forming apparatus
JP2006093242A (en) Method of manufacturing semiconductor device
JPH0661181A (en) Method of forming barrier metal
US7179707B2 (en) Method of forming gate electrode in semiconductor device
JP2008235397A (en) Method of manufacturing semiconductor device
JP3826792B2 (en) Manufacturing method of semiconductor device
JP2005302892A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees