JP3792439B2 - Method for producing 3-oxo-α-ionylalkyl ester - Google Patents
Method for producing 3-oxo-α-ionylalkyl ester Download PDFInfo
- Publication number
- JP3792439B2 JP3792439B2 JP17962699A JP17962699A JP3792439B2 JP 3792439 B2 JP3792439 B2 JP 3792439B2 JP 17962699 A JP17962699 A JP 17962699A JP 17962699 A JP17962699 A JP 17962699A JP 3792439 B2 JP3792439 B2 JP 3792439B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- oxo
- acetate
- ester
- ionylalkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C403/00—Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
- C07C403/06—Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by singly-bound oxygen atoms
- C07C403/12—Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by singly-bound oxygen atoms by esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/16—Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、香料および香料合成中間体として重要な下記式(1)
【0002】
【化3】
(式中、Rは炭素数1〜5のアルキル基を示す)
で表される3−オキソ−α−イオニルアルキルエステルを製造する方法に関し、従来提案の合成法に比して容易な反応操作で、高収率且つ高純度で上記式(1)を工業的に有利に取得できる製造方法に関する。
【0003】
【従来の技術】
従来、3−オキソ−α−イオニルアルキルエステルを製造する方法に関しては、その中間体である化合物(4)の3−オキソ−α−イオノールについてのみ報告されている(米国特許第3,217,718号公報)。この方法によると下記の合成方法により化合物(4)を得ている。
【0004】
【化4】
【0005】
しかしながら、上記反応は低収率で尚かつ酸化剤として毒性の強いクロム酸を用いた反応であるので工業的規模での製造が難しく、更に式(1)の3−オキソ−α−イオニルアルキルエステルへ導くためには、下記のようにエステル化反応を行う必要があるという欠点があった。
【0006】
【化5】
【0007】
【発明が解決しようとする課題】
本発明は、このような従来提案の諸欠陥乃至不利益を克服し、入手が容易で安価な原料から、式(1)化合物の3−オキソ−α−イオニルアルキルエステルを短工程で簡便な操作により、高収率、高純度で工業的に有利に製造する方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するため鋭意検討した結果、市販されているα−イオノールを常法に従いエステル化して得られるα−イオニルアルキルエステルを不活性有機溶媒中、周期律表第VIII族金属の有機酸塩または錯体の存在下、好ましくは助触媒として臭化物の存在下に、酸素または酸素含有ガスで酸化するという新規な製法によって、3−オキソ−α−イオニルアルキルエステルを短工程で簡便な操作により、高収率、高純度で工業的に有利に製造する方法を見出し本発明を完成した。
【0009】
【発明の実施の形態】
本発明の3−オキソ−α−イオニルアルキルエステルの製造法について、さらに詳細に説明する。
【0010】
本発明の原料物質、式(2)の化合物α−イオニルアルキルエステルは、市販されていて容易に入手できるα−イオノールを、常法により、燐酸触媒を用いて酸無水物と反応させることにより容易に、高収率で得ることができる。式(2)化合物の具体的な例として、α−イオニルアセテート、α−イオニルプロピオネート、α−イオニルイソプロピオネート、α−イオニルブチレート、α−イオニルイソブチレート、α−イオニルペンタノエート、α−イオニルイソペンタノエートなどを挙げることができる。
【0011】
これらの式(2)の化合物を不活性有機溶媒中、周期律表第VIII族金属の有機酸塩または錯体の存在下、好ましくは助触媒として臭化物の存在下に、酸素または酸素含有ガスで酸化して3−オキソ−α−イオニルアルキルエステルを製造することができる。
【0012】
使用する触媒としては周期律表第VIII族金属、例えば、Fe、Co、Ni、Ru、Rh、Pd、Irなどの如き遷移金属の有機酸塩または錯体を挙げることができる。このような例としては、例えば、酢酸鉄、鉄(II)−アセチルアセトネート、鉄(III)−アセチルアセトネート、乳酸鉄、プロピオン酸鉄、酪酸鉄、吉草酸鉄、ヘキサン酸鉄、2−エチルヘキサン酸鉄、ステアリン酸鉄、ナフテン酸鉄、鉄カルボニル、フェロセン、コバルト(II)−アセチルアセトネート、コバルト(III)−アセチルアセトネート、酢酸コバルト、プロピオン酸コバルト、酪酸コバルト、吉草酸コバルト、ヘキサン酸コバルト、2−エチルヘキサン酸コバルト、4−シクロヘキシル酪酸コバルト、ステアリン酸コバルト、ナフテン酸コバルト、安息香酸コバルト、乳酸コバルト、蓚酸コバルト、コバルトカルボニル、コバルトセン、ニッケルアセチルアセトネート、酢酸ニッケル、酪酸ニッケル、2−エチルヘキサン酸ニッケル、安息香酸ニッケル、ナフテン酸ニッケル、乳酸ニッケル、ニッケルカルボニル、ニツケロセン、酢酸ルテニウム、ルテニウムアセチルアセトネート、2−エチルヘキサン酸ルテニウム、ナフテン酸ルテニウム、酢酸ロジウム、ロジウムアセチルアセトネート、2−エチルヘキサン酸ロジウム、ナフテン酸ロジウム、トリフェニルホスフィンロジウムクロリド、トリフェニルホスフィンカルボニルロジウムクロリド、酢酸パラジウム、パラジウムアセチルアセトネート、ナフテン酸パラジウム、酢酸イリジウム、イリジウムアセチルアセトネート、トリフェニルホスフィンイリジウムイオダイド、トリフェニルホスフィンカルボニルイリジウムイオダイド、などの如き触媒を好ましく例示できる。これら触媒は市場で入手可能である。又、調製する場合は、たとえば「Inorganic Synthesis」(McGraw-Hill Book Company,Inc.)に記載の方法により容易に製造することができる。これらの触媒の使用量は適宜に選択できるが、上記式(2)の化合物α−イオニルアルキルエステルに対し、例えば、0.1〜10重量%の範囲、より好ましくは、例えば0.5〜5重量%の範囲の使用量を例示することができる。
【0013】
本発明方法では、反応をスムーズに進行させるために助触媒を使用することができる。使用する助触媒としては臭化物が好ましく、例えば、臭化アセチル、臭化水素、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化アンモニウムなどを挙げることができる。これら助触媒の使用量は、周期律表第VIII族金属の有機酸塩または錯体の使用量の0〜100重量%、好ましくは50〜100重量%の使用を例示することができる。
【0014】
また、本発明方法の実施に際し、使用する不活性有機溶媒としては、例えば、ベンゼン、トルエン、キシレン、クメン、サイメン、シクロヘキサン、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、アミルアルコール、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジグリム、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル、プロピオン酸エチル、プロピオン酸ブチル、酢酸、クロロホルム、ジクロルエタン、四塩化炭素などの溶媒を例示できる。これら有機溶媒は、1種もしくは2種以上併用して使用することができる。有機溶媒の便用量には、特別の制約はないが、上記式(2)の化合物α−イオニルアルキルエステルに対し、例えば、1〜100重量倍程度の範囲、より好ましくは、例えば、2〜50重量倍程度の範囲の使用量を例示することができる。
【0015】
本発明方法において、酸素含有ガスとは、一般に酸素及び不活性ガスの混合物を意味する。酸素含有ガスとしては、窒素/酸素混合物、例えば、空気を利用することが有利である。酸素含有ガスを利用する場合の不活性ガス中酸素濃度は適宜に選択することができ、好ましくは酸素ガス含有が約半量以下であるような不活性ガス・リッチの酸素含有ガスが利用できる。反応は、例えば、溶媒中α−イオニルアルキルエステルの系へ酸素又は酸素含有ガスを吹込む態様で行うことができる。反応は開放系でも密閉系でも行うことができる。密閉系の場合には、不活性ガス・リッチの酸素含有ガスの利用が特に有利である。
【0016】
本発明の接触酸化反応は室温でも進行するが、その反応温度は適宜に選択することができ、例えば、室温〜150℃、より好ましくは30〜100℃の反応温度を例示することができる。
【0017】
反応時間は、反応温度、触媒の種類、触媒の使用量及び酸素含有ガス中の酸素濃度や導入量により影響されるが、通常3〜20時間である。
【0018】
以下、実施例により本発明を更に具体的に説明する。
【0019】
【実施例】
実施例1
反応フラスコに、α−イオニルアセテート23.6g、酢酸エチル200g、コバルト(III)−アセチルアセトネート1.2gを仕込み、50℃/20時間酸素(約300m1毎分)を吹き込みながら反応を行った。冷却後、水洗浄、飽和硫酸第一鉄水溶液洗浄、水洗浄、溶媒を濃縮し、粗製物をシリカゲル(500g、n−ヘキサン/酢酸エチル=3/1)でカラムクロマトし目的の3−オキソ−α−イオニルアセテート17.8g(収率71%)が得られた。
【0020】
実施例2
反応フラスコに、α−イオニルアセテート23.6g、トルエン200g、ナフテン酸コバルト1.2gを仕込み、60℃/20時間酸素(約300m1毎分)を吹き込みながら反応を行った。冷却後、水洗浄、飽和硫酸第一鉄水溶液洗浄、水洗浄、溶媒を濃縮し、粗製物をシリカゲル(500g、n−ヘキサン/酢酸エチル=3/1)でカラムクロマトし目的の3−オキソ−α−イオニルアセテート17.1g(収率68%)が得られた。
【0021】
実施例3
反応フラスコに、α−イオニルアセテート23.6g、酢酸100g、トルエン100g、酢酸コバルト4水和物1.2g、臭化アンモニウム1.2gを仕込み、50℃/3時間酸素(約300ml毎分)を吹き込みながら反応を行った。冷却後、水洗浄、飽和硫酸第一鉄水溶液洗浄、水洗浄、溶媒を濃縮し、粗製物をシリカゲル(500g、n−ヘキサン/酢酸エチル=3/1)でカラムクロマトし目的の3−オキソ−α−イオニルアセテート19.6g(収率78%)が得られた。
【0022】
実施例4
反応フラスコに、α−イオニルアセテート23.6g、酢酸200g、酢酸コバルト4水和物1.2g、臭化アンモニウム0.6gを仕込み、40℃/10時間空気(約300m1毎分)を吹き込みながら反応を行った。冷却後、水中に加えトルエン抽出、水洗浄、飽和硫酸第一鉄水溶液洗浄、水洗浄、溶媒を濃縮し、粗製物をシリカゲル(500g、n−ヘキサン/酢酸エチル=3/1)でカラムクロマトし目的の3−オキソ−α−イオニルアセテート20.4g(収率82%)が得られた。
【0023】
実施例5
反応フラスコに、α−イオニルアルキルエステル0.1モル、溶媒200g、触媒1,2g、助触媒0〜1.2gを仕込み、40〜60℃/3〜20時間、酸素または空気(約300m1毎分)を吹き込みながら反応を行った。冷却後、水洗浄、飽和硫酸第一鉄水溶液洗浄、水洗浄、溶媒を濃縮し、粗製物をシリカゲル(500g、n−ヘキサン/酢酸エチル=3/1)でカラムクロマトし目的の3−オキソ−α−イオニルアルキルエステルが得られた。その結果を表1に示す。
【0024】
【表1】
【0025】
【発明の効果】
本発明により提供される3−オキソ−α−イオニルアルキルエステルの製造方法は、容易に入手可能な安価な原料より、従来提案の合成法に比して容易な反応操作で、短工程で高収率且つ高純度で、従って工業的に有利に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides the following formula (1) important as a fragrance and a fragrance synthesis intermediate.
[0002]
[Chemical 3]
(Wherein R represents an alkyl group having 1 to 5 carbon atoms)
The above formula (1) is industrially produced in a high yield and high purity by a reaction operation easier than that of a conventionally proposed synthesis method, for producing a 3-oxo-α-ionylalkyl ester represented by It is related with the manufacturing method which can be acquired advantageously.
[0003]
[Prior art]
Conventionally, with respect to the process for producing 3-oxo-α-ionylalkyl ester, only the 3-oxo-α-ionol of compound (4), which is an intermediate thereof, has been reported (US Pat. No. 3,217, 718). According to this method, compound (4) is obtained by the following synthesis method.
[0004]
[Formula 4]
[0005]
However, since the above reaction is a reaction using chromic acid having a low yield and a strong toxicity as an oxidizing agent, it is difficult to produce on an industrial scale. Further, the 3-oxo-α-ionylalkyl of the formula (1) is used. In order to lead to an ester, there is a drawback that it is necessary to carry out an esterification reaction as described below.
[0006]
[Chemical formula 5]
[0007]
[Problems to be solved by the invention]
The present invention overcomes the above-mentioned deficiencies and disadvantages of the conventional proposal, and from a readily available and inexpensive raw material, a 3-oxo-α-ionylalkyl ester of the compound of formula (1) can be conveniently prepared in a short process. An object of the present invention is to provide a method for industrially advantageously producing a high yield and high purity by operation.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have prepared an α-ionylalkyl ester obtained by esterifying a commercially available α-ionol according to a conventional method in an inert organic solvent in a periodic table. The 3-oxo-α-ionylalkyl ester is prepared by a novel process of oxidation with oxygen or an oxygen-containing gas in the presence of an organic acid salt or complex of a Group VIII metal, preferably in the presence of bromide as a cocatalyst. The present invention was completed by finding a method for producing an industrially advantageous high yield and high purity by a simple operation in a short process.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The production method of the 3-oxo-α-ionylalkyl ester of the present invention will be described in more detail.
[0010]
The raw material of the present invention, the compound α-ionylalkyl ester of the formula (2), is commercially available and can be easily obtained by reacting an α-ionol with an acid anhydride using a phosphoric acid catalyst by a conventional method. It can be easily obtained in high yield. Specific examples of the compound of the formula (2) include α-ionyl acetate, α-ionyl propionate, α-ionyl isopropionate, α-ionyl butyrate, α-ionyl isobutyrate, α -Ionyl pentanoate, (alpha) -ionyl isopentanoate etc. can be mentioned.
[0011]
These compounds of formula (2) are oxidized with oxygen or an oxygen-containing gas in an inert organic solvent in the presence of an organic acid salt or complex of a Group VIII metal of the periodic table, preferably in the presence of bromide as a cocatalyst. Thus, 3-oxo-α-ionylalkyl ester can be produced.
[0012]
Examples of the catalyst used include Group VIII metals of the periodic table, for example, organic acid salts or complexes of transition metals such as Fe, Co, Ni, Ru, Rh, Pd, and Ir. Examples of such include iron acetate, iron (II) -acetylacetonate, iron (III) -acetylacetonate, iron lactate, iron propionate, iron butyrate, iron valerate, iron hexanoate, 2- Iron ethylhexanoate, iron stearate, iron naphthenate, iron carbonyl, ferrocene, cobalt (II) -acetylacetonate, cobalt (III) -acetylacetonate, cobalt acetate, cobalt propionate, cobalt butyrate, cobalt valerate, Cobalt hexanoate, cobalt 2-ethylhexanoate, cobalt 4-cyclohexylbutyrate, cobalt stearate, cobalt naphthenate, cobalt benzoate, cobalt lactate, cobalt oxalate, cobalt carbonyl, cobaltocene, nickel acetylacetonate, nickel acetate, butyric acid Nickel, nickel 2-ethylhexanoate, repose Nickel perfate, Nickel naphthenate, Nickel lactate, Nickel carbonyl, Nickelocene, Ruthenium acetate, Ruthenium acetylacetonate, Ruthenium 2-ethylhexanoate, Ruthenium naphthenate, Rhodium acetate, Rhodium acetylacetonate, Rhodium 2-ethylhexanoate, Rhodium naphthenate, triphenylphosphine rhodium chloride, triphenylphosphine carbonyl rhodium chloride, palladium acetate, palladium acetylacetonate, palladium naphthenate, iridium acetate, iridium acetylacetonate, triphenylphosphine iridium iodide, triphenylphosphine carbonyliridium ion Preferred examples include catalysts such as dyes. These catalysts are commercially available. Moreover, when preparing, it can manufacture easily by the method as described in "Inorganic Synthesis" (McGraw-Hill Book Company, Inc.), for example. Although the usage-amount of these catalysts can be selected suitably, it is the range of 0.1-10 weight% with respect to the compound (alpha) -ionyl alkyl ester of the said Formula (2), More preferably, it is 0.5- Examples of the usage amount are in the range of 5% by weight.
[0013]
In the method of the present invention, a cocatalyst can be used to allow the reaction to proceed smoothly. The cocatalyst used is preferably bromide, and examples thereof include acetyl bromide, hydrogen bromide, lithium bromide, sodium bromide, potassium bromide, and ammonium bromide. The amount of these cocatalysts used may be 0 to 100% by weight, preferably 50 to 100% by weight, based on the amount of the organic acid salt or complex of the Group VIII metal of the periodic table.
[0014]
In the implementation of the method of the present invention, examples of the inert organic solvent used include benzene, toluene, xylene, cumene, cyclone, cyclohexane, methanol, ethanol, propanol, isopropanol, butanol, amyl alcohol, tetrahydrofuran, dioxane, and dimethoxy. Examples of the solvent include ethane, diglyme, ethyl acetate, propyl acetate, butyl acetate, amyl acetate, ethyl propionate, butyl propionate, acetic acid, chloroform, dichloroethane, and carbon tetrachloride. These organic solvents can be used alone or in combination of two or more. The stool dose of the organic solvent is not particularly limited, but is, for example, in the range of about 1 to 100 times the weight of the compound α-ionylalkyl ester of the above formula (2), more preferably, for example, 2 to 2 The usage amount in the range of about 50 times weight can be exemplified.
[0015]
In the method of the present invention, the oxygen-containing gas generally means a mixture of oxygen and an inert gas. As the oxygen-containing gas, it is advantageous to use a nitrogen / oxygen mixture, for example air. The oxygen concentration in the inert gas when the oxygen-containing gas is used can be appropriately selected. Preferably, an inert gas-rich oxygen-containing gas having an oxygen gas content of about half or less can be used. The reaction can be carried out, for example, in such a manner that oxygen or an oxygen-containing gas is blown into an α-ionylalkyl ester system in a solvent. The reaction can be carried out in an open system or a closed system. In the case of a closed system, the use of an inert gas / rich oxygen-containing gas is particularly advantageous.
[0016]
Although the catalytic oxidation reaction of the present invention proceeds even at room temperature, the reaction temperature can be appropriately selected, and examples thereof include room temperature to 150 ° C., more preferably 30 to 100 ° C.
[0017]
Although the reaction time is influenced by the reaction temperature, the type of catalyst, the amount of catalyst used, the oxygen concentration in the oxygen-containing gas and the amount introduced, it is usually 3 to 20 hours.
[0018]
Hereinafter, the present invention will be described more specifically with reference to examples.
[0019]
【Example】
Example 1
A reaction flask was charged with 23.6 g of α-ionyl acetate, 200 g of ethyl acetate, and 1.2 g of cobalt (III) -acetylacetonate, and reacted while blowing oxygen (about 300 ml per minute) at 50 ° C. for 20 hours. . After cooling, washing with water, washing with a saturated ferrous sulfate aqueous solution, washing with water, and concentrating the solvent, the crude product was subjected to column chromatography on silica gel (500 g, n-hexane / ethyl acetate = 3/1) and the desired 3-oxo- 17.8 g (yield 71%) of α-ionyl acetate was obtained.
[0020]
Example 2
The reaction flask was charged with 23.6 g of α-ionyl acetate, 200 g of toluene, and 1.2 g of cobalt naphthenate, and reacted while blowing oxygen (about 300 ml / min) at 60 ° C./20 hours. After cooling, washing with water, washing with a saturated ferrous sulfate aqueous solution, washing with water, and concentrating the solvent, the crude product was subjected to column chromatography on silica gel (500 g, n-hexane / ethyl acetate = 3/1) and the desired 3-oxo- 17.1 g (68% yield) of α-ionyl acetate was obtained.
[0021]
Example 3
A reaction flask was charged with 23.6 g of α-ionyl acetate, 100 g of acetic acid, 100 g of toluene, 1.2 g of cobalt acetate tetrahydrate, and 1.2 g of ammonium bromide, and oxygen (about 300 ml per minute) at 50 ° C./3 hours. The reaction was conducted while blowing. After cooling, washing with water, washing with a saturated ferrous sulfate aqueous solution, washing with water, and concentrating the solvent, the crude product was subjected to column chromatography on silica gel (500 g, n-hexane / ethyl acetate = 3/1) and the desired 3-oxo- 19.6 g (yield 78%) of α-ionyl acetate was obtained.
[0022]
Example 4
While charging 23.6 g of α-ionyl acetate, 200 g of acetic acid, 1.2 g of cobalt acetate tetrahydrate , and 0.6 g of ammonium bromide into the reaction flask, blowing air (about 300 ml per minute) at 40 ° C./10 hours. Reaction was performed. After cooling, it is added to water, extracted with toluene, washed with water, washed with saturated ferrous sulfate aqueous solution, washed with water, concentrated solvent, and the crude product was subjected to column chromatography on silica gel (500 g, n-hexane / ethyl acetate = 3/1). 20.4 g (yield 82%) of the desired 3-oxo-α-ionyl acetate was obtained.
[0023]
Example 5
A reaction flask was charged with 0.1 mol of α-ionyl alkyl ester, 200 g of solvent, 1 g of catalyst, 0 to 1.2 g of cocatalyst, 40 to 60 ° C./3 to 20 hours, oxygen or air (approx. The reaction was carried out while blowing in). After cooling, washing with water, washing with a saturated ferrous sulfate aqueous solution, washing with water, and concentrating the solvent, the crude product was subjected to column chromatography on silica gel (500 g, n-hexane / ethyl acetate = 3/1) and the desired 3-oxo- An α-ionyl alkyl ester was obtained. The results are shown in Table 1.
[0024]
[Table 1]
[0025]
【The invention's effect】
The production method of 3-oxo-α-ionylalkyl ester provided by the present invention is a simpler operation operation than a conventionally proposed synthesis method, and can be carried out in a short process, rather than an easily available inexpensive raw material. Yield and high purity, and therefore can be produced industrially advantageously.
Claims (1)
で表されるα−イオニルアルキルエステルを、不活性有機溶媒中周期律表第VIII属金属の有機酸塩または錯体および臭化物からなる助触媒の存在下に、酸素または酸素含有ガスで酸化させて下記式(1)
で表される3−オキソ−α−イオニルアルキルエステルの製造方法。Following formula (2)
Is oxidized with oxygen or an oxygen-containing gas in the presence of a promoter comprising an organic acid salt or complex of a group VIII metal and a bromide in an inert organic solvent in an inert organic solvent. Following formula (1)
The manufacturing method of 3-oxo- (alpha) -ionyl alkyl ester represented by these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17962699A JP3792439B2 (en) | 1999-06-25 | 1999-06-25 | Method for producing 3-oxo-α-ionylalkyl ester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17962699A JP3792439B2 (en) | 1999-06-25 | 1999-06-25 | Method for producing 3-oxo-α-ionylalkyl ester |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001011044A JP2001011044A (en) | 2001-01-16 |
JP3792439B2 true JP3792439B2 (en) | 2006-07-05 |
Family
ID=16069064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17962699A Expired - Fee Related JP3792439B2 (en) | 1999-06-25 | 1999-06-25 | Method for producing 3-oxo-α-ionylalkyl ester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3792439B2 (en) |
-
1999
- 1999-06-25 JP JP17962699A patent/JP3792439B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001011044A (en) | 2001-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20050084042A (en) | Carbonylation of vinyl acetate | |
KR19980080071A (en) | Method for Oxidation of Branched Aliphatic Hydrocarbons and Process for Producing Oxides | |
JP3792439B2 (en) | Method for producing 3-oxo-α-ionylalkyl ester | |
Saegusa et al. | Synthetic reactions by complex catalysts. XVIII. Reaction of an azide with isocyanide using an iron carbonyl catalyst. New route to carbodiimide | |
US4121039A (en) | Process for producing an unsaturated glycol diester using a catalyst comprising palladium containing thorium as a promotor | |
WO2001060780A1 (en) | Process for producing fumaric ester | |
JPS60169442A (en) | Production of cinnamic acid ester | |
JP3574847B2 (en) | Method for oxidizing primary alcohols using molecular oxygen and photoactivated catalyst | |
JPS595570B2 (en) | Method for producing cinnamic acid esters | |
JPH01294643A (en) | Production of oxygen-containing compound | |
JPS6033370B2 (en) | Method for producing 2-aryl ethanol | |
JPS6112647A (en) | Manufacture of carbonyl compound | |
JP5659191B2 (en) | Heterocyclic compounds, oxidation catalysts and uses thereof | |
JPH0525149A (en) | Production of styrene oxide | |
US6339157B1 (en) | Synthesis of carboxamides from the catalyzed reaction of aldehydes and amines | |
JP4692702B2 (en) | Process for producing aromatic carboxylic acids | |
JPH0427971B2 (en) | ||
JP5552510B2 (en) | Oxidation catalyst and method for producing oxidation reaction product | |
JP5552550B1 (en) | Oxidation catalyst and method for producing oxidation reaction product | |
JPS62263140A (en) | Production of alpha-phenylpropionic acid derivative | |
JP2860676B2 (en) | Method for producing 1-isoquinolines | |
Cavinato et al. | Highly selective palladium catalyzed hydrogen transfer from H2O CO to the C C double bond of β-benzoylacrylic acid | |
JPS5921855B2 (en) | Production method of malonic acid diesters | |
JP3993080B2 (en) | Process for producing 1,3-adamantanediol | |
WO2014034515A1 (en) | METHOD FOR OXIDIZING sp3C-H BOND |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050920 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060405 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |